Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From Sub-Tg Relaxation and Crystal Growth to High-Temperature Decomposition
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LM2023037
Ministry of Education Youth and Sports
SGS project
Internal Grant Agency of the University of Pardubice
PubMed
38611796
PubMed Central
PMC11013327
DOI
10.3390/molecules29071516
PII: molecules29071516
Knihovny.cz E-resources
- Keywords
- DSC, amorphous griseofulvin, crystal growth, particle size, structural relaxation,
- Publication type
- Journal Article MeSH
The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol-1 can be attributed to the structural relaxation motions described in terms of the Tool-Narayanaswamy-Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115-135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (~235 kJ·mol-1) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol-1) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Šesták-Berggren processes. Thermal decomposition of GSF proceeds identically in N2 and in air atmospheres with the activation energy of ~105 kJ·mol-1. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process.
See more in PubMed
Grandner J., Cacho R., Tang Y., Houk K. Mechanism of the p450-catalyzed oxidative cyclization in the biosynthesis of griseofulvin. ACS Catal. 2016;6:4506–4511. doi: 10.1021/acscatal.6b01068. PubMed DOI PMC
Duldulao P., Ortega A., Delgadillo X. Mycotic and bacterial infections. Clin. Colon Rectal Surg. 2019;32:333–339. doi: 10.1055/s-0039-1687828. PubMed DOI PMC
Otto D., Otto A., Villiers M. In vitro skin delivery of griseofulvin by layer-by-layer nanocoated emulsions stabilized by whey protein and polysaccharides. Pharmaceutics. 2022;14:554. doi: 10.3390/pharmaceutics14030554. PubMed DOI PMC
Schmeel L., Schmeel F., Kim Y., Blaum-Feder S., Schmidt-Wolf I. Griseofulvin efficiently induces apoptosis in in vitro treatment of lymphoma and multiple myeloma. Anticancer Res. 2017;37:2289–2295. doi: 10.21873/anticanres.11566. PubMed DOI
Grigalunas M., Patil S., Krzyzanowski A., Pahl A., Flegel J., Schölermannet B., Xie J., Sievers S., Ziegler S., Waldmann H. Unprecedented combination of polyketide natural product fragments identifies the new hedgehog signaling pathway inhibitor grismonone. Chem. Eur. J. 2022;28:e2022021642022. doi: 10.1002/chem.202202164. PubMed DOI PMC
Smith C., Jerkovic A., Truong T., Foote S., McCarthy J., McMorran B. Griseofulvin impairs intraerythrocytic growth of plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study. Sci. Rep. 2017;7:41975. doi: 10.1038/srep41975. PubMed DOI PMC
Ricci A., Pierro E., Marcacci M., Ventura P. Mechanisms of neuronal damage in acute hepatic porphyrias. Diagnostics. 2021;11:2205. doi: 10.3390/diagnostics11122205. PubMed DOI PMC
Hee-Jeong K., Sang-Do Y. Liquid antisolvent crystallization of griseofulvin from organic solutions. Chem. Eng. Res. Des. 2015;97:68–76.
