Plants are Capable of Synthesizing Animal Steroid Hormones
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund Project
PubMed
31315257
PubMed Central
PMC6680614
DOI
10.3390/molecules24142585
PII: molecules24142585
Knihovny.cz E-zdroje
- Klíčová slova
- androstenedione, animals, boldenone, boldione, estrogens, natural sterols, plants, progesterone, steroid hormones, testosterone,
- MeSH
- androstadieny metabolismus MeSH
- androstendion biosyntéza MeSH
- biosyntetické dráhy MeSH
- estrogeny biosyntéza MeSH
- fytosteroly metabolismus MeSH
- progesteron biosyntéza MeSH
- rostliny metabolismus MeSH
- steroidy biosyntéza MeSH
- testosteron biosyntéza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- androstadieny MeSH
- androstendion MeSH
- estrogeny MeSH
- fytosteroly MeSH
- progesteron MeSH
- steroidy MeSH
- testosteron MeSH
As a result of the findings of scientists working on the biosynthesis and metabolism of steroids in the plant and animal kingdoms over the past five decades, it has become apparent that those compounds that naturally occur in animals can also be found as natural constituents of plants and vice versa, i.e., they have essentially the same fate in the majority of living organisms. This review summarizes the current state of knowledge on the occurrence of animal steroid hormones in the plant kingdom, particularly focusing on progesterone, testosterone, androstadienedione (boldione), androstenedione, and estrogens.
Zobrazit více v PubMed
Tarkowská D., Strnad M. Isoprenoid-derived plant signaling molecules: Biosynthesis and biological importance. Planta. 2018;247:1051–1066. doi: 10.1007/s00425-018-2878-x. PubMed DOI
Behmer S.T., Nes W.D. Insect sterol nutrition and physiology: A global overview. Adv. Insect Physiol. 2003;31:1–72. doi: 10.1016/S0065-2806(03)31001-X. DOI
Lindsey K., Pullen M.L., Topping J.F. Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci. 2003;8:521–525. doi: 10.1016/j.tplants.2003.09.012. PubMed DOI
Espenshade P.J., Hughes A.L. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 2007;41:401–427. doi: 10.1146/annurev.genet.41.110306.130315. PubMed DOI
Silvestro D., Andersen T.G., Schaller H., Jensen P.E. Plant Sterol Metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) Show Multiple Subcellular Localizations in Arabidopsis thaliana (Heynh) L. PLoS ONE. 2013;8:e56429. doi: 10.1371/journal.pone.0056429. PubMed DOI PMC
Nes W.D. Biosynthesis of Cholesterol and Other Sterols. Chem. Rev. 2011;111:6423–6451. doi: 10.1021/cr200021m. PubMed DOI PMC
Hartmann M.-A. Plant sterols and the membrane environment. Trends Plant Sci. 1998;3:170–175. doi: 10.1016/S1360-1385(98)01233-3. DOI
Goldstein J.L., Brown M.S. Regulation of the mevalonate pathway. Nature. 1990;343:425–430. doi: 10.1038/343425a0. PubMed DOI
Payne A.H., Hales D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrin. Rev. 2004;25:947–970. doi: 10.1210/er.2003-0030. PubMed DOI
Fellner O.O. Zuckestoffwechsel, Sexualorgane, und Insulin. Med. Klin. 1926;22:1886–1888.
Dohrn M., Faure W., Poll H., Blotevogel W. Tokokine, Stoff mit sexualhormonartiger Wirkung aus Pfanzenzellen. Med. Klin. 1926;22:1417–1419.
Butenandt A. Über progynon ein krytallisiertes weibliches sexualhormon. Naturwissenschaften. 1929;17:879. doi: 10.1007/BF01506919. DOI
Doisy E.A., Thayer S., Veler C.D. The crystals of the follicular ovarian hormone. Proc. Soc. Exp. Biol. Med. 1929;27:417–419. doi: 10.3181/00379727-27-4791. DOI
Sláma K. Development and metamorphosis in invertebrates–hormonal control. Gen. Comp. Endocrinol. 1980;40:313–314.
World Anti-Doping Agency. [(accessed on 14 July 2019)]; Available online: https://www.wada-ama.org/en/content/what-is-prohibited.
