The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
- MeSH
- Humans MeSH
- Neoplastic Stem Cells * pathology metabolism MeSH
- Tumor Microenvironment * MeSH
- Neoplasms * pathology genetics metabolism therapy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The isolation and study of fungi within specific contexts yield valuable insights into the intricate relationships between fungi and ecosystems. Unlike culture-independent approaches, cultivation methods are advantageous in this context because they provide standardized replicates, specific species isolation, and easy sampling. This study aimed to understand the ecological process using a microcosm system with pesticide concentrations similar to those found in the soil, in contrast to high doses, from the isolation of the enriched community. The atrazine concentrations used were 0.02 mg/kg (control treatment), 300 ng/kg (treatment 1), and 3000 ng/kg (treatment 2), using a 28-day microcosm system. Ultimately, the isolation resulted in 561 fungi classified into 76 morphospecies. The Ascomycota phylum was prevalent, with Purpureocillium, Aspergillus, and Trichoderma being consistently isolated, denoting robust and persistent genera. Diversity analyses showed that the control microcosms displayed more distinct fungal morphospecies, suggesting the influence of atrazine on fungal communities. Treatment 2 (higher atrazine concentration) showed a structure comparable to that of the control, whereas treatment 1 (lower atrazine concentration) differed significantly, indicating that atrazine concentration impacted community variance. Higher atrazine addition subtly altered ligninolytic fungal community dynamics, implying its potential for pesticide degradation. Finally, variations in atrazine concentrations triggered diverse community responses over time, shedding light on fungal resilience and adaptive strategies against pesticides.
- MeSH
- Atrazine * metabolism pharmacology MeSH
- Biodegradation, Environmental MeSH
- Phylogeny MeSH
- Herbicides * metabolism MeSH
- Fungi * classification isolation & purification metabolism drug effects genetics growth & development MeSH
- Soil Pollutants metabolism MeSH
- Mycobiome * drug effects MeSH
- Soil Microbiology MeSH
- Publication type
- Journal Article MeSH
The formation of memories is a complex, multi-scale phenomenon, especially when it involves integration of information from various brain systems. We have investigated the differences between a novel and consolidated association of spatial cues and amphetamine administration, using an in situ hybridisation method to track the short-term dynamics during the recall testing. We have found that remote recall group involves smaller, but more consolidated groups of neurons, which is consistent with their specialisation. By employing machine learning analysis, we have shown this pattern is especially pronounced in the VTA; furthermore, we also uncovered significant activity patterns in retrosplenial and prefrontal cortices, as well as in the DG and CA3 subfields of the hippocampus. The behavioural propensity towards the associated localisation appears to be driven by the nucleus accumbens, however, further modulated by a trio of the amygdala, VTA and hippocampus, as the trained association is confronted with test experience. Moreover, chemogenetic analysis revealed central amygdala as critical for linking appetitive emotional states with spatial contexts. These results show that memory mechanisms must be modelled considering individual differences in motivation, as well as covering dynamics of the process.
- MeSH
- Amphetamine pharmacology MeSH
- Amygdala physiology MeSH
- Hippocampus * physiology MeSH
- Memory Consolidation * physiology MeSH
- Rats MeSH
- Brain physiology MeSH
- Neurons physiology metabolism MeSH
- Nucleus Accumbens * physiology MeSH
- Reward * MeSH
- Memory physiology MeSH
- Cues MeSH
- Prefrontal Cortex physiology MeSH
- Mental Recall * physiology MeSH
- Machine Learning MeSH
- Ventral Tegmental Area * physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
N-Methyl-d-aspartate receptors (NMDARs) play a crucial role in excitatory neurotransmission, with numerous pathogenic variants identified in the GluN subunits, including their ligand-binding domains (LBDs). The prevailing hypothesis postulates that the endoplasmic reticulum (ER) quality control machinery verifies the agonist occupancy of NMDARs, but this was tested in a limited number of studies. Using microscopy and electrophysiology in the human embryonic kidney 293 (HEK293) cells, we found that surface expression of GluN1/GluN2A receptors containing a set of alanine substitutions within the LBDs correlated with the measured EC50 values for glycine (GluN1 subunit mutations) while not correlating with the measured EC50 values for l-glutamate (GluN2A subunit mutations). The mutant cycle of GluN1-S688 residue, including the pathogenic GluN1-S688Y and GluN1-S688P variants, showed a correlation between relative surface expression of the GluN1/GluN2A receptors and the measured EC50 values for glycine, as well as with the calculated ΔGbinding values for glycine obtained from molecular dynamics simulations. In contrast, the mutant cycle of GluN2A-S511 residue did not show any correlation between the relative surface expression of the GluN1/GluN2A receptors and the measured EC50 values for l-glutamate or calculated ΔGbinding values for l-glutamate. Coexpression of both mutated GluN1 and GluN2A subunits led to additive or synergistic alterations in the surface number of GluN1/GluN2A receptors. The synchronized ER release by ARIAD technology confirmed the altered early trafficking of GluN1/GluN2A receptors containing the mutated LBDs. The microscopical analysis from embryonal rat hippocampal neurons (both sexes) corroborated our conclusions from the HEK293 cells.
