Cytokinin Plant Hormones Have Neuroprotective Activity in In Vitro Models of Parkinson's Disease

. 2021 Jan 12 ; 26 (2) : . [epub] 20210112

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33445611

Grantová podpora
IGA_PrF_2020_021 Internal Grant Agency of Palacký University in Olomouc, Czech Republic
20-15621S The Czech Grant Agency
CZ.02.1.01/0.0/0.0/16_019/0000868 The European Regional Development Fund - Project ENOCH
2017 student grant from Palacký University's Endowment Fund

Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson's disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.

Zobrazit více v PubMed

Dorsey E.R., Sherer T., Okun M.S., Bloem B.R. The Emerging Evidence of the Parkinson Pandemic. J. Parkinsons Dis. 2018;8:S3–S8. doi: 10.3233/JPD-181474. PubMed DOI PMC

Rizek P., Kumar N., Jog M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ Can. Med Assoc. J. 2016;188:1157–1165. doi: 10.1503/cmaj.151179. PubMed DOI PMC

Jankovic J. Progression of Parkinson disease: Are we making progress in charting the course? Arch. Neurol. 2005;62:351–352. doi: 10.1001/archneur.62.3.351. PubMed DOI

Sian J., Dexter D.T., Lees A.J., Daniel S., Agid Y., Javoy-Agid F., Jenner P., Marsden C.D. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 1994;36:348–355. doi: 10.1002/ana.410360305. PubMed DOI

Alam Z.I., Daniel S.E., Lees A.J., Marsden D.C., Jenner P., Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J. Neurochem. 1997;69:1326–1329. doi: 10.1046/j.1471-4159.1997.69031326.x. PubMed DOI

Alam Z.I., Jenner A., Daniel S.E., Lees A.J., Cairns N., Marsden C.D., Jenner P., Halliwell B. Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 1997;69:1196–1203. doi: 10.1046/j.1471-4159.1997.69031196.x. PubMed DOI

Park J.-S., Davis R.L., Sue C.M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr. Neurol. Neurosci. Rep. 2018;18:21. doi: 10.1007/s11910-018-0829-3. PubMed DOI PMC

Ambrosi G., Cerri S., Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J. Neural Transm. 2014;121:849–859. doi: 10.1007/s00702-013-1149-z. PubMed DOI

Dantuma N.P., Bott L.C. The ubiquitin-proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution. Front. Mol. Neurosci. 2014;7:70. doi: 10.3389/fnmol.2014.00070. PubMed DOI PMC

Cookson M.R., Bandmann O. Parkinson’s disease: Insights from pathways. Hum. Mol. Genet. 2010;19:R21–R27. doi: 10.1093/hmg/ddq167. PubMed DOI PMC

Rinne U.K. Problems associated with long-term levodopa treatment of Parkinson’s disease. Acta Neurol. Scand. Suppl. 1983;95:19–26. doi: 10.1111/j.1600-0404.1983.tb01513.x. PubMed DOI

Corona J.C. Natural Compounds for the Management of Parkinson’s Disease and Attention-Deficit/Hyperactivity Disorder. BioMed Res. Int. 2018;2018:4067597. doi: 10.1155/2018/4067597. PubMed DOI PMC

Kieber J.J. Tribute to Folke Skoog: Recent Advances in our Understanding of Cytokinin Biology. J. Plant Growth Regul. 2002;21:1–2. doi: 10.1007/s003440010059. PubMed DOI

Voller J., Maková B., Kadlecová A., Gonzalez G., Strnad M. Plant Hormone Cytokinins for Modulating Human Aging and Age-Related Diseases. In: Rattan S., Sharma R., editors. Hormones in Ageing and Longevity. Springer International Publishing; Cham, Switzerland: 2017. pp. 311–335.

Rattan S.I., Sodagam L. Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Res. 2005;8:46–57. doi: 10.1089/rej.2005.8.46. PubMed DOI

Liu Y., Zhang Z., Yang X. Kinetin protects against lipid peroxidation and improves antioxidant status in cultured astrocytes and mouse brain exposed to D-galactose. Afr. J. Biotechnol. 2011;10:11721–11727.

Hertz N.T., Berthet A., Sos M.L., Thorn K.S., Burlingame A.L., Nakamura K., Shokat K.M. A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1. Cell. 2013;154:737–747. doi: 10.1016/j.cell.2013.07.030. PubMed DOI PMC

Wei Y., Liu D., Zheng Y., Hao C., Li H., Ouyang W. Neuroprotective Effects of Kinetin Against Glutamate-Induced Oxidative Cytotoxicity in HT22 Cells: Involvement of Nrf2 and Heme Oxygenase-1. Neurotox. Res. 2018;33:725–737. doi: 10.1007/s12640-017-9811-0. PubMed DOI

Lee Y.-C., Yang Y.-C., Huang C.-L., Kuo T.-Y., Lin J.-H., Yang D.-M., Huang N.-K. When Cytokinin, a Plant Hormone, Meets the Adenosine A2A Receptor: A Novel Neuroprotectant and Lead for Treating Neurodegenerative Disorders? PLoS ONE. 2012;7:e38865. doi: 10.1371/journal.pone.0038865. PubMed DOI PMC

Brizzolari A., Marinello C., Carini M., Santaniello E., Biondi P.A. Evaluation of the antioxidant activity and capacity of some natural N6-substituted adenine derivatives (cytokinins) by fluorimetric and spectrophotometric assays. J. Chromatogr. B. 2016;1019:164–168. doi: 10.1016/j.jchromb.2015.12.047. PubMed DOI

McDaniel D.H., Neudecker B.A., DiNardo J.C., Lewis Ii J.A., Maibach H.I. Idebenone: A new antioxidant—Part I. Relative assessment of oxidative stress protection capacity compared to commonly known antioxidants. J. Cosmet. Dermatol. 2005;4:10–17. doi: 10.1111/j.1473-2165.2005.00152.x. PubMed DOI

Dassano A., Mancuso M., Giardullo P., De Cecco L., Ciuffreda P., Santaniello E., Saran A., Dragani T.A., Colombo F. N(6)-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response. Redox Biol. 2014;2:580–589. doi: 10.1016/j.redox.2014.03.001. PubMed DOI PMC

Forster J.I., Köglsberger S., Trefois C., Boyd O., Baumuratov A.S., Buck L., Balling R., Antony P.M. Characterization of Differentiated SH-SY5Y as Neuronal Screening Model Reveals Increased Oxidative Vulnerability. J. Biomol. Screen. 2016;21:496–509. doi: 10.1177/1087057115625190. PubMed DOI PMC

Dwane S., Durack E., Kiely P.A. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res. Notes. 2013;6:366. doi: 10.1186/1756-0500-6-366. PubMed DOI PMC

Xicoy H., Wieringa B., Martens G.J.M. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol. Neurodegener. 2017;12:10. doi: 10.1186/s13024-017-0149-0. PubMed DOI PMC

Kurnik-Łucka M., Panula P., Bugajski A., Gil K. Salsolinol: An Unintelligible and Double-Faced Molecule—Lessons Learned from In Vivo and In Vitro Experiments. Neurotox. Res. 2018;33:485–514. doi: 10.1007/s12640-017-9818-6. PubMed DOI PMC

Li C., Chai S., Ju Y., Hou L., Zhao H., Ma W., Li T., Sheng J., Shi W. Pu-erh Tea Protects the Nervous System by Inhibiting the Expression of Metabotropic Glutamate Receptor 5. Mol. Neurobiol. 2017;54:5286–5299. doi: 10.1007/s12035-016-0064-3. PubMed DOI PMC

Ou B., Hampsch-Woodill M., Prior R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o. PubMed DOI

McBean G.J., López M.G., Wallner F.K. Redox-based therapeutics in neurodegenerative disease. Br. J. Pharmacol. 2017;174:1750–1770. doi: 10.1111/bph.13551. PubMed DOI PMC

Cheung Y.-T., Lau W.K.-W., Yu M.-S., Lai C.S.-W., Yeung S.-C., So K.-F., Chang R.C.-C. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 2009;30:127–135. doi: 10.1016/j.neuro.2008.11.001. PubMed DOI