Heftman E. Functions of steroids in plants. Phytochemistry. 1975;14:891–901. doi: 10.1016/0031-9422(75)85156-9. DOI
Geuns J.M.C. Steroid hormones and plant growth and development. Phytochemistry. 1978;17:1–14. doi: 10.1016/S0031-9422(00)89671-5. DOI
Janeczko A., Skoczowski A. Mammalian sex hormones in plants. Folia Histochem. Cytobiol. 2005;43:71–79. PubMed
Janeczko A. The presence and activity of progesterone in the plant kingdom. Steroids. 2012;77:169–173. doi: 10.1016/j.steroids.2011.10.012. PubMed DOI
Pollak O.J. Reduction of blood cholesterol in man. Circulation. 1953;7:702–706. doi: 10.1161/01.CIR.7.5.702. PubMed DOI
Moghadasian M.H., Frohlich J.J. Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: Clinical and experimental evidence. Am. J. Med. 1999;107:588–594. doi: 10.1016/S0002-9343(99)00285-5. PubMed DOI
Piironen V., Lindsay D.G., Miettinen T.A., Toivo J., Lampi A.-M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000;80:939–966. doi: 10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C. DOI
Connolly J.D., Hill R.A. Dictionary of Terpenoids. 1st ed. Chapman and Hall/CRC; New York, NY, USA: 1992.
Lichtenthaler H.K. The plants’ 1-deoxy-d-xylulose-5-phosphate pathway for biosynthesis of isoprenoids. Fett-Lipid. 1998;100:128–138. doi: 10.1002/(SICI)1521-4133(19985)100:4/5<128::AID-LIPI128>3.0.CO;2-D. DOI
McCaskill D., Croteau R. Some caveats for bioengineering terpenoids metabolism in plants. Trends Biotechnol. 1998;16:349–355. doi: 10.1016/S0167-7799(98)01231-1. DOI
Benveniste P. Sterol biosynthesis. Ann. Rev. Plant Physiol. 1986;37:275–308. doi: 10.1146/annurev.pp.37.060186.001423. DOI
Nes W.D. The biochemistry of plant sterols. Adv. Lipid Res. 1977;15:233–324. doi: 10.1016/B978-0-12-024915-2.50010-4. DOI
Leboeuf M., Cave A., Goutarel R. Steroid alkaloids. Presence of progesterone in the leaves of Holarrhena floribunda (G. Don) Duer and Schinz. C. R. Acad. Sci. Paris. 1964;259:3401–3403. PubMed
Iino M., Nomura T., Tamaki Y., Yamada Y., Yoneyama K., Takeuchi Y., Mori M., Asami T., Nakano T., Yokota T. Progesterone: Its occurrence in plants and involvement in plant growth. Phytochemistry. 2007;68:1664–1673. doi: 10.1016/j.phytochem.2007.04.002. PubMed DOI
Gawienowski A.M., Gibbs C.C. Identification of cholesterol and progesterone in apples seeds. Steroids. 1968;12:545–550. doi: 10.1016/S0039-128X(68)80117-5. PubMed DOI
Simons R.G., Grinwich D.L. Immunoreactive detection of four mammalian steroids in plants. Can. J. Bot. 1989;67:288–296. doi: 10.1139/b89-042. DOI
Carson J.D., Jenkins R.L., Wilson M.M., Howell W.M., Moore R. Naturally occurring progesterone in loblolly pine (Pinus taeda L.): A major steroid precursor of environmental androgens. Environ. Toxicol. Chem. 2008;27:1273–1278. doi: 10.1897/07-515.1. PubMed DOI
Simerský R., Novák O., Morris D.A., Pouzar V., Strnad M. Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. J. Plant Growth Regul. 2009;28:125–136. doi: 10.1007/s00344-009-9081-z. DOI
Lindemann P. Steroidogenesis in plants–Biosynthesis and conversions of progesterone and other pregnane derivatives. Steroids. 2015;103:145–152. doi: 10.1016/j.steroids.2015.08.007. PubMed DOI
Caspi E., Lewis D.O., Piatak D.M., Thimann K.V., Winter A. Biosynthesis of plant sterols. Conversion of cholesterol to pregnenolone in Digitalis purpurea. Experientia. 1966;22:506–507. doi: 10.1007/BF01898654. DOI
Bennett R.D., Heftmann E., Winter B.J. Conversion of sitosterol to progesterone by Digitalis lanata. Naturwissenschaften. 1969;56:463. doi: 10.1007/BF00601074. PubMed DOI
Bennett R.D., Heftmann E., Winter B.J. A function of sitosterol. Phytochemistry. 1969;8:2325–2328. doi: 10.1016/S0031-9422(00)88149-2. DOI