- MeSH
- Glycine metabolism MeSH
- HEK293 Cells MeSH
- Hippocampus cytology metabolism MeSH
- Rats MeSH
- Glutamic Acid metabolism MeSH
- Humans MeSH
- Ligands MeSH
- Mutation genetics MeSH
- Protein Domains MeSH
- Nerve Tissue Proteins MeSH
- Receptors, N-Methyl-D-Aspartate * metabolism genetics chemistry MeSH
- Protein Transport physiology genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
In this study, simple oil-in-water emulsions (O/W) and multiple O/W/O emulsions were employed as carriers for a curcumin delivery system. The stability of emulsions was evaluated using DSC (differential scanning calorimetry), accompanied by particle size measurement by DLS (dynamic light scattering) and rheological analysis. The amount of freezable water (Wfs) in O/W emulsion was determined to be 80.4%, while that in O/W/O emulsion was 23.7%. Multiple emulsions had a more complex structure than simple emulsions, being characterized by higher stability with predominant loss modulus over storage modulus (G" > G'). The mean surface diameter for O/W emulsion was 198.7 ± 9.8 nm, being approximately two times lower than that for multiple emulsions. Curcumin in vitro digestibility was observed for both emulsions and, additionally, the digestibility of fresh and dried curcuma root powders was investigated. Multiple emulsions were found to be a superior matrix for curcumin delivery, with higher stability and emulsion digestibility of 50.6% for the stomach and small intestine. In vitro digestion of dried curcuma powders and curcuma root samples was monitored by HPLC (high-performance liquid chromatography). The DMD (dry matter digestibility) for dried curcuma powders ranged between 52.9% to 78.8%, and for fresh curcuma (KF) was 95.5%.
Bats are the natural reservoirs for a variety of emerging and re-emerging viruses. Among them, rabies virus (genus Lyssavirus, family Rhabdoviridae) is one of the first and most emblematic described in these animals. Since its first description, several new bat lyssaviruses have been regularly identified. In addition to lyssaviruses, other bat rhabdoviruses have also been discovered, including members of the genera Vesiculovirus, Ledantevirus and, more recently, Alphanemrhavirus and Tupavirus. However, the family Rhabdoviridae is one of the most abundant and diverse viral families, with 434 officially recognized species, divided into 5 subfamilies and 56 different genera. The number of rhabdoviruses associated with bats is therefore probably higher than that currently available. In this study, we first developed and validated a combined nested RT-qPCR technique (pan-rhabdo RT-nqPCR) dedicated to the broad detection of animal rhabdoviruses. After validation, this technique was used for a large retrospective screening of archival bat samples (n = 1962), including blood (n = 816), brain (n = 723) and oral swab (n = 423). These samples were collected from various bat species over a 12-year period (2007-2019) in 9 different countries in Europe and Africa. A total of 23 samples (1.2%) from bat species Miniopterus schreibersii, Rhinolophus euryale and Rhinolophus ferrumequinum tested positive for rhabdovirus infection, including 17 (2.1%) blood and 6 (1.4%) oral swab samples, all collected from bats originating from the Mediterranean region. Complete virus genome sequences were obtained by next-generation sequencing for most of the positive samples. Molecular and phylogenetic analysis of these sequences demonstrated that the virus isolates, named Mediterranean bat virus (MBV), were closely related and represented a new species, Mediterranean vesiculovirus, within the genus Vesiculovirus. MBV was more specifically related to other bat vesiculoviruses previously described from China and North America, together clustering into a distinct group of bat viruses within this genus. Interestingly, our results suggest that MBV is widespread, at least in the western part of the Mediterranean region, where it circulates in the blood of several bat species. These results expand the host range and viral diversity of bat vesiculoviruses, and pave the way for further studies to determine the transmission route and dissemination dynamics of these viruses in bat colonies, as well as to assess their potential threat to public health.