Rárová L., Steigerová J., Kvasnica M., Bartůněk P., Křížová K., Chodounská H., Kolář Z., Sedlák D., Oklestkova J., Strnad M. Structure activity relationship studies on cytotoxicity and the effects on steroid receptors of AB-functionalized cholestanes. J. Steroid Biochem. Mol. Biol. 2016;159:154–169. doi: 10.1016/j.jsbmb.2016.03.017. PubMed DOI

Voller J., Zatloukal M., Lenobel R., Dolezal K., Béres T., Krystof V., Spíchal L., Niemann P., Dzubák P., Hajdúch M., et al. Anticancer activity of natural cytokinins: A structure-activity relationship study. Phytochemistry. 2010;71:1350–1359. doi: 10.1016/j.phytochem.2010.04.018. PubMed DOI

Texel S.J., Zhang J., Camandola S., Unger E.L., Taub D.D., Koehler R.C., Harris Z.L., Mattson M.P. Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and Increases Their Vulnerability to Stroke. PLoS ONE. 2011;6:e25077. doi: 10.1371/journal.pone.0025077. PubMed DOI PMC

Guan H., Yang H., Yang M., Yanagisawa D., Bellier J.-P., Mori M., Takahata S., Nonaka T., Zhao S., Tooyama I. Mitochondrial ferritin protects SH-SY5Y cells against H2O2-induced oxidative stress and modulates α-synuclein expression. Exp. Neurol. 2017;291:51–61. doi: 10.1016/j.expneurol.2017.02.001. PubMed DOI

Hirayama N., Aki T., Funakoshi T., Noritake K., Unuma K., Uemura K. Necrosis in human neuronal cells exposed to paraquat. J. Toxicol. Sci. 2018;43:193–202. doi: 10.2131/jts.43.193. PubMed DOI

Ito K., Eguchi Y., Imagawa Y., Akai S., Mochizuki H., Tsujimoto Y. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells. Cell Death Discov. 2017;3:17013. doi: 10.1038/cddiscovery.2017.13. PubMed DOI PMC

Wanpen S., Govitrapong P., Shavali S., Sangchot P., Ebadi M. Salsolinol, a dopamine-derived tetrahydroisoquinoline, induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein. Brain Res. 2004;1005:67–76. doi: 10.1016/j.brainres.2004.01.054. PubMed DOI

Dengler W.A., Schulte J., Berger D.P., Mertelsmann R., Fiebig H.H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anti-Cancer Drugs. 1995;6:522–532. doi: 10.1097/00001813-199508000-00005. PubMed DOI

Othman E.M., Naseem M., Awad E., Dandekar T., Stopper H. The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells. PLoS ONE. 2016;11:e0168386. doi: 10.1371/journal.pone.0168386. PubMed DOI PMC

Yap Y., Omasanggar R., Koh Y.L., Yew M.Y., Lai H.T., Ling A.P.K., Chye S.M., Ng K.Y., Koh R.Y. Neurotoxic effect of salsolinol through oxidative stress induction and Nrf2-Keap1 signalling regulation. J. Chem. Pharm. Res. 2016;8:30–38.

Bindokas V.P., Jordan J., Lee C.C., Miller R.J. Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine. J. Neurosci. 1996;16:1324–1336. doi: 10.1523/JNEUROSCI.16-04-01324.1996. PubMed DOI PMC

Carter W.O., Narayanan P.K., Robinson J.P. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 1994;55:253–258. PubMed

Wanpen S., Kooncumchoo P., Shavali S., Govitrapong P., Ebadi M. Salsolinol, an endogenous neurotoxin, activates JNK and NF-kappaB signaling pathways in human neuroblastoma cells. Neurochem. Res. 2007;32:443–450. doi: 10.1007/s11064-006-9246-0. PubMed DOI

Jabłońska-Trypuć A., Matejczyk M., Czerpak R. N6-benzyladenine and kinetin influence antioxidative stress parameters in human skin fibroblasts. Mol. Cell. Biochem. 2016;413:97–107. doi: 10.1007/s11010-015-2642-5. PubMed DOI PMC

