The stability of DNA intrastrand cross-links of antitumor transplatin derivative containing non-bulky methylamine ligands

. 2014 Oct ; 19 (7) : 1203-8. [epub] 20140702

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24986778

Oligonucleotides modified by clinically ineffective trans-diamminedichloridoplatinum(II) (transplatin) have been shown to be effective modulators of gene expression. This is so because in some nucleotide sequences the 1,3-GNG intrastrand adducts formed by transplatin in double-helical DNA readily rearrange into interstrand cross-links so that they can cross-link the oligonucleotides to their targets. On the other hand, in a number of other sequences these intrastrand adducts are relatively stable, which represents the major difficulty in the clinical use of the antisense transplatin-modified oligonucleotides. Therefore, we examined in this study, the stability of 1,3-GNG intrastrand adducts in double-helical DNA formed by a new antitumor derivative of transplatin, trans-[Pt(CH3NH2)2Cl2], in the sequence contexts in which transplatin formed relatively stable intrastrand cross-links which did not readily rearranged into interstrand cross-links. We have found that 1,3-GNG intrastrand adducts in double-helical DNA formed by trans-[Pt(CH3NH2)2Cl2] even in such sequences readily rearrange into interstrand cross-links. This work also suggests that an enhanced frequency of intrastrand cross-links yielded by trans-[Pt(CH3NH2)2Cl2] is a consequence of the fact that these DNA lesions considerably distort double-helical DNA in far more sequence contexts than parent transplatin. Our results suggest that trans-[Pt(CH3NH2)2Cl2]-modified oligonucleotides represent promising candidates for new agents in antisense or antigene approach.

Zobrazit více v PubMed

Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9 PubMed

Antisense Nucleic Acid Drug Dev. 1997 Aug;7(4):397-402 PubMed

J Biol Inorg Chem. 2000 Jun;5(3):364-8 PubMed

Biophys J. 2008 Nov 1;95(9):4361-71 PubMed

Nucleic Acids Res. 1995 Jul 11;23(13):2381-8 PubMed

J Inorg Biochem. 2013 Sep;126:46-54 PubMed

Biochemistry. 1997 Mar 11;36(10):2925-31 PubMed

J Cell Physiol. 1999 Nov;181(2):251-7 PubMed

J Biol Chem. 2000 May 26;275(21):15789-98 PubMed

Pharmacol Ther. 2000 Mar;85(3):175-81 PubMed

Chemistry. 2008;14(4):1330-41 PubMed

Mol Pharmacol. 2000 Dec;58(6):1525-35 PubMed

Biochemistry. 1990 Feb 27;29(8):2102-10 PubMed

Nucleic Acids Res. 1995 Mar 25;23(6):949-53 PubMed

Nucleic Acids Res. 1996 Dec 15;24(24):5062-3 PubMed

J Mol Recognit. 1990 Feb;3(1):1-25 PubMed

Nucleic Acids Res. 2000 Jan 15;28(2):438-45 PubMed

Biochemistry. 1993 Nov 2;32(43):11676-81 PubMed

Biochemistry. 1992 Dec 15;31(49):12397-402 PubMed

Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):11987-92 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...