- MeSH
- Chiroptera * virology MeSH
- Phylogeny MeSH
- Genome, Viral MeSH
- Rhabdoviridae Infections * veterinary epidemiology virology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Vesiculovirus * genetics isolation & purification classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Mediterranean Region MeSH
In this manuscript, we highlight the evolutionary origins of mitochondria from bacterial endosymbionts and explore their contributions to health, energy metabolism, and neural-immune communication. Mitochondrial adaptability and the roles played by these organelles in promoting oxygen-dependent ATP production provide critical regulation of cognition, motivation, and inflammation. Hypoxia has been identified as an important initiator of inflammation, neurodegeneration, and mitochondrial dysfunction, emphasizing the overall importance of oxygen homeostasis to health and well-being. The Behavior, Exercise, Relaxation, and Nutrition framework highlights these observations as tools that can be used to optimize mitochondrial efficiency. Interestingly, mitochondrial dysfunction may also be linked to psychiatric disorders (e.g., schizophrenia), a hypothesis that focuses on energy dynamics, a proposal that may extend our understanding of these disorders beyond traditional neurotransmitter-focused concepts. Collectively, these perspectives underscore the critical contributions of mitochondria to health and disease and offer a novel framework that may help to explain the connections featured in mind-body medicine.
- MeSH
- Biological Evolution MeSH
- Pain * metabolism physiopathology MeSH
- Exercise * physiology MeSH
- Energy Metabolism * MeSH
- Cognition * physiology MeSH
- Humans MeSH
- Mitochondria metabolism MeSH
- Motivation * MeSH
- Pleasure * physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Phase separation forms membraneless compartments, including heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination. In Drosophila cells, "safe" homologous recombination (HR) repair of these sequences requires their relocalization to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation is unclear. Here, we show that Nup98 nucleoporin is recruited to repair sites before relocalization by Sec13 or Nup88, and downstream of the Smc5/6 complex and heterochromatin protein 1 (HP1). Remarkably, Nup98 condensates are immiscible with HP1 condensates, and they are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing an "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.
- MeSH
- Chromosomal Proteins, Non-Histone metabolism genetics MeSH
- Drosophila melanogaster * genetics metabolism MeSH
- DNA Breaks, Double-Stranded MeSH
- Heterochromatin * genetics metabolism MeSH
- Chromobox Protein Homolog 5 MeSH
- Nuclear Pore Complex Proteins * metabolism genetics MeSH
- Cell Cycle Proteins metabolism genetics MeSH
- Drosophila Proteins * metabolism genetics MeSH
- Recombinational DNA Repair * MeSH
- Rad51 Recombinase * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Graphene-based materials (GBMs) have shown significant promise in cancer therapy due to their unique physicochemical properties, biocompatibility, and ease of functionalization. Their ability to target solid tumors, penetrate the tumor microenvironment (TME), and act as efficient drug delivery platforms highlights their potential in nanomedicine. However, the complex and dynamic nature of the TME, characterized by metabolic heterogeneity, immune suppression, and drug resistance, poses significant challenges to effective cancer treatment. GBMs offer innovative solutions by enhancing tumor targeting, facilitating deep tissue penetration, and modulating metabolic pathways that contribute to tumor progression and immune evasion. Their functionalization with targeting ligands and biocompatible polymers improves their biosafety and specificity, while their ability to modulate immune cell interactions within the TME presents new opportunities for immunotherapy. Given the role of metabolic reprogramming in tumor survival and resistance, GBMs could be further exploited in metabolism-targeted therapies by disrupting glycolysis, mitochondrial respiration, and lipid metabolism to counteract the immunosuppressive effects of the TME. This review focuses on discussing research studies that design GBM nanocomposites with enhanced biodegradability, minimized toxicity, and improved efficacy in delivering therapeutic agents with the intention to reprogram the TME for effective anticancer therapy. Additionally, exploring the potential of GBM nanocomposites in combination with immunotherapies and metabolism-targeted treatments could lead to more effective and personalized cancer therapies. By addressing these challenges, GBMs could play a pivotal role in overcoming current limitations in cancer treatment and advancing precision oncology.
- MeSH
- Graphite * chemistry therapeutic use MeSH
- Immunotherapy methods MeSH
- Drug Delivery Systems methods MeSH
- Humans MeSH
- Tumor Microenvironment * drug effects MeSH
- Neoplasms * drug therapy metabolism MeSH
- Nanocomposites * chemistry therapeutic use MeSH
- Antineoplastic Agents pharmacology therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH