Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34589184
PubMed Central
PMC8453138
DOI
10.1016/j.csbj.2021.09.006
PII: S2001-0370(21)00391-3
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer mutations, IFN-γ, Immunopeptidome, In silico peptide screening, Kinetics, MHC-I, Molecular dynamics, Peptide, TAP1, TAP2, Transporters, Viral factors,
- Publikační typ
- časopisecké články MeSH
The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
Department of Medical Biosciences Building 6M Umeå University 901 85 Umeå Sweden
Institute of Genetics and Cancer University of Edinburgh Edinburgh Scotland EH4 2XR United Kingdom
RECAMO Masaryk Memorial Cancer Institute Zlutykopec 7 65653 Brno Czech Republic
Zobrazit více v PubMed
Praest P., Liaci A.M., Förster F., Wiertz E.J.H.J. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol. 2019;113:103–114. PubMed
Sadasivan B., Lehner P.J., Ortmann B., Spies T., Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5(2):103–114. PubMed
Park B., Lee S., Kim E., Cho K., Riddell S.R., Cho S. Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell. 2006;127(2):369–382. PubMed
Stefková J., Poledne R., Hubácek J.A. ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res. 2004;53:235–243. PubMed
Perria C.L., Rajamanickam V., Lapinski P.E., Raghavan M. Catalytic site modifications of TAP1 and TAP2 and their functional consequences. J Biol Chem. 2006;281(52):39839–39851. PubMed
Parcej D, Tampé R (2010) ABC proteins in antigen translocation and viral inhibition. Nat Chem Biol 6: 572-580 Erratum in: (2010) Nat Chem Biol 6: 782. PubMed
Dean M., Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet. 2005;6(1):123–142. PubMed
Lehnert E., Tampé R. Structure and dynamics of antigenic peptides in complex with TAP. Front Immunol. 2017;8:10. PubMed PMC
Marijt K.A., van Hall T. To TAP or not to TAP: alternative peptides for immunotherapy of cancer. Curr Opin Immunol. 2020;64:15–19. PubMed
van Endert P.M., Tampé R., Meyer T.H., Tisch R., Bach J.-F., McDevitt H.O. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity. 1994;1(6):491–500. PubMed
Uebel S., Meyer T.H., Kraas W., Kienle S., Jung G., Wiesmller K.-H. Requirements for peptide binding to the human transporter associated with antigen processing revealed by peptide scans and complex peptide libraries. J Biol Chem. 1995;270(31):18512–18516. PubMed
Neefjes JJ, Momburg F, Hämmerling GJ (1993) Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261: 769-771 Erratum in: (1994) Science 264: 16. PubMed
Seyffer F., Tampé R. ABC transporters in adaptive immunity. Biochim Biophys Acta. 2015;1850(3):449–460. PubMed
Locher K.P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 2016;23(6):487–493. PubMed
Eggensperger S., Tampé R. The transporter associated with antigen processing: a key player in adaptive immunity. Biol Chem. 2015;396:1059–1072. PubMed
Abele R, Tampé R (2011) The TAP translocation machinery in adaptive immunity and viral escape mechanisms. Essays Biochem 50: 249-264. PubMed
Mayerhofer P.U., Tampé R. Antigen translocation machineries in adaptive immunity and viral immune evasion. J Mol Biol. 2015;427(5):1102–1118. PubMed
Oldham M.L., Hite R.K., Steffen A.M., Damko E., Li Z., Walz T. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature. 2016;529(7587):537–540. PubMed PMC
Lankat-Buttgereit B., Tampé R. The transporter associated with antigen processing: function and implications in human diseases. Physiol Rev. 2002;82(1):187–204. PubMed
Ljunggren H.-G., Stam N.J., Öhlén C., Neefjes J.J., Höglund P., Heemels M.-T. Empty MHC class I molecules come out in the cold. Nature. 1990;346(6283):476–480. PubMed
Praest P., Luteijn R.D., Brak-Boer I.G.J., Lanfermeijer J., Hoelen H., Ijgosse L. The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol Immunol. 2018;101:55–64. PubMed
Yewdell J.W., Bennink J.R. Mechanisms of viral interference with MHC class I antigen processing and presentation. Annu Rev Cell Dev Biol. 1999;15(1):579–606. PubMed PMC
