• This record comes from PubMed

Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From Sub-Tg Relaxation and Crystal Growth to High-Temperature Decomposition

. 2024 Mar 28 ; 29 (7) : . [epub] 20240328

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LM2023037 Ministry of Education Youth and Sports
SGS project Internal Grant Agency of the University of Pardubice

The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol-1 can be attributed to the structural relaxation motions described in terms of the Tool-Narayanaswamy-Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115-135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (~235 kJ·mol-1) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol-1) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Šesták-Berggren processes. Thermal decomposition of GSF proceeds identically in N2 and in air atmospheres with the activation energy of ~105 kJ·mol-1. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process.

See more in PubMed

Grandner J., Cacho R., Tang Y., Houk K. Mechanism of the p450-catalyzed oxidative cyclization in the biosynthesis of griseofulvin. ACS Catal. 2016;6:4506–4511. doi: 10.1021/acscatal.6b01068. PubMed DOI PMC

Duldulao P., Ortega A., Delgadillo X. Mycotic and bacterial infections. Clin. Colon Rectal Surg. 2019;32:333–339. doi: 10.1055/s-0039-1687828. PubMed DOI PMC

Otto D., Otto A., Villiers M. In vitro skin delivery of griseofulvin by layer-by-layer nanocoated emulsions stabilized by whey protein and polysaccharides. Pharmaceutics. 2022;14:554. doi: 10.3390/pharmaceutics14030554. PubMed DOI PMC

Schmeel L., Schmeel F., Kim Y., Blaum-Feder S., Schmidt-Wolf I. Griseofulvin efficiently induces apoptosis in in vitro treatment of lymphoma and multiple myeloma. Anticancer Res. 2017;37:2289–2295. doi: 10.21873/anticanres.11566. PubMed DOI

Grigalunas M., Patil S., Krzyzanowski A., Pahl A., Flegel J., Schölermannet B., Xie J., Sievers S., Ziegler S., Waldmann H. Unprecedented combination of polyketide natural product fragments identifies the new hedgehog signaling pathway inhibitor grismonone. Chem. Eur. J. 2022;28:e2022021642022. doi: 10.1002/chem.202202164. PubMed DOI PMC

Smith C., Jerkovic A., Truong T., Foote S., McCarthy J., McMorran B. Griseofulvin impairs intraerythrocytic growth of plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study. Sci. Rep. 2017;7:41975. doi: 10.1038/srep41975. PubMed DOI PMC

Ricci A., Pierro E., Marcacci M., Ventura P. Mechanisms of neuronal damage in acute hepatic porphyrias. Diagnostics. 2021;11:2205. doi: 10.3390/diagnostics11122205. PubMed DOI PMC

Hee-Jeong K., Sang-Do Y. Liquid antisolvent crystallization of griseofulvin from organic solutions. Chem. Eng. Res. Des. 2015;97:68–76.

Chen H., Wang C., Sun C.C. Profoundly Improved Plasticity and Tabletability of Griseofulvin by in Situ Solvation and Desolvation during Spherical Crystallization. Cryst. Growth Des. 2019;19:2350–2357. doi: 10.1021/acs.cgd.9b00053. DOI

Shi Q., Zhang C., Su Y., Zhang J., Zhou D., Cai T. Acceleration of Crystal Growth of Amorphous Griseofulvin by Low-Concentration Poly(ethylene oxide): Aspects of Crystallization Kinetics and Molecular Mobility. Mol. Pharm. 2017;14:2262–2272. doi: 10.1021/acs.molpharmaceut.7b00097. PubMed DOI

Rahman M., Ahmad S., Tarabokija J., Parker N., Bilgili E. Spray-Dried Amorphous Solid Dispersions of Griseofulvin in HPC/Soluplus/SDS: Elucidating the Multifaceted Impact of SDS as a Minor Component. Pharmaceutics. 2020;12:197. doi: 10.3390/pharmaceutics12030197. PubMed DOI PMC

Chakravarty P., Famili A., Nagapudi K., Al-Sayah M. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems. Pharmaceutics. 2019;11:629. doi: 10.3390/pharmaceutics11120629. PubMed DOI PMC

Kumar R., Dalvi S., Siril P. Nanoparticle-based drugs and formulations: Current status and emerging applications. ACS Appl. Nano Mater. 2020;3:4944–4961. doi: 10.1021/acsanm.0c00606. DOI

Liu Q., Mao L., Liu C., Yin J., Zhu X., Chen D. Continuous synthesis of polymer-coated drug nanoparticles by heterogeneous nucleation in a hollow-fiber membrane module. Ind. Eng. Chem. Res. 2021;61:349–358. doi: 10.1021/acs.iecr.1c02988. DOI

Bhujbal S., Mitra B., Jain U., Gong Y., Agrawal A., Karkiet S., Taylor L.S., Kumar S., Zhou Q.T. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B. 2021;11:2505–2536. doi: 10.1016/j.apsb.2021.05.014. PubMed DOI PMC

Willart J.F., Dudognon E., Mahieu A., Eddleston M., Jones W., Descamps M. The role of cracks in the crystal nucleation process of amorphous griseofulvin. Eur. Phys. J. Spec. Top. 2017;226:837–847. doi: 10.1140/epjst/e2016-60358-y. DOI

Willart J.F., Carpentier L., Danède F., Descamps M. Solid-state vitrification of crystalline griseofulvin by mechanical milling. J. Pharm. Sci. 2012;101:1570–1577. doi: 10.1002/jps.23041. PubMed DOI

Brian C.W., Yu L. Surface self-diffusion of organic glasses. J. Phys. Chem. A. 2013;117:13303–13309. doi: 10.1021/jp404944s. PubMed DOI

Zhu L., Jona J., Nagapudi K., Wu T. Fast surface crystallization of amorphous griseofulvin below Tg. Pharm. Res. 2010;27:1558–1567. doi: 10.1007/s11095-010-0140-8. PubMed DOI

Huang C., Ruan S., Cai T., Yu L. Fast Surface Diffusion and Crystallization of Amorphous Griseofulvin. J. Phys. Chem. B. 2017;121:9463–9468. doi: 10.1021/acs.jpcb.7b07319. PubMed DOI

Zhou D., Zhang G.G.Z., Law D., Grant D.J.W., Schmitt E.A. Thermodynamics, Molecular Mobility and Crystallization Kinetics of Amorphous Griseofulvin. Mol. Pharm. 2008;5:927–936. doi: 10.1021/mp800169g. PubMed DOI

Trenfield S., Awad A., Goyanes Á., Gaisford S., Basit A. 3d printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol. Sci. 2018;39:440–451. doi: 10.1016/j.tips.2018.02.006. PubMed DOI

Vithani K., Goyanes Á., Jannin V., Basit A., Gaisford S., Boyd B. A proof of concept for 3d printing of solid lipid-based formulations of poorly water-soluble drugs to control formulation dispersion kinetics. Pharm. Res. 2019;36:102. doi: 10.1007/s11095-019-2639-y. PubMed DOI

Hong X., Han X., Li X., Li J., Wang Z., Zheng A. Binder jet 3d printing of compound lev-pn dispersible tablets: An innovative approach for fabricating drug systems with multicompartmental structures. Pharmaceutics. 2021;13:1780. doi: 10.3390/pharmaceutics13111780. PubMed DOI PMC

Mathew E., Pitzanti G., Larrañeta E., Lamprou D. 3d printing of pharmaceuticals and drug delivery devices. Pharmaceutics. 2020;12:266. doi: 10.3390/pharmaceutics12030266. PubMed DOI PMC

Buyukgoz G., Kossor C., Davé R. Enhanced supersaturation via fusion-assisted amorphization during fdm 3d printing of crystalline poorly soluble drug loaded filaments. Pharmaceutics. 2021;13:1857. doi: 10.3390/pharmaceutics13111857. PubMed DOI PMC

Renterghem J., Vervaet C., Beer T. Rheological characterization of molten polymer-drug dispersions as a predictive tool for pharmaceutical hot-melt extrusion processability. Pharm. Res. 2017;34:2312–2321. doi: 10.1007/s11095-017-2239-7. PubMed DOI

Shu L., Tian Y., Jones D., Andrews G. Optimising drug solubilisation in amorphous polymer dispersions: Rational selection of hot-melt extrusion processing parameters. Aaps Pharmscitech. 2016;17:200–213. doi: 10.1208/s12249-015-0450-6. PubMed DOI PMC

Figueroa F., Espinell J., Hernández M., López-Mejías V., Stelzer T. Polymorphic phase transformations in crystalline solid dispersions: The combined effect of pressure and temperature. Cryst. Growth Des. 2022;22:2903–2909. doi: 10.1021/acs.cgd.1c01289. DOI

Gupta S., Solanki N., Serajuddin A. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, iv: Affinisol™ hpmc hme polymers. Aaps Pharmscitech. 2015;17:148–157. doi: 10.1208/s12249-015-0426-6. PubMed DOI PMC

Chamberlain R., Windolf H., Geissler S., Quodbach J., Breitkreutz J. Precise dosing of pramipexole for low-dosed filament production by hot melt extrusion applying various feeding methods. Pharmaceutics. 2022;14:216. doi: 10.3390/pharmaceutics14010216. PubMed DOI PMC

Ma X., Müller F., Huang S., Lowinger M., Liu X., Schooleret R., Williams R.O., III. Influence of carbamazepine dihydrate on the preparation of amorphous solid dispersions by hot melt extrusion. Pharmaceutics. 2020;12:379. doi: 10.3390/pharmaceutics12040379. PubMed DOI PMC

Yi S., Wang J., Liu Y., Ma R., Gao Q., Liuet S., Xiong S. Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine–plasticized hydroxypropyl methylcellulose as controlled release systems. Aaps Pharmscitech. 2019;20:219. doi: 10.1208/s12249-019-1435-7. PubMed DOI

Kawakami K. Crystallization Tendency of Pharmaceutical Glasses: Relevance to Compound Properties, Impact of Formulation Process, and Implications for Design of Amorphous Solid Dispersions. Pharmaceutics. 2019;11:202. doi: 10.3390/pharmaceutics11050202. PubMed DOI PMC

Ediger M.D., Harrowell P., Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008;128:034709. doi: 10.1063/1.2815325. PubMed DOI

Musumeci D., Hasebe M., Yu L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI

Swallen S.F., Ediger M.D. Self-diffusion of the amorphous pharmaceutical indomethacin near Tg. Soft Matter. 2011;7:10339–10344. doi: 10.1039/c1sm06283b. DOI

Svoboda R., Macháčková J., Nevyhoštěná M., Komersová A. Thermal stability of amorphous nimesulide: From glass formation to crystal growth and thermal degradation. Phys. Chem Chem. Phys. 2024;26:856–872. doi: 10.1039/D3CP02260A. PubMed DOI

Svoboda R., Košťálová D., Krbal M., Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules. 2022;27:5668. doi: 10.3390/molecules27175668. PubMed DOI PMC

Svoboda R., Málek J. Evaluation of glass-stability criteria for chalcogenide glasses: Effect of experimental conditions. J. Non-Cryst. Sol. 2015;413:39–45. doi: 10.1016/j.jnoncrysol.2015.01.021. DOI

Svoboda R., Kincl M., Málek J. Thermal characterization of Se-Te thin films. J. Alloys Compd. 2015;644:40–46. doi: 10.1016/j.jallcom.2015.04.161. DOI

Ou X., Li S., Chen Y., Rong H., Li A., Lu M. Polymerphism in Griseofulvin: New Story between an Old Drug and Polyethylene Glycol. Cryst. Growth Des. 2022;22:3778–3785. doi: 10.1021/acs.cgd.2c00156. DOI

Svoboda R., Koutná N., Košťálová D., Krbal M., Komersová A. Indomethacin: Effect of Diffusionless Crystal Growth on Thermal Stability during Long-Term Storage. Molecules. 2023;28:1568. doi: 10.3390/molecules28041568. PubMed DOI PMC

Martin J.D., Hillis B.G., Hou F. Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts. J. Phys. Chem. C. 2020;124:18724–18740. doi: 10.1021/acs.jpcc.0c03003. DOI

Berthier L., Chandler D., Garrahan J.P. Length scale for the onset of Fickian diffusion in supercooled liquids. Europhys. Lett. 2005;69:320. doi: 10.1209/epl/i2004-10401-5. DOI

Chong S.-H., Kob W. Coupling and Decoupling between Translational and Rotational Dynamics in a Supercooled Molecular Liquid. Phys. Rev. Lett. 2009;102:025702. doi: 10.1103/PhysRevLett.102.025702. PubMed DOI

Scherer G.W. Theories of relaxation. J. Non-Cryst. Sol. 1990;123:75–89. doi: 10.1016/0022-3093(90)90775-H. DOI

Hodge I.M. Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Sol. 1994;169:211–266. doi: 10.1016/0022-3093(94)90321-2. DOI

Rozo J.I.J., Zarow A., Zhou B., Pinal R., Iqbal Z., Romañach R.J. Complementary near-infrared and raman chemical imaging of pharmaceutical thin films. J. Pharm. Sci. 2011;100:4888–4895. doi: 10.1002/jps.22653. PubMed DOI

Smith G.P.S., Huff G.S., Gordon K.C. Investigating Crystallinity Using Low Frequency Raman Spectroscopy: Applications in Pharmaceutical Analysis. Spectroscopy. 2016;31:42–50.

Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI

Narayanaswamy O.S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI

Moynihan C.T., Easteal A.J., De Bolt M.A., Tucker J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI

Svoboda R., Málek J. Description of enthalpy relaxation dynamics in terms of TNM model. J. Non-Cryst. Solids. 2013;378:186–195. doi: 10.1016/j.jnoncrysol.2013.07.008. DOI

Svoboda R. Utilization of “q+/q−=const.” DSC cycles for physical aging studies. Eur. Polym. J. 2014;59:180–188. doi: 10.1016/j.eurpolymj.2014.07.039. DOI

Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI

Svoboda R., Málek J. Enthalpy relaxation in Ge–Se glassy system. J. Therm. Anal. 2012;113:831–842. doi: 10.1007/s10973-012-2829-x. DOI

Hodge I.M., Berens A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules. 1982;15:762–770. doi: 10.1021/ma00231a016. DOI

Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, The Netherlands: 1984.

Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, The Netherlands: 2005.

Johnson W.A., Mehl K.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. (Met.) Eng. 1939;135:416–442.

Avrami M. Kinetics of phase change I–general theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI

Avrami M. Kinetics of phase change. II–transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940;7:212–224. doi: 10.1063/1.1750631. DOI

Avrami M. Granulation, phase change, and microstructure—Kinetics of phase change III. J. Chem. Phys. 1941;7:177–184. doi: 10.1063/1.1750872. DOI

Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICATC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta. 2011;520:1–19. doi: 10.1016/j.tca.2011.03.034. DOI

Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal.Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI

Friedman H.L. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic. Wiley, Inc.; Hoboken, NJ, USA: 1964.

Starink M.J. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta. 2003;404:163–176. doi: 10.1016/S0040-6031(03)00144-8. DOI

Svoboda R. Crystallization of glasses—When to use the Johnson-Mehl-Avrami kinetics? J. Eur. Ceram. Soc. 2021;41:7862–7867.

Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2021;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI

Shi Q., Cai T. Fast Crystal Growth of Amorphous Griseofulvin: Relations between Bulk and Surface Growth Modes. Cryst. Growth Des. 2016;16:3279–3286. doi: 10.1021/acs.cgd.6b00252. DOI

Li F., Xin J., Shi Q. Diffusion-controlled and “diffusionless” crystal growth: Relation between liquid dynamics and growth kinetics of griseofulvin. J. Appl. Cryst. 2021;54:142–147. doi: 10.1107/S1600576720014636. DOI

Stevenson J.D., Wolynes P.G. On the surface of glasses. J. Chem. Phys. 2008;129:234514. doi: 10.1063/1.3041651. PubMed DOI PMC

Svoboda R. Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by erroneous experimental operations. J. Non-Cryst. Solids. 2015;408:115–122. doi: 10.1016/j.jnoncrysol.2014.10.021. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...