Chen H., Wang C., Sun C.C. Profoundly Improved Plasticity and Tabletability of Griseofulvin by in Situ Solvation and Desolvation during Spherical Crystallization. Cryst. Growth Des. 2019;19:2350–2357. doi: 10.1021/acs.cgd.9b00053. DOI
Shi Q., Zhang C., Su Y., Zhang J., Zhou D., Cai T. Acceleration of Crystal Growth of Amorphous Griseofulvin by Low-Concentration Poly(ethylene oxide): Aspects of Crystallization Kinetics and Molecular Mobility. Mol. Pharm. 2017;14:2262–2272. doi: 10.1021/acs.molpharmaceut.7b00097. PubMed DOI
Rahman M., Ahmad S., Tarabokija J., Parker N., Bilgili E. Spray-Dried Amorphous Solid Dispersions of Griseofulvin in HPC/Soluplus/SDS: Elucidating the Multifaceted Impact of SDS as a Minor Component. Pharmaceutics. 2020;12:197. doi: 10.3390/pharmaceutics12030197. PubMed DOI PMC
Chakravarty P., Famili A., Nagapudi K., Al-Sayah M. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems. Pharmaceutics. 2019;11:629. doi: 10.3390/pharmaceutics11120629. PubMed DOI PMC
Kumar R., Dalvi S., Siril P. Nanoparticle-based drugs and formulations: Current status and emerging applications. ACS Appl. Nano Mater. 2020;3:4944–4961. doi: 10.1021/acsanm.0c00606. DOI
Liu Q., Mao L., Liu C., Yin J., Zhu X., Chen D. Continuous synthesis of polymer-coated drug nanoparticles by heterogeneous nucleation in a hollow-fiber membrane module. Ind. Eng. Chem. Res. 2021;61:349–358. doi: 10.1021/acs.iecr.1c02988. DOI
Bhujbal S., Mitra B., Jain U., Gong Y., Agrawal A., Karkiet S., Taylor L.S., Kumar S., Zhou Q.T. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B. 2021;11:2505–2536. doi: 10.1016/j.apsb.2021.05.014. PubMed DOI PMC
Willart J.F., Dudognon E., Mahieu A., Eddleston M., Jones W., Descamps M. The role of cracks in the crystal nucleation process of amorphous griseofulvin. Eur. Phys. J. Spec. Top. 2017;226:837–847. doi: 10.1140/epjst/e2016-60358-y. DOI
Willart J.F., Carpentier L., Danède F., Descamps M. Solid-state vitrification of crystalline griseofulvin by mechanical milling. J. Pharm. Sci. 2012;101:1570–1577. doi: 10.1002/jps.23041. PubMed DOI
Brian C.W., Yu L. Surface self-diffusion of organic glasses. J. Phys. Chem. A. 2013;117:13303–13309. doi: 10.1021/jp404944s. PubMed DOI
Zhu L., Jona J., Nagapudi K., Wu T. Fast surface crystallization of amorphous griseofulvin below Tg. Pharm. Res. 2010;27:1558–1567. doi: 10.1007/s11095-010-0140-8. PubMed DOI
Huang C., Ruan S., Cai T., Yu L. Fast Surface Diffusion and Crystallization of Amorphous Griseofulvin. J. Phys. Chem. B. 2017;121:9463–9468. doi: 10.1021/acs.jpcb.7b07319. PubMed DOI
Zhou D., Zhang G.G.Z., Law D., Grant D.J.W., Schmitt E.A. Thermodynamics, Molecular Mobility and Crystallization Kinetics of Amorphous Griseofulvin. Mol. Pharm. 2008;5:927–936. doi: 10.1021/mp800169g. PubMed DOI
Trenfield S., Awad A., Goyanes Á., Gaisford S., Basit A. 3d printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol. Sci. 2018;39:440–451. doi: 10.1016/j.tips.2018.02.006. PubMed DOI
Vithani K., Goyanes Á., Jannin V., Basit A., Gaisford S., Boyd B. A proof of concept for 3d printing of solid lipid-based formulations of poorly water-soluble drugs to control formulation dispersion kinetics. Pharm. Res. 2019;36:102. doi: 10.1007/s11095-019-2639-y. PubMed DOI
Hong X., Han X., Li X., Li J., Wang Z., Zheng A. Binder jet 3d printing of compound lev-pn dispersible tablets: An innovative approach for fabricating drug systems with multicompartmental structures. Pharmaceutics. 2021;13:1780. doi: 10.3390/pharmaceutics13111780. PubMed DOI PMC
Mathew E., Pitzanti G., Larrañeta E., Lamprou D. 3d printing of pharmaceuticals and drug delivery devices. Pharmaceutics. 2020;12:266. doi: 10.3390/pharmaceutics12030266. PubMed DOI PMC
Buyukgoz G., Kossor C., Davé R. Enhanced supersaturation via fusion-assisted amorphization during fdm 3d printing of crystalline poorly soluble drug loaded filaments. Pharmaceutics. 2021;13:1857. doi: 10.3390/pharmaceutics13111857. PubMed DOI PMC