Oldham ML, Grigorieff N, Chen J (2016) Structure of the transporter associated with antigen processing trapped by herpes simplex virus. Elife 5: e21829. PubMed PMC
McLaughlin-Drubin M.E., Munger K. Viruses associated with human cancer. Biochim Biophys Acta. 2008;1782(3):127–150. PubMed PMC
Ritz U., Seliger B. The transporter associated with antigen processing (TAP): structural integrity, expression, function, and its clinical relevance. Mol Med. 2001;7(3):149–158. PubMed PMC
Hicklin D.J., Marincola F.M., Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999;5(4):178–186. PubMed
Marincola F.M., Jaffee E.M., Hicklin D.J., Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273. PubMed
Seliger B., Maeurer M.J., Ferrone S. TAP off–tumors on. Immunol Today. 1997;18:292–299. PubMed
Verweij M.C., Horst D., Griffin B.D., Luteijn R.D., Davison A.J., Ressing M.E. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog. 2015;11(4):e1004743. PubMed PMC
Vossen M., Westerhout E., Söderberg-Nauclér C., Wiertz E. Viral immune evasion: a masterpiece of evolution. Immunogenetics. 2002;54(8):527–542. PubMed
Tashiro H., Brenner M.K. Immunotherapy against cancer-related viruses. Cell Res. 2017;27(1):59–73. PubMed PMC
Hislop AD, Ressing ME, van Leeuwen D, Pudney VA, Horst D et al. (2007) A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. J Exp Med 204: 1863–73. PubMed PMC
Alzhanova D., Edwards D.M., Hammarlund E., Scholz I.G., Horst D., Wagner M.J. Cowpox virus inhibits the transporter associated with antigen processing to evade T cell recognition. Cell Host Microbe. 2009;6(5):433–445. PubMed PMC
Hill A., Jugovic P., York L., Russ G., Bennink J., Yewdell J. Herpes simplex virus turns off the TAP to evade host immunity. Nature. 1995;375(6530):411–415. PubMed
Früh K., Ahn K., Djaballah H., Sempé P., van Endert P.M., Tampé R. A viral inhibitor of peptide transporters for antigen presentation. Nature. 1995;375(6530):415–418. PubMed
Hewitt E.W., Gupta S.S., Lehner P.J. The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J. 2001;20:387–396. PubMed PMC
Koppers-Lalic D., Reits E.A.J., Ressing M.E., Lipinska A.D., Abele R., Koch J. Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proc Natl Acad Sci U S A. 2005;102(14):5144–5149. PubMed PMC
Loch S., Tampé R. Viral evasion of the MHC class I antigen-processing machinery. Pflugers Arch. 2005;451(3):409–417. PubMed
Schuren A.BC., Costa A.I., Wiertz E.JHJ. Recent advances in viral evasion of the MHC class I processing pathway. Curr Opin Immunol. 2016;40:43–50. PubMed
Komov L., Melamed Kadosh D., Barnea E., Admon A. The effect of interferons on presentation of defective ribosomal products as HLA peptides. Mol Cell Proteomics. 2021;20:100105. PubMed PMC
García-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22(2):176–184. PubMed PMC
Padariya M., Sznarkowska A., Kote S., Gómez-Herranz M., Mikac S., Pilch M. Functional interfaces, biological pathways, and regulations of interferon-related DNA damage resistance signature (IRDS) genes. Biomolecules. 2021;11(5):622. PubMed PMC
Herget M., Baldauf C., Scholz C., Parcej D., Wiesmuller K.-H., Tampe R. Conformation of peptides bound to the transporter associated with antigen processing (TAP) Proc Natl Acad Sci U S A. 2011;108(4):1349–1354. PubMed PMC
Saric T., Chang S.C., Hattori A., York I.A., Markant S. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class Ipresented peptides. Nat Immunol. 2002;3:1169–1176. PubMed
Zhou F. Molecular mechanisms of IFN-γ to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol. 2009;28(3-4):239–260. PubMed
Strehl B., Seifert U., Kruger E., Heink S., Kuckelkorn U., Kloetzel P.-M. Interferongamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev. 2005;207(1):19–30. PubMed