Lindemann P., Luckner M. Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. Phytochemistry. 1997;46:507–513. doi: 10.1016/S0031-9422(97)00315-4. DOI
Bhattacharya B., Gupta K. Steroid hormone effects on growth and apical dominance of sunflower. Phytochemistry. 1981;20:989–991. doi: 10.1016/0031-9422(81)83014-2. DOI
Janeczko A., Filek W. Stimulation of generative development in partly vernalized winter wheat by animal sex hormones. Acta Physiol. Plant. 2002;24:291–295. doi: 10.1007/s11738-002-0054-0. DOI
Janeczko A., Filek W., Biesaga-Kosćielniak J., Marcińska I., Janeczko Z. The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: Comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Org. Cult. 2003;72:147–151. doi: 10.1023/A:1022291718398. DOI
Ylstra B., Touraev A., Brinkmann A.O., Heberle-Bors E., Tunen A. Steroid hormones stimulate germination and tube growth of in Vitro matured tobacco pollen. Plant Physiol. 1995;107:639–643. doi: 10.1104/pp.107.2.639. PubMed DOI PMC
Speranza A., Crosti P., Malerba M., Stocchi O., Scoccianti V. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen. Plant Biol. 2011;13:209–217. doi: 10.1111/j.1438-8677.2010.00330.x. PubMed DOI
Davies P.J. Plant Hormones. Biosynthesis, Signal Transduction, Action! 3th ed. Springer; Dordrecht, The Netherland: 2010.
Yang X.H., Xu Z.H., Xue H.W. Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell. 2005;17:116–131. doi: 10.1105/tpc.104.028381. PubMed DOI PMC
Yang X., Song L., Xue H.W. Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution. Mol. Plant. 2008;1:1077–1087. doi: 10.1093/mp/ssn071. PubMed DOI
Janeczko A., Budziszewska B., Skoczowski A., Dybała M. Specific binding sites for progesterone and 17β-estradiol in cells of Triticum aestivum L. Acta Biochim. Pol. 2008;55:701–711. PubMed
Šaden-Krehula M., Tajić M., Kolbah D. Sex hormones and corticosteroids in pollen of Pinus nigra. Phytochemistry. 1979;18:345–346. doi: 10.1016/0031-9422(79)80098-9. DOI
Šaden-Krehula M., Tajić M., Kolbah D. Testosterone, epitestosterone and androstenedione in the pollen of Scotch pine P. siivestris L. Experimentia. 1971;27:108–109. doi: 10.1007/BF02137770. PubMed DOI
Hartmann S., Lacorn M., Steinhart H. Natural occurrence of steroid hormones in food. Food Chem. 1998;62:7–20. doi: 10.1016/S0308-8146(97)00150-7. DOI
Mohareb A.S.O., Kherallah I.E.A., Badawy M.E.I., Salem M.Z.M., Yousef H.A. Chemical composition and activity of bark and leaf extracts of Pinus halepensis and Olea europaea grown in AL-Jabel AL-Akhdar region, Libya against some plant phytopathogens. J. Appl. Biotechnol. Bioeng. 2017;3:331–342. doi: 10.15406/jabb.2017.03.00067. DOI
Šaden-Krehula M., Kolbah D., Tajić M., Blažević N. 17-ketosteroids in Pinus nigra Ar. Steroid hormones in the pollen of pine species. IV. Naturwissenschaften. 1983;70:520–522. doi: 10.1007/BF00394062. DOI
Dean P.D.G., Exley D., Goodwin T.W. Steroid oestrogens in plants: Re-estimation of oestrone in pomegranate seeds. Phytochemistry. 1971;10:2215–2216. doi: 10.1016/S0031-9422(00)97224-8. DOI
Amin S., Paleologou A.M. Estrone in Hyphaene thebaica kernel and pollen grains. Phytochemistry. 1973;12:899–901. doi: 10.1016/0031-9422(73)80699-5. DOI
Amin S., Bassiouny A.R. Estrone in Olea europaea kernel. Phytochemistry. 1979;18:344. doi: 10.1016/0031-9422(79)80097-7. DOI
Young I.J., Knights B.A., Hillman J.R. Oestradiol and its biosynthesis in Phaseolus vulgaris L. Nature. 1977;267:429. doi: 10.1038/267429a0. PubMed DOI
ZhongHan Y., Yin T., ZongXun C. Changes of the contents of testosterone-steroidal sex hormone in reproductive organs of Lilium davidii Duch. Acta Bot. Sin. 1994;36:215–220.