Renterghem J., Vervaet C., Beer T. Rheological characterization of molten polymer-drug dispersions as a predictive tool for pharmaceutical hot-melt extrusion processability. Pharm. Res. 2017;34:2312–2321. doi: 10.1007/s11095-017-2239-7. PubMed DOI
Shu L., Tian Y., Jones D., Andrews G. Optimising drug solubilisation in amorphous polymer dispersions: Rational selection of hot-melt extrusion processing parameters. Aaps Pharmscitech. 2016;17:200–213. doi: 10.1208/s12249-015-0450-6. PubMed DOI PMC
Figueroa F., Espinell J., Hernández M., López-Mejías V., Stelzer T. Polymorphic phase transformations in crystalline solid dispersions: The combined effect of pressure and temperature. Cryst. Growth Des. 2022;22:2903–2909. doi: 10.1021/acs.cgd.1c01289. DOI
Gupta S., Solanki N., Serajuddin A. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, iv: Affinisol™ hpmc hme polymers. Aaps Pharmscitech. 2015;17:148–157. doi: 10.1208/s12249-015-0426-6. PubMed DOI PMC
Chamberlain R., Windolf H., Geissler S., Quodbach J., Breitkreutz J. Precise dosing of pramipexole for low-dosed filament production by hot melt extrusion applying various feeding methods. Pharmaceutics. 2022;14:216. doi: 10.3390/pharmaceutics14010216. PubMed DOI PMC
Ma X., Müller F., Huang S., Lowinger M., Liu X., Schooleret R., Williams R.O., III. Influence of carbamazepine dihydrate on the preparation of amorphous solid dispersions by hot melt extrusion. Pharmaceutics. 2020;12:379. doi: 10.3390/pharmaceutics12040379. PubMed DOI PMC
Yi S., Wang J., Liu Y., Ma R., Gao Q., Liuet S., Xiong S. Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine–plasticized hydroxypropyl methylcellulose as controlled release systems. Aaps Pharmscitech. 2019;20:219. doi: 10.1208/s12249-019-1435-7. PubMed DOI
Kawakami K. Crystallization Tendency of Pharmaceutical Glasses: Relevance to Compound Properties, Impact of Formulation Process, and Implications for Design of Amorphous Solid Dispersions. Pharmaceutics. 2019;11:202. doi: 10.3390/pharmaceutics11050202. PubMed DOI PMC
Ediger M.D., Harrowell P., Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008;128:034709. doi: 10.1063/1.2815325. PubMed DOI
Musumeci D., Hasebe M., Yu L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI
Swallen S.F., Ediger M.D. Self-diffusion of the amorphous pharmaceutical indomethacin near Tg. Soft Matter. 2011;7:10339–10344. doi: 10.1039/c1sm06283b. DOI
Svoboda R., Macháčková J., Nevyhoštěná M., Komersová A. Thermal stability of amorphous nimesulide: From glass formation to crystal growth and thermal degradation. Phys. Chem Chem. Phys. 2024;26:856–872. doi: 10.1039/D3CP02260A. PubMed DOI
Svoboda R., Košťálová D., Krbal M., Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules. 2022;27:5668. doi: 10.3390/molecules27175668. PubMed DOI PMC
Svoboda R., Málek J. Evaluation of glass-stability criteria for chalcogenide glasses: Effect of experimental conditions. J. Non-Cryst. Sol. 2015;413:39–45. doi: 10.1016/j.jnoncrysol.2015.01.021. DOI
Svoboda R., Kincl M., Málek J. Thermal characterization of Se-Te thin films. J. Alloys Compd. 2015;644:40–46. doi: 10.1016/j.jallcom.2015.04.161. DOI
Ou X., Li S., Chen Y., Rong H., Li A., Lu M. Polymerphism in Griseofulvin: New Story between an Old Drug and Polyethylene Glycol. Cryst. Growth Des. 2022;22:3778–3785. doi: 10.1021/acs.cgd.2c00156. DOI
Svoboda R., Koutná N., Košťálová D., Krbal M., Komersová A. Indomethacin: Effect of Diffusionless Crystal Growth on Thermal Stability during Long-Term Storage. Molecules. 2023;28:1568. doi: 10.3390/molecules28041568. PubMed DOI PMC
Martin J.D., Hillis B.G., Hou F. Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts. J. Phys. Chem. C. 2020;124:18724–18740. doi: 10.1021/acs.jpcc.0c03003. DOI
Berthier L., Chandler D., Garrahan J.P. Length scale for the onset of Fickian diffusion in supercooled liquids. Europhys. Lett. 2005;69:320. doi: 10.1209/epl/i2004-10401-5. DOI