Arellano-Garcia M.E., Misuno K., Tran S.D., Hu S., van Hall T. Interferon-γ induces immunoproteasomes and the presentation of MHC I-associated peptides on human salivary gland cells. PLoS ONE. 2014;9(8):e102878. PubMed PMC
Borrman T., Cimons J., Cosiano M., Purcaro M., Pierce B.G., Baker B.M. ATLAS: A database linking binding affinities with structures for wild-type and mutant TCR-pMHC complexes. Proteins. 2017;85(5):908–916. PubMed PMC
Natter C., Polterauer S., Rahhal-Schupp J., Cacsire Castillo-Tong D., Pils S., Speiser P. Association of TAP gene polymorphisms and risk of cervical intraepithelial neoplasia. Dis Markers. 2013;35:79–84. PubMed PMC
Einstein M.H., Leanza S., Chiu L.G., Schlecht N.F., Goldberg G.L., Steinberg B.M. Genetic variants in TAP are associated with high-grade cervical neoplasia. Clin Cancer Res. 2009;15(3):1019–1023. PubMed PMC
Abele R., Tampé R. The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. Physiology (Bethesda) 2004;19(4):216–224. PubMed
Ozbas-Gerceker F., Bozman N., Gezici S., Pehlivan M., Yilmaz M., Pehlivan S. Association of TAP1 and TAP2 gene polymorphisms with hematological malignancies. Asian Pac J Cancer Prev. 2013;14(9):5213–5217. PubMed
Henle A.M., Nassar A., Puglisi-Knutson D., Youssef B., Knutson K.L., Ahmad A. Downregulation of TAP1 and TAP2 in early stage breast cancer. PLoS ONE. 2017;12(11):e0187323. PubMed PMC
Forbes S.A., Beare D., Boutselakis H., Bamford S., Bindal N., Tate J. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–D783. PubMed PMC
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2: 401–404 Erratum in: (2012) Cancer Discov 2: 960. PubMed PMC
Grotzke J.E., Sengupta D., Lu Q., Cresswell P. The ongoing saga of the mechanism(s) of MHC class I-restricted cross-presentation. Curr Opin Immunol. 2017;46:89–96. PubMed PMC
Merzougui N., Kratzer R., Saveanu L., van Endert P. A proteasome-dependent, TAP-independent pathway for cross-presentation of phagocytosed antigen. EMBO Rep. 2011;12(12):1257–1264. PubMed PMC
Lawand M., Abramova A., Manceau V., Springer S., van Endert P. TAP-dependent and -independent peptide import into dendritic cell phagosomes. J Immunol. 2016;197(9):3454–3463. PubMed
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9: 646–52 Erratum in: (2002) Nat Struct Biol 9: 788. PubMed
Faktor J., Grasso G., Zavadil Kokas F., Kurkowiak M., Mayordomo M.Y., Kote S. The effects of p53 gene inactivation on mutant proteome expression in a human melanoma cell model. Biochim Biophys Acta Gen Subj. 2020;1864(12):129722. PubMed
Lanoix J., Durette C., Courcelles M., Cossette É., Comtois-Marotte S. Comparison of the MHC I immunopeptidome repertoire of B-cell lymphoblasts using two isolation methods. Proteomics. 2018;18 PubMed
Cox J., Matic I., Hilger M., Nagaraj N., Selbach M., Olsen J.V. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc. 2009;4(5):698–705. PubMed
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–2526. PubMed PMC
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–2319. PubMed
Cox Jürgen, Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–1805. PubMed
Kelley L.A., Sternberg M.J.E. Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc. 2009;4(3):363–371. PubMed
Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–858. PubMed PMC
Molecular Operating Environment (MOE) 2011.10. Chemical Computing Group (2011) Montreal, Quebec, Canada.
Brooks B.R., Brooks C.L., Mackerell A.D., Nilsson L., Petrella R.J., Roux B. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30(10):1545–1614. PubMed PMC
Labute P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem. 2008;29(10):1693–1698. PubMed
Krivák R., Hoksza D. Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. J Cheminform. 2015;7:12. PubMed PMC
Kitchen D.B., Decornez H., Furr J.R., Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–949. PubMed
Wojciechowski M., Lesyng B. Generalized Born model: Analysis, refinement, and applications to proteins. J Phys Chem B. 2004;108:18368–18376.
Labute P. LowModeMD–implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model. 2010;50(5):792–800. PubMed
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J et al. (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581: 434–43 Erratum in: (2021) Nature 590: E53. PubMed PMC
Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40: D370–D376. PubMed PMC
Jo S., Lim J.B., Klauda J.B., Im W. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys J. 2009;97(1):50–58. PubMed PMC
Trowitzsch S., Tampé R. Multifunctional chaperone and quality control complexes in adaptive immunity. Annu Rev Biophys. 2020;49(1):135–161. PubMed
Loschwitz J., Olubiyi O.O., Hub J.S., Strodel B., Poojari C.S. Computer simulations of protein-membrane systems. Prog Mol Biol Transl Sci. 2020;170:273–403. PubMed PMC
Woolf T.B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996;24(1):92–114. PubMed
Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–1802. PubMed PMC
Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010;114(23):7830–7843. PubMed PMC
Venable R.M., Brown F.L.H., Pastor R.W. Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids. 2015;192:60–74. PubMed PMC
Guvench O., Mallajosyula S.S., Raman E.P., Hatcher E., Vanommeslaeghe K., Foster T.J. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput. 2011;7(10):3162–3180. PubMed PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935.
Darden T., York D., Pedersen L. Particle mesh Ewald- an N · log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092.
Pastor R.W., Brooks B.R., Szabo A. An analysis of the accuracy of langevin and molecular dynamics algorithms. Mol Phys. 1988;65(6):1409–1419.
Feller S.E., Zhang Y., Pastor R.W., Brooks B.R. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys. 1995;103(11):4613–4621.
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–341.
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. PubMed
Rock K.L., Goldberg A.L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol. 1999;17(1):739–779. PubMed
Stryhn A., Pedersen L., Holm A., Buus S. Longer peptide can be accommodated in the MHC class I binding site by a protrusion mechanism. Eur J Immunol. 2000;30(11):3089–3099. PubMed
Guo H.-C., Jardetzky T.S., Garrettt T.P.J., Lane W.S., Strominger J.L., Wiley D.C. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature. 1992;360(6402):364–366. PubMed
Urban R.G., Chicz R.M., Lane W.S., Strominger J.L., Rehm A., Kenter M.J. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci U S A. 1994;91(4):1534–1538. PubMed PMC
Rock K.L., Reits E., Neefjes J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 2016;37(11):724–737. PubMed PMC
Koopmann J.O., Post M., Neefjes J.J., Hämmerling G.J., Momburg F. Translocation of long peptides by transporters associated with antigen processing (TAP) Eur J Immunol. 1996;26(8):1720–1728. PubMed
Kisselev A.F., Akopian T.N., Woo K.M., Goldberg A.L. The size of peptides generated from proteins by mammalian 26 and 20S proteasomes. J Biol Chem. 1999;274:3363–3371. PubMed
Nogales A., L. DeDiego M. Host single nucleotide polymorphisms modulating influenza A virus disease in humans. Pathogens. 2019;8(4):168. PubMed PMC
Bordignon E., Seeger M.A., Galazzo L., Meier G. From in vitro towards in situ: structure-based investigation of ABC exporters by electron paramagnetic resonance spectroscopy. FEBS Lett. 2020;594:3839–3856. PubMed
Hofmann S., Januliene D., Mehdipour A.R., Thomas C., Stefan E., Brüchert S. Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature. 2019;571(7766):580–583. PubMed PMC
Stefan E., Hofmann S., Tampé R. A single power stroke by ATP binding drives substrate translocation in a heterodimeric ABC transporter. eLife. 2020;9 PubMed PMC
Nöll A., Thomas C., Herbring V., Zollmann T., Barth K., Mehdipour A.R. Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc Natl Acad Sci U S A. 2017;114(4):E438–E447. PubMed PMC
Armandola E.A., Momburg F., Nijenhuis M., Bulbuc N., Früh K., Hämmerling G.J. A point mutation in the human transporter associated with antigen processing (TAP2) alters the peptide transport specificity. Eur J Immunol. 1996;26(8):1748–1755. PubMed
Denton A.E., Wesselingh R., Gras S., Guillonneau C., Olson M.R., Mintern J.D. Affinity thresholds for naive CD8+ CTL activation by peptides and engineered influenza A viruses. J Immunol. 2011;187(11):5733–5744. PubMed
Sethi DK, Schubert DA, Anders AK, Heroux A, Bonsor, DA et al. (2011) A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. J Exp Med 208: 91–102. PubMed PMC
Borbulevych O.Y., Santhanagopolan S.M., Hossain M., Baker B.M. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J Immunol. 2011;187(5):2453–2463. PubMed PMC