Goldstein S., Czapski G. SOD-like activity studies of cytokinin-copper(II) complexes. Free Radic. Res. Commun. 1991;12:173–177. doi: 10.3109/10715769109145783. PubMed DOI

Štarha P., Trávníček Z., Herchel R., Popa I., Suchý P., Vančo J. Dinuclear copper(II) complexes containing 6-(benzylamino)purines as bridging ligands: Synthesis, characterization, and in vitro and in vivo antioxidant activities. J. Inorg. Biochem. 2009;103:432–440. doi: 10.1016/j.jinorgbio.2008.12.009. PubMed DOI

De Lazzari F., Bubacco L., Whitworth A.J., Bisaglia M. Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson’s Disease. Aging Dis. 2018;9:716–728. doi: 10.14336/AD.2017.1018. PubMed DOI PMC

Lalkovičová M., Danielisová V. Neuroprotection and antioxidants. Neural Regen. Res. 2016;11:865–874. doi: 10.4103/1673-5374.184447. PubMed DOI PMC

Surendran S., Raja Sankar S. Parkinson’s disease: Oxidative stress and therapeutic approaches. Neurol. Sci. 2010;31:531–540. doi: 10.1007/s10072-010-0245-1. PubMed DOI

Lee K.H., Cha M., Lee B.H. Neuroprotective Effect of Antioxidants in the Brain. Int. J. Mol. Sci. 2020;21:7152. doi: 10.3390/ijms21197152. PubMed DOI PMC

Bollimuntha S., Ebadi M., Singh B.B. TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res. 2006;1099:141–149. doi: 10.1016/j.brainres.2006.04.104. PubMed DOI PMC

Walsh J.G., Cullen S.P., Sheridan C., Lüthi A.U., Gerner C., Martin S.J. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci. USA. 2008;105:12815. doi: 10.1073/pnas.0707715105. PubMed DOI PMC

Jantas D., Piotrowski M., Lason W. An Involvement of PI3-K/Akt Activation and Inhibition of AIF Translocation in Neuroprotective Effects of Undecylenic Acid (UDA) Against Pro-Apoptotic Factors-Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells. J. Cell. Biochem. 2015;116:2882–2895. doi: 10.1002/jcb.25236. PubMed DOI

Brown D., Tamas A., Reglödi D., Tizabi Y. PACAP Protects Against Salsolinol-Induced Toxicity in Dopaminergic SH-SY5Y Cells: Implication for Parkinson’s Disease. J. Mol. Neurosci. 2013;50:600–607. doi: 10.1007/s12031-013-0015-7. PubMed DOI PMC

Cheng B., Anand P., Kuang A., Akhtar F., Scofield V.L. N-Acetylcysteine in Combination with IGF-1 Enhances Neuroprotection against Proteasome Dysfunction-Induced Neurotoxicity in SH-SY5Y Cells. Parkinsons Dis. 2016;2016:6564212. doi: 10.1155/2016/6564212. PubMed DOI PMC

Li J., Meng Z., Zhang G., Xing Y., Feng L., Fan S., Fan F., Buren B., Liu Q. N-acetylcysteine relieves oxidative stress and protects hippocampus of rat from radiation-induced apoptosis by inhibiting caspase-3. Biomed. Pharmacother. 2015;70:1–6. doi: 10.1016/j.biopha.2014.12.029. PubMed DOI

Rakshit J., Mallick A., Roy S., Sarbajna A., Dutta M., Bandyopadhyay J. Iron-Induced Apoptotic Cell Death and Autophagy Dysfunction in Human Neuroblastoma Cell Line SH-SY5Y. Biol. Trace Elem. Res. 2019;193:138–151. doi: 10.1007/s12011-019-01679-6. PubMed DOI

Rakshit J., Priyam A., Gowrishetty K.K., Mishra S., Bandyopadhyay J. Iron chelator Deferoxamine protects human neuroblastoma cell line SH-SY5Y from 6-Hydroxydopamine-induced apoptosis and autophagy dysfunction. J. Trace Elem. Med. Biol. 2020;57:126406. doi: 10.1016/j.jtemb.2019.126406. PubMed DOI