Chong S.-H., Kob W. Coupling and Decoupling between Translational and Rotational Dynamics in a Supercooled Molecular Liquid. Phys. Rev. Lett. 2009;102:025702. doi: 10.1103/PhysRevLett.102.025702. PubMed DOI
Scherer G.W. Theories of relaxation. J. Non-Cryst. Sol. 1990;123:75–89. doi: 10.1016/0022-3093(90)90775-H. DOI
Hodge I.M. Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Sol. 1994;169:211–266. doi: 10.1016/0022-3093(94)90321-2. DOI
Rozo J.I.J., Zarow A., Zhou B., Pinal R., Iqbal Z., Romañach R.J. Complementary near-infrared and raman chemical imaging of pharmaceutical thin films. J. Pharm. Sci. 2011;100:4888–4895. doi: 10.1002/jps.22653. PubMed DOI
Smith G.P.S., Huff G.S., Gordon K.C. Investigating Crystallinity Using Low Frequency Raman Spectroscopy: Applications in Pharmaceutical Analysis. Spectroscopy. 2016;31:42–50.
Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI
Narayanaswamy O.S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI
Moynihan C.T., Easteal A.J., De Bolt M.A., Tucker J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI
Svoboda R., Málek J. Description of enthalpy relaxation dynamics in terms of TNM model. J. Non-Cryst. Solids. 2013;378:186–195. doi: 10.1016/j.jnoncrysol.2013.07.008. DOI
Svoboda R. Utilization of “q+/q−=const.” DSC cycles for physical aging studies. Eur. Polym. J. 2014;59:180–188. doi: 10.1016/j.eurpolymj.2014.07.039. DOI
Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI
Svoboda R., Málek J. Enthalpy relaxation in Ge–Se glassy system. J. Therm. Anal. 2012;113:831–842. doi: 10.1007/s10973-012-2829-x. DOI
Hodge I.M., Berens A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules. 1982;15:762–770. doi: 10.1021/ma00231a016. DOI
Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, The Netherlands: 1984.
Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, The Netherlands: 2005.
Johnson W.A., Mehl K.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. (Met.) Eng. 1939;135:416–442.
Avrami M. Kinetics of phase change I–general theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI
Avrami M. Kinetics of phase change. II–transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940;7:212–224. doi: 10.1063/1.1750631. DOI
Avrami M. Granulation, phase change, and microstructure—Kinetics of phase change III. J. Chem. Phys. 1941;7:177–184. doi: 10.1063/1.1750872. DOI
Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICATC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta. 2011;520:1–19. doi: 10.1016/j.tca.2011.03.034. DOI
Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal.Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Friedman H.L. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic. Wiley, Inc.; Hoboken, NJ, USA: 1964.
Starink M.J. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta. 2003;404:163–176. doi: 10.1016/S0040-6031(03)00144-8. DOI
Svoboda R. Crystallization of glasses—When to use the Johnson-Mehl-Avrami kinetics? J. Eur. Ceram. Soc. 2021;41:7862–7867.
Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2021;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI
Shi Q., Cai T. Fast Crystal Growth of Amorphous Griseofulvin: Relations between Bulk and Surface Growth Modes. Cryst. Growth Des. 2016;16:3279–3286. doi: 10.1021/acs.cgd.6b00252. DOI
Li F., Xin J., Shi Q. Diffusion-controlled and “diffusionless” crystal growth: Relation between liquid dynamics and growth kinetics of griseofulvin. J. Appl. Cryst. 2021;54:142–147. doi: 10.1107/S1600576720014636. DOI
Stevenson J.D., Wolynes P.G. On the surface of glasses. J. Chem. Phys. 2008;129:234514. doi: 10.1063/1.3041651. PubMed DOI PMC
Svoboda R. Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by erroneous experimental operations. J. Non-Cryst. Solids. 2015;408:115–122. doi: 10.1016/j.jnoncrysol.2014.10.021. DOI