Farquhar J.W., Sokolow M. Response of serum lipids and lipoproteins of man to beta-sitosterol and safflower oil. Circulation. 1958;17:890–899. doi: 10.1161/01.CIR.17.5.890. PubMed DOI
De Oliveira C.V.K., Santos R.F., Siqueira J.A.C., Bariccatti R.A., Lenz N.B.G., Cruz G.S., Tokura L.K., Klajn F.F. Chemical characterization of oil and biodiesel from four safflower genotypes. Ind. Crop Prod. 2018;123:192–196. doi: 10.1016/j.indcrop.2018.06.035. DOI
Hall III C. Overview of the oilseed safflower (Carthamus tinctorius L.) Ref. Module Food Sci. 2016 doi: 10.1016/B978-0-08-100596-5.00030-5. DOI
Heftmann E. Biochemistry of plant steroids. Annu. Rev. Plant Physiol. 1963;14:225–248. doi: 10.1146/annurev.pp.14.060163.001301. DOI
Heftmann E. Function of sterols in plants. Lipids. 1971;6:128–133. doi: 10.1007/BF02531328. DOI
Lin J., Proebsting W.M., Heftmann E. Conversion of 4-androstene-3,17-dione to testosterone by Pisum sativum. Phytochemistry. 1979;18:1667–1669. doi: 10.1016/0031-9422(79)80180-6. DOI
Lin J., Palevitch D., Heftmann E. Reduction of 4-androstene-3,17-dione by growing cucumber plants. Phytochemistry. 1983;22:1149–1154. doi: 10.1016/0031-9422(83)80210-6. DOI
Hirotani M., Furuya T. Biotransformation of testosterone and other androgens by suspension cultures of Nicotiana tabacum “bright yellow”. Phytochemistry. 1974;13:2135–2142. doi: 10.1016/0031-9422(74)85015-6. DOI
De Brabander H.F., Poelmans S., Schilt R., Stephany R.W., Le Bizec B., Draisci R., Sterk S.S., van Ginkel L.A., Courtheyn D., Van Hoff N., et al. Presence and metabolism of the anabolic steroid boldenone in various animal species: a review. Food Addit. Contam. 2004;21:515–525. doi: 10.1080/02652030410001687717. PubMed DOI
Poelmans S., DeWasch K., Martele Y., Schilt R., VanHoof N., Noppe H., Verslycke T., Janssen C., Courtheyn D., De Brabander H.F. Proceedings Euro Food Chem XII: Strategies for Safe Food. D-Facto Public; Bruges, Belgium: 2003. The possible transformation of phytosterols to boldenone; pp. 74–78.
Kostova I., Dinchev D. Saponins in Tribulus terrestris–chemistry and bioactivity. Phytochem. Rev. 2005;4:111–137. doi: 10.1007/s11101-005-2833-x. DOI
Janeczko A. Ph.D. Thesis. Agricultural University; Krakow, Poland: 2000. Influence of Selected Steroids on Plant Physiological Processes-Especially Flowering Induction.
Janeczko A., Filek W., Skoczowski A. Influence of human sex hormones on the growth response of winter wheat immature embryos and callus (in Polish) Zesz. Probl. Post Nauk. Roln. 2002;488:667–673.
Loewe S., Spohr E. Über weibliche Sexualhormone (Thelytropine). XII. Brunsterzeugende Stoffe (Thelykinine) als Erzeugnisse des Pflanzenreiches. Biochem. Z. 1927;180:1–26.