Ma X.W., Guo R.Y. Dose-dependent effect of Curcuma longa for the treatment of Parkinson’s disease. Exp. Ther. Med. 2017;13:1799–1805. doi: 10.3892/etm.2017.4225. PubMed DOI PMC

Naoi M., Maruyama W., Takahashi T., Akao Y., Nakagawa Y. Involvement of endogenous N-methyl(R)salsolinol in Parkinson’s disease: Induction of apoptosis and protection by (-)deprenyl. In: Mizuno Y., Calne D.B., Horowski R., Poewe W., Riederer P., Youdim M.B.H., editors. Advances in Research on Neurodegeneration. Springer; Vienna, Austria: 2000. pp. 111–121. PubMed

Kulikov A.V., Rzhaninova A.A., Goldshtein D.V., Boldyrev A.A. Expression of NMDA receptors in multipotent stromal cells of human adipose tissue under conditions of retinoic acid-induced differentiation. Bull. Exp. Biol. Med. 2007;144:626–629. doi: 10.1007/s10517-007-0390-6. PubMed DOI

Kritis A.A., Stamoula E.G., Paniskaki K.A., Vavilis T.D. Researching glutamate—Induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Front. Cell. Neurosci. 2015;9:91. doi: 10.3389/fncel.2015.00091. PubMed DOI PMC

Sun X., Shi X., Lu L., Jiang Y., Liu B. Stimulus-dependent neuronal cell responses in SH-SY5Y neuroblastoma cells. Mol. Med. Rep. 2016;13:2215–2220. doi: 10.3892/mmr.2016.4759. PubMed DOI

Cunha M.P., Lieberknecht V., Ramos-Hryb A.B., Olescowicz G., Ludka F.K., Tasca C.I., Gabilan N.H., Rodrigues A.L.S. Creatine affords protection against glutamate-induced nitrosative and oxidative stress. Neurochem. Int. 2016;95:4–14. doi: 10.1016/j.neuint.2016.01.002. PubMed DOI

Mou Y., Wang J., Wu J., He D., Zhang C., Duan C., Li B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol. 2019;12:34. doi: 10.1186/s13045-019-0720-y. PubMed DOI PMC

Zille M., Kumar A., Kundu N., Bourassa M.W., Wong V.S.C., Willis D., Karuppagounder S.S., Ratan R.R. Ferroptosis in Neurons and Cancer Cells Is Similar But Differentially Regulated by Histone Deacetylase Inhibitors. eNeuro. 2019;6 doi: 10.1523/ENEURO.0263-18.2019. PubMed DOI PMC

Jantas D., Chwastek J., Grygier B., Lasoń W. Neuroprotective Effects of Necrostatin-1 Against Oxidative Stress–Induced Cell Damage: An Involvement of Cathepsin D Inhibition. Neurotox. Res. 2020;37:525–542. doi: 10.1007/s12640-020-00164-6. PubMed DOI PMC

Sun Z.W., Zhang L., Zhu S.J., Chen W.C., Mei B. Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage. Neurosci. Bull. 2010;26:8–16. doi: 10.1007/s12264-010-0813-7. PubMed DOI PMC

Chu J., Liu C.-X., Song R., Li Q.-L. Ferrostatin-1 protects HT-22 cells from oxidative toxicity. Neural Regen. Res. 2020;15:528–536. PubMed PMC

Xu X., Chua C.C., Kong J., Kostrzewa R.M., Kumaraguru U., Hamdy R.C., Chua B.H. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J. Neurochem. 2007;103:2004–2014. doi: 10.1111/j.1471-4159.2007.04884.x. PubMed DOI

Shirlee T., David S., Pamela M. Oxytosis: A Novel Form of Programmed Cell Death. Curr. Top. Med. Chem. 2001;1:497–506. doi: 10.2174/1568026013394741. PubMed DOI

Nikolova S., Lee Y.S., Lee Y.-S., Kim J.-A. Rac1-NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic. Res. 2005;39:1295–1304. doi: 10.1080/10715760500176866. PubMed DOI

Jelinek A., Heyder L., Daude M., Plessner M., Krippner S., Grosse R., Diederich W., Culmsee C. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic. Biol. Med. 2018;117:45–57. doi: 10.1016/j.freeradbiomed.2018.01.019. PubMed DOI

Olsen A., Siboska G.E., Clark B.F.C., Rattan S.I.S. N6-Furfuryladenine, Kinetin, Protects against Fenton Reaction-Mediated Oxidative Damage to DNA. Biochem. Biophys. Res. Commun. 1999;265:499–502. doi: 10.1006/bbrc.1999.1669. PubMed DOI

Sharma S.P., Kaur J., Rattan S.I.S. Increased longevity of kinetin-fed Zaprionus fruitflies is accompanied by their reduced fecundity and enhanced catalase activity. IUBMB Life. 1997;41:869–875. doi: 10.1080/15216549700201911. PubMed DOI

Choi S.J., Jeong C.H., Choi S.G., Chun J.Y., Kim Y.J., Lee J., Shin D.H., Heo H.J. Zeatin prevents amyloid beta-induced neurotoxicity and scopolamine-induced cognitive deficits. J. Med. Food. 2009;12:271–277. doi: 10.1089/jmf.2007.0678. PubMed DOI

Yang S.-J., Han A.R., Kim E.-A., Yang J.W., Ahn J.-Y., Na J.-M., Cho S.-W. KHG21834 attenuates glutamate-induced mitochondrial damage, apoptosis, and NLRP3 inflammasome activation in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 2019;856:172412. doi: 10.1016/j.ejphar.2019.172412. PubMed DOI

Yuksel T.N., Yayla M., Halici Z., Cadirci E., Polat B., Kose D. Protective effect of 5-HT7 receptor activation against glutamate-induced neurotoxicity in human neuroblastoma SH-SY5Y cells via antioxidative and antiapoptotic pathways. Neurotoxicol. Teratol. 2019;72:22–28. doi: 10.1016/j.ntt.2019.01.002. PubMed DOI

Lee H.J., Spandidos D.A., Tsatsakis A., Margina D., Izotov B.N., Yang S.H. Neuroprotective effects of Scrophularia buergeriana extract against glutamate-induced toxicity in SH-SY5Y cells. Int. J. Mol. Med. 2019;43:2144–2152. doi: 10.3892/ijmm.2019.4139. PubMed DOI PMC

Hu Y., Li J., Liu P., Chen X., Guo D.-H., Li Q.-S., Rahman K. Protection of SH-SY5Y Neuronal Cells from Glutamate-Induced Apoptosis by 3,6′-Disinapoyl Sucrose, a Bioactive Compound Isolated from Radix Polygala. J. Biomed. Biotechnol. 2012;2012:728342. doi: 10.1155/2012/728342. PubMed DOI PMC

Geng N., Shi B.J., Li S.L., Zhong Z.Y., Li Y.C., Xua W.L., Zhou H., Cai J.H. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur. Rev. Med. Pharmacol. Sci. 2018;22:3826–3836. PubMed

Krishnamurthy P., Mays J., Bijur G., Johnson G. Transient oxidative stress in SH-SY5Y human neuroblastoma cells results in caspase dependent and independent cell death and tau proteolysis. J. Neurosci. Res. 2000;61:515–523. doi: 10.1002/1097-4547(20000901)61:5<515::AID-JNR6>3.0.CO;2-#. PubMed DOI

Stone W.L., Qui M., Smith M. Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide. BMC Cell Biol. 2003;4:1–7. doi: 10.1186/1471-2121-4-1. PubMed DOI PMC

Carrasco R.A., Stamm N.B., Patel B.K.R. One-step cellular caspase-3/7 assay. BioTechniques. 2003;34:1064–1067. doi: 10.2144/03345dd02. PubMed DOI

Hammer O., Harper D., Ryan P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001;4:1–9.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Photoprotective properties of new derivatives of kinetin

. 2023 Feb ; 22 (2) : 357-369. [epub] 20221020

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace