Photoprotective properties of new derivatives of kinetin

. 2023 Feb ; 22 (2) : 357-369. [epub] 20221020

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36264480

Grantová podpora
IGA_LF_2022_025 Univerzita Palackého v Olomouci
IGA_PrF_2022_012 Univerzita Palackého v Olomouci
RVO 61989592 Univerzita Palackého v Olomouci

Odkazy

PubMed 36264480
DOI 10.1007/s43630-022-00320-1
PII: 10.1007/s43630-022-00320-1
Knihovny.cz E-zdroje

The chronic exposure of skin to ultraviolet (UV) radiation causes adverse dermal reactions, such as erythema, sunburn, photoaging, and cancer, by altering several signalling pathways associated with oxidative stress, inflammation, and DNA damage. One of the possible UV light protection strategies is the use of dermal photoprotective preparations. The plant hormone kinetin (N6-furfuryladenine; KIN) exhibits antioxidant and anti-senescent effects in human cells. Topically applied KIN also reduced some of the clinical signs of photodamaged skin. To improve the biological activities of KIN, several derivatives have been recently prepared and their beneficial effects on cell viability of skin cells exposed to UVA and UVB light were screened. Two potent candidates, 6-(tetrahydrofuran-2-yl)methylamino-9-(tetrahydrofuran-2-yl)purine (HEO) and 6-(thiophen-2-yl)methylamino-9-(tetrahydrofuran-2-yl)purine (HEO6), were identified. Here the effects of KIN, its N9-substituted derivatives the tetrahydropyran-2-yl derivative of KIN (THP), tetrahydrofuran-2-yl KIN (THF), HEO and HEO6 (both THF derivatives) on oxidative stress, apoptosis and inflammation in UVA- or UVB-exposed skin cell was investigated. Human primary dermal fibroblasts and human keratinocytes HaCaT pre-treated with the tested compounds were then exposed to UVA/UVB light using a solar simulator. All compounds effectively prevented UVA-induced ROS generation and glutathione depletion in both cells. HEO6 was found to be the most potent. All compounds also reduced UVB-induced caspase-3 activity and interleukin-6 release. THP and THF exhibited the best UVB protection. In conclusion, our results demonstrated the UVA- and UVB-photoprotective potential of KIN and its derivatives. From this point of view, they seem to be useful agents for full UV spectrum protective dermatological preparations.

Erratum v

PubMed

Zobrazit více v PubMed

Gromkowska-Kępka, K. J., Puścion-Jakubik, A., Markiewicz-Żukowska, R., & Socha, K. (2021). The impact of ultraviolet radiation on skin photoaging—review of in vitro studies. Journal of Cosmetic Dermatology, 20(11), 3427–3431. https://doi.org/10.1111/jocd.14033 PubMed DOI PMC

Haarmann-Stemmann, T., Abel, J., Fritsche, E., & Krutmann, J. (2012). The AhR-Nrf2 pathway in keratinocytes: On the road to chemoprevention? Journal of Investigative Dermatology, 132(1), 7–9. https://doi.org/10.1038/jid.2011.359 PubMed DOI

Svobodová, A., Walterová, D., & Vostálová, J. (2006). Ultraviolet light induced alteration to the skin. Biomedical papers of the Medical Faculty of the University Palacky Olomouc Czech Republic, 150(1), 25–38. https://doi.org/10.5507/bp.2006.003 DOI

López-Camarillo, C., Ocampo, E. A., Casamichana, M. L., Pérez-Plasencia, C., Alvarez-Sánchez, E., & Marchat, L. A. (2012). Protein kinases and transcription factors activation in response to UV-radiation of skin: Implications for Carcinogenesis. International Journal of Molecular Sciences, 13(1), 142–172. https://doi.org/10.3390/ijms13010142 PubMed DOI

Svobodová, A., & Vostálová, J. (2010). Solar radiation induced skin damage: Review of protective and preventive options. International Journal of Radiation Biology, 86(12), 999–1030. https://doi.org/10.3109/09553002.2010.501842 PubMed DOI

Cragg, G. M., & Pezzuto, J. M. (2016). Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice, 25(Suppl. 2), 41–59. https://doi.org/10.1159/000443404 PubMed DOI

Dinkova-Kostova, A. T. (2008). Phytochemicals as protectors against ultraviolet radiation: Versatility of effects and mechanisms. Planta Medica, 74(13), 1548–1559. https://doi.org/10.1055/s-2008-1081296 PubMed DOI

Miller, O., Skoog, F., Okomura, F. S., Von Saltza, M. H., & Strong, F. M. (1956). Isolation, structure and synthesis of kinetin, a substance promoting cell division. Journal of the American Chemical Society, 78(7), 1375–1380. DOI

Jabłońska-Trypuć, A., Matejczyk, M., & Czerpak, R. (2016). N6-benzyladenine and kinetin influence antioxidative stress parameters in human skin fibroblasts. Molecular and Cellular Biochemistry, 413, 97–107. https://doi.org/10.1007/s11010-015-2642-5 PubMed DOI PMC

Levin, J., & Momin, S. B. (2010). How much do we really know about our favourite cosmeceutical ingredients? Journal of Clinical and Aesthetic Dermatology, 3(2), 22–41. PubMed PMC

McCullough, J. L., & Weinstein, G. D. (2002). Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase) to treat photodamaged skin. Cosmetic Dermatology, 15, 29–32.

Wanitphakdeedecha, R., Meeprathom, W., & Manuskiatti, W. (2015). Efficacy and safety of 0.1% kinetin cream in the treatment of photoaging skin. Indian Journal of Dermatology, Venereology and Leprology, 81(5), 547. https://doi.org/10.4103/0378-6323.157446 PubMed DOI

Campos, P. M., de Camargo Júnior, F. B., de Andrade, J. P., & Gaspar, L. R. (2012). Efficacy of cosmetic formulations containing dispersion of liposome with magnesium ascorbyl phosphate, alpha-lipoic acid and kinetin. Photochemistry and Photobiology, 88(3), 748–752. https://doi.org/10.1111/j.1751-1097.2012.01086.x PubMed DOI

Vicanova, J., Bouez, C., Lacroix, S., Lindmark, L., & Damour, O. (2006). Epidermal and dermal characteristics in skin equivalent after systemic and topical application of skin care ingredients. Annals of the New York Academy of Sciences, 1067, 337–342. https://doi.org/10.1196/annals.1354.046 PubMed DOI

Wu, J. J., Weinstein, G. D., Kricorian, G. J., Kormeili, T., & McCullough, J. L. (2007). Topical kinetin 0.1% lotion for improving the signs and symptoms of rosacea. Clinical and Experimental Dermatology., 32(6), 693–695. https://doi.org/10.1111/j.1365-2230.2007.02513.x PubMed DOI

Chiu, P. C., Chan, C. C., Lin, H. M., & Hsien-Ching, C. (2007). The clinical anti-aging effects of topical kinetin and niacinamide in Asians: A randomized, double-blind, placebo-controlled, split-face comparative trial. Journal of Cosmetic Dermatology, 6(4), 243–249. https://doi.org/10.1111/j.1473-2165.2007.00342.x PubMed DOI

Kimura, T., & Doi, K. (2004). Depigmentation and rejuvenation effects of kinetin on the aged skin of hairless descendants of Mexican hairless dogs. Rejuvenation Research, 7(1), 32–39. https://doi.org/10.1089/154916804323105062 PubMed DOI

McCullough, J. L., Garcia, R. L., & Reece, B. (2008). A clinical study of topical Pyratine 6 for improving the appearance of photodamaged skin. Journal of Drugs in Dermatology, 7(2), 131–135. PubMed

http://www.pyratine.com/ . Retrieved 7 Jun 2022

Szüčová, L., Zatloukal, M., Spíchal, L., Frohlich, L., Doležal, K., Strnad, M. & Massino, F. (2016) 6,9-disubstituted purine derivatives for cosmetic use. IEB AS CR, EP2043630B1.

Hönig, M., Plíhalová, L., Spíchal, L., Grúz, J., Kadlecová, A., Voller, J., Rajnochová Svobodová, A., Vostálová, J., Ulrichová, J., Doležal, K., & Strnad, M. (2018). New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. European Journal of Medicinal Chemistry, 150, 946–957. https://doi.org/10.1016/j.ejmech.2018.03.043 PubMed DOI

Szücová, L., Spíchal, L., Dolezal, K., Zatloukal, M., Greplová, J., Galuszka, P., Krystof, V., Voller, J., Popa, I., Massino, F. J., Jørgensen, J. E., & Strnad, M. (2009). Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic and Medicinal Chemistry, 17(5), 1938–1947. https://doi.org/10.1016/j.bmc.2009.01.041 PubMed DOI

Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., & Fusenig, N. E. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. Journal of Cell Biology, 106(3), 761–771. https://doi.org/10.1083/jcb.106.3.761 PubMed DOI

Rajnochová Svobodová, A., Gabrielová, E., Michaelides, L., Kosina, P., Ryšavá, A., Ulrichová, J., Zálešák, B., & Vostálová, J. (2018). UVA-photoprotective potential of silymarin and silybin. Archives of Dermatological Research, 310(5), 413–424. https://doi.org/10.1007/s00403-018-1828-6 PubMed DOI

Svobodová, A., Zdařilová, A., Mališková, J., Mikulková, H., Walterová, D., & Vostalová, J. (2007). Attenuation of UVA-induced damage to human keratinocytes by silymarin. Journal of Dermatological Science, 46(1), 21–30. https://doi.org/10.1016/j.jdermsci.2006.12.009 PubMed DOI

Cronin, H., & Draelos, Z. D. (2010). Top 10 botanical ingredients in 2010 anti-aging creams. Journal of Cosmetic Dermatology, 9(3), 218–225. https://doi.org/10.1111/j.1473-2165.2010.00516.x PubMed DOI

Goindi, S., Guleria, A., & Aggarwal, N. (2015). Development and evaluation of solid lipid nanoparticles of N-6-furfuryl adenine for prevention of photoaging. Journal of Biomedical Nanotechnology, 11(10), 1734–1746. https://doi.org/10.1166/jbn.2015.2111 PubMed DOI

An, S., Cha, H. J., Ko, J. M., Han, H., Kim, S. Y., Kim, K. S., Lee, S. J., An, I. S., Kim, S., Youn, H. J., Ahn, K. J., & Kim, S. Y. (2017). Kinetin improves barrier function of the skin by modulating keratinocyte differentiation markers. Annals of Dermatology, 29(1), 6–12. https://doi.org/10.5021/ad.2017.29.1.6 PubMed DOI PMC

Yang, B., Ji, C., Kang, J., Chen, W., Bi, Z., & Wan, Y. (2009). Trans-Zeatin inhibits UVB-induced matrix metalloproteinase-1 expression via MAP kinase signaling in human skin fibroblasts. International Journal of Molecular Medicine, 23(4), 555–560. https://doi.org/10.3892/ijmm_00000164 PubMed DOI

Wei, Y., Liu, D., Zheng, Y., Hao, C., Li, H., & Ouyang, W. (2018). Neuroprotective effects of kinetin against glutamate-induced oxidative cytotoxicity in HT22 cells: Involvement of Nrf2 and heme oxygenase-1. Neurotoxicity Research, 33(4), 725–737. https://doi.org/10.1007/s12640-017-9811-0 PubMed DOI

Othman, E. M., Naseem, M., Awad, E., Dandekar, T., & Stopper, H. (2016). The plant hormone cytokinin confers protection against oxidative stress in mammalian cells. PLoS ONE, 11(12), e0168386. https://doi.org/10.1371/journal.pone.0168386 PubMed DOI PMC

Gonzalez, G., Grúz, J., D’Acunto, C. W., Kaňovský, P., & Strnad, M. (2021). Cytokinin plant hormones have neuroprotective activity in in vitro models of Parkinson’s disease. Molecules, 26(2), 361. https://doi.org/10.3390/molecules26020361 PubMed DOI PMC

Rattan, S. I., & Sodagam, L. (2005). Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Research, 8(1), 46–57. https://doi.org/10.1089/rej.2005.8.46 PubMed DOI

D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248. https://doi.org/10.3390/ijms140612222 PubMed DOI PMC

Li, M., Ouyang, W., Wu, X., Zheng, Y., Wei, Y., & An, L. (2014). Kinetin inhibits apoptosis of aging spleen cells induced by D-galactose in rats. Journal of Veterinary Science, 15(3), 353–359. https://doi.org/10.4142/jvs.2014.15.3.353 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace