Processing and Bypass of a Site-Specific DNA Adduct of the Cytotoxic Platinum-Acridinylthiourea Conjugate by Polymerases Involved in DNA Repair: Biochemical and Thermodynamic Aspects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-27514S
Grantová Agentura České Republiky
PubMed
34639179
PubMed Central
PMC8509567
DOI
10.3390/ijms221910838
PII: ijms221910838
Knihovny.cz E-zdroje
- Klíčová slova
- DNA polymerases, antitumor, cytotoxic, drug resistance, lesion bypass, metal–intercalator, microscale thermophoresis, platinum–acridine, thermodynamic, translesion synthesis,
- MeSH
- adukty DNA chemie MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- interkalátory chemie MeSH
- lidé MeSH
- močovina analogy a deriváty chemie MeSH
- oprava DNA * MeSH
- organoplatinové sloučeniny chemie MeSH
- poškození DNA * MeSH
- replikace DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-(2-(acridin-9-ylamino)ethyl)-1,3-dimethylthiourea MeSH Prohlížeč
- adukty DNA MeSH
- DNA-dependentní DNA-polymerasy MeSH
- interkalátory MeSH
- močovina MeSH
- organoplatinové sloučeniny MeSH
DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum-acridinylthiourea conjugate [PtCl(en)(L)](NO3)2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5'-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5'-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KFexo-) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).
Zobrazit více v PubMed
Johnstone T.C., Suntharalingam K., Lippard S.J. The Next Generation of Platinum Drugs: Targeted Pt (II) Agents, Nanoparticle Delivery, and Pt (IV) Prodrugs. Chem. Rev. 2016;116:3436–3486. doi: 10.1021/acs.chemrev.5b00597. PubMed DOI PMC
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI
Todd R.C., Lippard S.J. Inhibition of transcription by platinum antitumor compounds. Metallomics. 2009;1:280–291. doi: 10.1039/b907567d. PubMed DOI PMC
Brabec V., Hrabina O., Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord. Chem. Rev. 2017;351:2–31. doi: 10.1016/j.ccr.2017.04.013. DOI
Baruah H., Barry C.G., Bierbach U. Platinum-intercalator conjugates: From DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. Curr. Top. Med. Chem. 2004;4:1537–1549. doi: 10.2174/1568026043387313. PubMed DOI
Zeglis B.M., Pierre V.C., Barton J.K. Metallo-intercalators and metallo-insertors. Chem. Commun. 2007;44:4565–4579. doi: 10.1039/b710949k. PubMed DOI PMC
Barry C.G., Baruah A.H., Bierbach U. Unprecedented Monofunctional Metalation of Adenine Nucleobase in Guanine- and Thymine-Containing Dinucleotide Sequences by a Cytotoxic Platinum−Acridine Hybrid Agent. J. Am. Chem. Soc. 2003;125:9629–9637. doi: 10.1021/ja0351443. PubMed DOI
Guddneppanavar R., Bierbach U. Adenine-N3 in the DNA minor groove—An emerging target for platinum containing anticancer pharmacophores. Anti-Cancer Agents Med. Chem. 2007;7:125–138. doi: 10.2174/187152007779313991. PubMed DOI
Budiman M.E., Alexander R.W., Bierbach U. Unique base-step recognition by a platinum-acridinylthiourea conjugate leads to a DNA damage profile complementary to that of the anticancer drug cisplatin. Biochemistry. 2004;43:8560–8567. doi: 10.1021/bi049415d. PubMed DOI
Baruah H., Wright M.W., Bierbach U. Solution structural study of a DNA duplex containing the guanine-N7 adduct formed by a cytotoxic platinum-acridine hybrid agent. Biochemistry. 2005;44:6059–6070. doi: 10.1021/bi050021b. PubMed DOI
Bassett E., Vaisman A., Havener J.M., Masutani C., Hanaoka F., Chaney S.G. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. Biochemistry. 2003;42:14197–14206. doi: 10.1021/bi035359p. PubMed DOI
Arana M.E., Song L., Le Gac N.T., Parris D.S., Villani G., Boehmer P.E.B. On the role of proofreading exonuclease in bypass of a 1,2 d(GpG) cisplatin adduct by the herpes simplex virus-1 DNA polymerase. DNA Repair. 2004;3:659–669. doi: 10.1016/j.dnarep.2004.02.006. PubMed DOI
Wickramaratne S., Boldry E.J., Buehler C., Wang Y.-C., Distefano M.D., Tretyakova N.Y. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine. J. Biol. Chem. 2015;290:775–787. doi: 10.1074/jbc.M114.613638. PubMed DOI PMC
O’Flaherty D.K., Guengerich F.P., Egli M., Wilds C.J. Backbone flexibility influences nucleotide incorporation by human translesion DNA polymerase η opposite intrastrand cross-linked DNA. Biochemistry. 2015;54:7449–7456. doi: 10.1021/acs.biochem.5b01078. PubMed DOI PMC
Villani G., Hubscher U., Gironis N., Parkkinen S., Pospiech H., Shevelev I., di Cicco G., Markkanen E., Syvaoja J.E., Tanguy Le Gac N. In vitro gap-directed translesion DNA synthesis of an abasic site involving human DNA polymerases epsilon, lambda, and beta. J. Biol. Chem. 2011;286:32094–32104. doi: 10.1074/jbc.M111.246611. PubMed DOI PMC
Ho T.V., Guainazzi A., Derkunt S.B., Enoiu M., Schärer O.D. Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases. Nucleic Acids Res. 2011;39:7455–7464. doi: 10.1093/nar/gkr448. PubMed DOI PMC
Beard W.A., Wilson S.H. Structural insights into the origins of DNA polymerase fidelity. Structure. 2003;11:489–496. doi: 10.1016/S0969-2126(03)00051-0. PubMed DOI
Kasparkova J., Suchankova T., Halamikova A., Zerzankova L., Vrana O., Margiotta N., Natile G., Brabec V. Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring PtII chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochem. Pharmacol. 2010;79:552–564. doi: 10.1016/j.bcp.2009.09.019. PubMed DOI
Novakova O., Farrell N.P., Brabec V. Translesion DNA synthesis across double-base lesions derived from cross-links of an antitumor trinuclear platinum compound: Primer extension, conformational and thermodynamic studies. Metallomics. 2018;10:132–144. doi: 10.1039/C7MT00266A. PubMed DOI
Hubscher U., Maga G., Spadari S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 2002;71:133–163. doi: 10.1146/annurev.biochem.71.090501.150041. PubMed DOI
Jain R., Aggarwal A.K., Rechkoblit O. Eukaryotic DNA polymerases. Curr. Opin. Struct. Biol. 2018;53:77–87. doi: 10.1016/j.sbi.2018.06.003. PubMed DOI
Ng L., Weiss S.J., Fisher P.A. Recognition and binding of template-primers containing defined abasic sites by Drosophila DNA polymerase alpha holoenzyme. J. Biol. Chem. 1989;264:13018–13023. doi: 10.1016/S0021-9258(18)51589-1. PubMed DOI
Weiss S.J., Fisher P.A. Interaction of Drosophila DNA polymerase alpha holoenzyme with synthetic template-primers containing mismatched primer bases or propanodeoxyguanosine adducts at various positions in template and primer regions. J. Biol. Chem. 1992;267:18520–18526. doi: 10.1016/S0021-9258(19)36993-5. PubMed DOI
Lindsley J.E., Fuchs R.P.P. Use of single-turnover kinetics to study bulky adduct bypass by T7 DNA polymerase. Biochemistry. 1994;33:764–772. doi: 10.1021/bi00169a018. PubMed DOI
Miller H., Grollman A.P. Kinetics of DNA polymerase I (Klenow fragment exo-) activity on damaged DNA templates: Effect of proximal and distal template damage on DNA synthesis. Biochemistry. 1997;36:15336–15342. doi: 10.1021/bi971927n. PubMed DOI
Minetti C., Remeta D.P., Miller H., Gelfand C.A., Plum G.E., Grollman A.P., Breslauer K.J. The thermodynamics of template-directed DNA synthesis: Base insertion and extension enthalpies. Proc. Natl. Acad. Sci. USA. 2003;100:14719–14724. doi: 10.1073/pnas.2336142100. PubMed DOI PMC
Liang F., Cho B.P. Probing the thermodynamics of aminofluorene-induced translesion DNA synthesis by differential scanning calorimetry. J. Am. Chem. Soc. 2007;129:12108–12109. doi: 10.1021/ja075271p. PubMed DOI
Florian J., Brabec V. Thermodynamics of translesion synthesis across a major DNA adduct of antitumor oxaliplatin: Differential scanning calorimetric study. Chem. Eur. J. 2012;18:1634–1639. doi: 10.1002/chem.201102425. PubMed DOI
Turner R.M., Grindley N.D.F., Joyce C.M. Interaction of DNA polymerase I (Klenow fragment) with the single-stranded template beyond the site of synthesis. Biochemistry. 2003;42:2373–2385. doi: 10.1021/bi026566c. PubMed DOI
Patel P.H., Suzuki M., Adman E., Shinkai A., Loeb L.A. Prokaryotic DNA polymerase I: Evolution, structure, and “base flipping” mechanism for nucleotide selection. J. Mol. Biol. 2001;308:823–837. doi: 10.1006/jmbi.2001.4619. PubMed DOI
Villani G., Le Gac N.T., Wasungu L., Burnouf D., Fuchs R.P., Boehmer P.E. Effect of manganese on in vitro replication of damaged DNA catalyzed by the herpes simplex virus type-1 DNA polymerase. Nucleic Acids. Res. 2002;30:3323–3332. doi: 10.1093/nar/gkf463. PubMed DOI PMC
Vaisman A., Masutani C., Hanaoka F., Chaney S.G. Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase η. Biochemistry. 2000;39:4575–4580. doi: 10.1021/bi000130k. PubMed DOI
Bassett E., Vaisman A., Tropea K.A., McCall C.M., Masutani C., Hanaoka F., Chaney S.G. Frameshifts and deletions during in vitro translesion synthesis past Pt-DNA adducts by DNA polymerases beta and eta. DNA Repair. 2002;1:1003–1016. doi: 10.1016/S1568-7864(02)00150-7. PubMed DOI
Yamada K., Takezawa J., Ezaki O. Translesion replication in cisplatin-treated xeroderma pigmentosum variant cells is also caffeine-sensitive: Features of the error-prone DNA polymerase(s) involved in UV-mutagenesis. DNA Repair. 2003;2:909–924. doi: 10.1016/S1568-7864(03)00092-2. PubMed DOI
Bassett E., King N.M., Bryant M.F., Hector S., Pendyala L., Chaney S.G., Cordeiro-Stone M. The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts. Cancer Res. 2004;64:6469–6475. doi: 10.1158/0008-5472.CAN-04-1328. PubMed DOI
Albertella M.R., Green C.M., Lehmann A.R., O’Connor M.J. A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res. 2005;65:9799–9806. doi: 10.1158/0008-5472.CAN-05-1095. PubMed DOI
Vaisman A., Woodgate R. Translesion DNA polymerases in eukaryotes: What makes them tick? Crit. Rev. Biochem. Mol. Biol. 2017;52:274–303. doi: 10.1080/10409238.2017.1291576. PubMed DOI PMC
Jha V., Ling H. Structural basis for human DNA polymerase kappa to bypass cisplatin intrastrand cross-link (Pt-GG) lesion as an efficient and accurate extender. J. Mol. Biol. 2018;430:1577–1589. doi: 10.1016/j.jmb.2018.04.023. PubMed DOI
Tissier A., McDonald J.P., Frank E.G., Woodgate R. Polι, a remarkably error-prone human DNA polymerase. Genes Dev. 2000;14:1642–1650. PubMed PMC
McDonald J.P., Tissier A., Frank E.G., Iwai S., Hanaoka F., Woodgate R. DNA polymerase iota and related Rad30-like enzymes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001;356:53–60. doi: 10.1098/rstb.2000.0748. PubMed DOI PMC
McIntyre J. Polymerase iota-an odd sibling among Y family polymerases. DNA Repair. 2020;86:102753. doi: 10.1016/j.dnarep.2019.102753. PubMed DOI
Brown J.A., Newmister S.A., Fiala K.A., Suo Z. Mechanism of double-base lesion bypass catalyzed by a Y-family DNA polymerase. Nucleic Acids Res. 2008;36:3867–3878. doi: 10.1093/nar/gkn309. PubMed DOI PMC
Kostrhunova H., Malina J., Pickard A.J., Stepankova J., Vojtiskova M., Kasparkova J., Muchova T., Rohlfing M.L., Bierbach U., Brabec V. Replacement of a thiourea with an amidine group in a monofunctional platinum-acridine antitumor agent. Effect on DNA interactions, DNA adduct recognition and repair. Mol. Pharm. 2011;8:1941–1954. doi: 10.1021/mp200309x. PubMed DOI PMC
Pilch D.S., Dunham S.U., Jamieson E.R., Lippard S.J., Breslauer K.J. DNA sequence context modulates the impact of a cisplatin 1,2-d(GpG) intrastrand cross-link and the conformational and thermodynamic properties of duplex DNA. J. Mol. Biol. 2000;296:803–812. doi: 10.1006/jmbi.2000.3496. PubMed DOI
Hofr C., Farrell N., Brabec V. Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand cross-link formed by an antitumor dinuclear platinum complex. Nucleic Acids Res. 2001;29:2034–2040. doi: 10.1093/nar/29.10.2034. PubMed DOI PMC
Malina J., Novakova O., Vojtiskova M., Natile G., Brabec V. Conformation of DNA GG intrastrand cross-link of antitumor oxaliplatin and its enantiomeric analog. Biophys. J. 2007;93:3950–3962. doi: 10.1529/biophysj.107.116996. PubMed DOI PMC
Bursova V., Kasparkova J., Hofr C., Brabec V. Effects of monofunctional adducts of platinum (II) complexes on thermodynamic stability and energetics of DNA duplexes. Biophys. J. 2005;88:1207–1214. doi: 10.1529/biophysj.104.051771. PubMed DOI PMC
Malina J., Novakova O., Natile G., Brabec V. The thermodynamics of translesion DNA synthesis past major adducts of enantiomeric analogues of antitumor cisplatin. Chem. Asian J. 2012;7:1026–1031. doi: 10.1002/asia.201100886. PubMed DOI
Jerabek-Willemsen M., André T., Wanner R., Roth H.M., Duhr S., Baaske P., Breitsprecher D. MicroScale Thermophoresis: Interaction analysis and beyond. J. Mol. Struct. 2014;1077:101–113. doi: 10.1016/j.molstruc.2014.03.009. DOI
Hrabina O., Brabec V., Novakova O. Translesion DNA synthesis across lesions induced by oxidative products of pyrimidines. An insight into the mechanism by microscale thermophoresis. Int. J. Mol. Sci. 2019;20:5012. doi: 10.3390/ijms20205012. PubMed DOI PMC
Hreusova M., Novakova O., Brabec V. Thermodynamic insights by microscale thermophoresis into translesion DNA synthesis catalyzed by DNA polymerases across a lesion of antitumor platinum–acridine complex. Int. J. Mol. Sci. 2020;21:7806. doi: 10.3390/ijms21207806. PubMed DOI PMC
Lemaire M.A., Schwartz A., Rahmouni A.R., Leng M. Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA. Proc. Natl. Acad. Sci. USA. 1991;88:1982–1985. doi: 10.1073/pnas.88.5.1982. PubMed DOI PMC
Brabec V., Leng M. DNA interstrand cross-links of trans-diamminedichloroplatinum (II) are preferentially formed between guanine and complementary cytosine residues. Proc. Natl. Acad. Sci. USA. 1993;90:5345–5349. doi: 10.1073/pnas.90.11.5345. PubMed DOI PMC
Novakova O., Malina J., Kasparkova J., Halamikova A., Bernard V., Intini F., Natile G., Brabec V. Energetics, conformation, and recognition of DNA duplexes modified by methylated analogues of [PtCl(dien)]+ Chem. Eur. J. 2009;15:6211–6221. doi: 10.1002/chem.200900388. PubMed DOI
Betanzos-Lara S., Salassa L., Habtemariam A., Novakova O., Pizarro A.M., Clarkson G.J., Liskova B., Brabec V., Sadler P.J. Photoactivatable organometallic pyridyl ruthenium (II) arene complexes. Organometallics. 2012;31:3466–3479. doi: 10.1021/om201177y. DOI
Baruah H., Bierbach U. Unusual intercalation of acridin-9-ylthiourea into the 5′-GA/TC DNA base step from the minor groove: Implications for the covalent DNA adduct profile of a novel platinum-intercalator conjugate. Nucleic Acids. Res. 2003;31:4138–4146. doi: 10.1093/nar/gkg465. PubMed DOI PMC
Ma Z., Choudhury J.R., Wright M.W., Day C.S., Saluta G., Kucera G.L., Bierbach U. A non-cross-linking platinum-acridine agent with potent activity in non-small-cell lung cancer. J. Med. Chem. 2008;51:7574–7580. doi: 10.1021/jm800900g. PubMed DOI PMC
Kasparkova J., Novakova O., Marini V., Najajreh Y., Gibson D., Perez J.-M., Brabec V. Activation of trans geometry in bifunctional mononuclear platinum complexes by a piperidine ligand: Mechanistic studies on antitumor action. J. Biol. Chem. 2003;278:47516–47525. doi: 10.1074/jbc.M304720200. PubMed DOI
Comess K.M., Burstyn J.N., Essigmann J.M., Lippard S.J. Replication inhibition and translesion synthesis on templates containing site-specifically placed cis-diamminedichloroplatinum (II) DNA adducts. Biochemistry. 1992;31:3975–3990. doi: 10.1021/bi00131a013. PubMed DOI
Suo Z., Johnson K. DNA secondary structure effects on DNA synthesis catalyzed by HIV-1 reverse transcriptase. J. Biol. Chem. 1998;273:27259–27267. doi: 10.1074/jbc.273.42.27259. PubMed DOI
Vaisman A., Warren M.W., Chaney S.G. The effect of DNA structure on the catalytic efficiency and fidelity of human DNA polymerase beta on templates with platinum-DNA adducts. J. Biol. Chem. 2001;276:18999–19005. doi: 10.1074/jbc.M007805200. PubMed DOI
Moriarity B., Novakova O., Farrell N., Brabec V., Kasparkova J. 1,2-GG intrastrand cross-link of antitumor dinuclear bifunctional platinum compound with spermidine linker inhibits DNA polymerization more effectively than the cross-link of conventional cisplatin. Arch. Biochem. Biophys. 2007;459:264–272. doi: 10.1016/j.abb.2006.11.022. PubMed DOI
Alt A., Lammens K., Chiocchini C., Lammens A., Pieck J.C., Kuch D., Hopfner K.P., Carell T. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase. Science. 2007;318:967–970. doi: 10.1126/science.1148242. PubMed DOI
Prakash S., Johnson R.E., Prakash L. Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function. Annu. Rev. Biochem. 2005;74:317–353. doi: 10.1146/annurev.biochem.74.082803.133250. PubMed DOI
Creighton S., Bloom L.B., Goodman M.F. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. 1995;262:232–256. PubMed
Mendelman L., Petruska J., Goodman M. Base mispair extension kinetics. Comparison of DNA polymerase and reverse transcriptase. J. Biol. Chem. 1990;265:2338–2346. doi: 10.1016/S0021-9258(19)39981-8. PubMed DOI
Goodman M.F., Creighton S., Bloom L.B., Petruska J., Kunkel T.A. Biochemical basis of DNA replication fidelity. Crit. Rev. Biochem. Mol. Biol. 1993;28:83–126. doi: 10.3109/10409239309086792. PubMed DOI
Baruah H., Bierbach U. Biophysical characterization and molecular modeling of the coordinative-intercalative DNA monoadduct of a platinum-acridinylthiourea agent in a site-specifically modified dodecamer. J. Biol. Inorg. Chem. 2004;9:335–344. doi: 10.1007/s00775-004-0534-3. PubMed DOI
Baruah H., Day C.S., Wright M.W., Bierbach U. Metal-intercalator-mediated self-association and one-dimensional aggregation in the structure of the excised major DNA adduct of a platinum-acridine agent. J. Am. Chem. Soc. 2004;126:4492–4493. doi: 10.1021/ja038592j. PubMed DOI
Gill M.R., Thomas J.A. Ruthenium (II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics. Chem. Soc. Rev. 2012;41:3179–3192. doi: 10.1039/c2cs15299a. PubMed DOI
Bommarito S., Peyret N., SantaLucia J. Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids. Res. 2000;28:1929–1934. doi: 10.1093/nar/28.9.1929. PubMed DOI PMC
Yakovchuk P., Protozanova E., Frank-Kamenetskii M.D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids. Res. 2006;34:564–574. doi: 10.1093/nar/gkj454. PubMed DOI PMC
Petruska J., Goodman M.F., Boosalis M.S., Sowers L.C., Cheong C., Tinoco I., Jr. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc. Natl. Acad. Sci. USA. 1988;85:6252–6256. doi: 10.1073/pnas.85.17.6252. PubMed DOI PMC
Kasparkova J., Mellish K.J., Qu Y., Brabec V., Farrell N. Site-specific d(GpG) intrastrand cross-links formed by dinuclear platinum complexes. Bending and NMR studies. Biochemistry. 1996;35:16705–16713. doi: 10.1021/bi961160j. PubMed DOI