Butenandt A., Jakobi H. Über die Darstellung eines kristallisierten pflanzlichen Tokokinins (Thelykinins) und seine Identifizierung mit dem ex-Follikelhormon. Untersuchungen über das weibliche Sexualhormon, 10. Mitteilung. Z. Physiol. Chem. 1933;218:104–112. doi: 10.1515/bchm2.1933.218.1-2.104. DOI
Skarzynski B. An oestrogenic substance from plant material. Nature. 1933;131:766.
Hassan A., Wafa M.A. An estrogenic substance in pollen-grains of date palm tree Phaenix dactylifera L., Palmae. Nature. 1947;159:409–410. doi: 10.1038/159409b0. PubMed DOI
El Ridi M.S., Wafa M.A. Estrogenic substance in palm-pollen grains of the date palm. J. Roy. Egypt Med. Assoc. 1948;30:124–127. PubMed
Bennett R.D., Ko S.T., Heftmann E. Isolation of estrone and cholesterol from the date palm, Phoenix dactylifera L. Phytochemistry. 1966;5:231–235. doi: 10.1016/S0031-9422(00)85122-5. DOI
Awad O. Steroidal estrogens of Prunus armeniaca seeds. Phytochemistry. 1974;13:678–679. doi: 10.1016/S0031-9422(00)91390-6. DOI
Kopcewicz J. Estrogens in developing bean (Phaseolus vulgaris) plants. Phytochemistry. 1971;10:1423–1427. doi: 10.1016/0031-9422(71)85003-3. DOI
Jacobsohn G.M., Frey M.J., Hochberg R.B. The absence of steroid estrogens in plants. Steroids. 1965;6:93–99. doi: 10.1016/0039-128X(65)90036-X. PubMed DOI
Van Rompuy L.L.L., Zeevaart J.A.D. Ann. Report MSU/ERDA Plant Research Laboratory. Volume 47 Michigan State University; East Lansing, MI, USA: 1975.
Milanesi L., Monje P., Boland R. Presence of estrogen and estrogen receptor-like proteins in Solanum glaucophyllum. Biochem. Biophys. Res. Commun. 2001;289:1175–1179. doi: 10.1006/bbrc.2001.6079. PubMed DOI
Helmkamp G., Bonner J. Some relationships of sterols to plant growth. Plant Physiol. 1953;28:428–436. doi: 10.1104/pp.28.3.428. PubMed DOI PMC
Kopcewicz J. Influence of estrone on growth and endogenous gibberellins content in dwarf pea. Bull. Sci. Cl. 1969;17:727–731. PubMed
Guan M., Roddick J.G. Epibrassinolide - inhibition of development of excised, adventitious and intact root of tomato (Lycopersicon esculentum): Comparison with the effects of steroidal estrogens. Physiol. Plant. 1988;74:720–726. doi: 10.1111/j.1399-3054.1988.tb02043.x. DOI
Chouard P. Action combinee de la folliculine et la durée d´éclairement sur la floraison des Reines-Marguerites. Compt. Rend. Soc. Biol. 1937;126:509–512.
Kopcewicz J. Influence of estrogens on the flower formation in Cichorium intybus L. Naturwissenschaften. 1970;57:136. doi: 10.1007/BF00600070. DOI
Kopcewicz J., Porazinski Z. Effect of growth regulators, steroids and estrogen fraction from sage plants on flowering of a long-day plant, Salvia splendens, grown under non-inductive light conditions. Biol. Plant. 1974;16:132–135. doi: 10.1007/BF02920789. DOI
Kopcewicz J. Influence of steroidal hormones on flower sex expression in Ecballium elaterium (L.) Z. Pflanzenphysiol. 1971;65:92–94.
Gawienowski M., Cheney R.W., Marsh H.V. Alteration of sex expression in the cucumber by testosterone and estradiol. Phytochemistry. 1971;10:2033–2034. doi: 10.1016/S0031-9422(00)97190-5. DOI
Young I.J., Knights B.A., Hillman J.R. The metabolism of estrogens in vivo and in vitro by Phaseolus vulgaris. Z. Pflanz. 1979;94:307–316. doi: 10.1016/S0044-328X(79)80114-2. DOI