Thermodynamic Insights by Microscale Thermophoresis into Translesion DNA Synthesis Catalyzed by DNA Polymerases Across a Lesion of Antitumor Platinum-Acridine Complex

. 2020 Oct 21 ; 21 (20) : . [epub] 20201021

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33096927

Grantová podpora
18-09502S Grantová Agentura České Republiky

Translesion synthesis (TLS) through DNA adducts of antitumor platinum complexes has been an interesting aspect of DNA synthesis in cells treated with these metal-based drugs because of its correlation to drug sensitivity. We utilized model systems employing a DNA lesion derived from a site-specific monofunctional adduct formed by antitumor [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine) at a unique G residue. The catalytic efficiency of TLS DNA polymerases, which differ in their processivity and fidelity for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the adduct of AMD, was investigated. For a deeper understanding of the factors that control the bypass of the site-specific adducts of AMD catalyzed by DNA polymerases, we also used microscale thermophoresis (MST) to measure the thermodynamic changes associated with TLS across a single, site-specific adduct formed in DNA by AMD. The relative catalytic efficiency of the investigated DNA polymerases for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the AMD adduct, was reduced. Nevertheless, incorporation of the correct C opposite the G modified by AMD of the template strand was promoted by an increasing thermodynamic stability of the resulting duplex. The reduced relative efficiency of the investigated DNA polymerases may be a consequence of the DNA intercalation of the acridine moiety of AMD and the size of the adduct. The products of the bypass of this monofunctional lesion produced by AMD and DNA polymerases also resulted from the misincorporation of dNTPs opposite the platinated G residues. The MST analysis suggested that thermodynamic factors may contribute to the forces that governed enhanced incorporation of the incorrect dNTPs by DNA polymerases.

Zobrazit více v PubMed

Johnstone T.C., Suntharalingam K., Lippard S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016;116:3436–3486. doi: 10.1021/acs.chemrev.5b00597. PubMed DOI PMC

Brabec V., Hrabina O., Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Co-Ord. Chem. Rev. 2017;351:2–31. doi: 10.1016/j.ccr.2017.04.013. DOI

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI

Jung Y., Lippard S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 2007;107:1387–1407. doi: 10.1021/cr068207j. PubMed DOI

Wang D., Lippard S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005;4:307–320. doi: 10.1038/nrd1691. PubMed DOI

Graham L.A., Wilson G.M., West T.K., Day C.S., Kucera G.L., Bierbach U. Unusual Reactivity of a Potent Platinum–Acridine Hybrid Antitumor Agent. ACS Med. Chem. Lett. 2011;2:687–691. doi: 10.1021/ml200104h. PubMed DOI PMC

Pickard A.J., Liu F., Bartenstein T.F., Haines L.G., Levine K.E., Kucera G.L., Bierbach U. Redesigning the DNA-Targeted Chromophore in Platinum-Acridine Anticancer Agents: A Structure-Activity Relationship Study. Chem. Eur. J. 2014;20:16174–16187. doi: 10.1002/chem.201404845. PubMed DOI PMC

Yao X., Tracy C.M., Bierbach U. Cysteine-Directed Bioconjugation of a Platinum(II)–Acridine Anticancer Agent. Inorg. Chem. 2018;58:43–46. doi: 10.1021/acs.inorgchem.8b02717. PubMed DOI

Rose P.K., Watkins N.H., Yao X., Zhang S., Mancera-Ortiz I.Y., Sloop J.T., Donati G.L., Day C.S., Bierbach U. Effect of the nonleaving groups on the cellular uptake and cytotoxicity of platinum-acridine anticancer agents. Inorg. Chim. Acta. 2019;492:150–155. doi: 10.1016/j.ica.2019.04.030. DOI

Guddneppanavar R., Bierbach U. Adenine-N3 in the DNA minor groove - an emerging target for platinum containing anticancer pharmacophores. Anti-Cancer Agents Med. Chem. 2007;7:125–138. doi: 10.2174/187152007779313991. PubMed DOI

Ma Z., Choudhury J.R., Wright M.W., Day C.S., Saluta G., Kucera G.L., Bierbach U. A Non-Cross-Linking Platinum−Acridine Agent with Potent Activity in Non-Small-Cell Lung Cancer. J. Med. Chem. 2008;51:7574–7580. doi: 10.1021/jm800900g. PubMed DOI PMC

Cheung-Ong K., Song K.T., Ma Z., Shabtai D., Lee A.Y., Gallo D., Heisler L.E., Brown G.W., Bierbach U., Giaever G., et al. Comparative Chemogenomics To Examine the Mechanism of Action of DNA-Targeted Platinum-Acridine Anticancer Agents. ACS Chem. Biol. 2012;7:1892–1901. doi: 10.1021/cb300320d. PubMed DOI PMC

Barry C.G., Baruah A.H., Bierbach U. Unprecedented Monofunctional Metalation of Adenine Nucleobase in Guanine- and Thymine-Containing Dinucleotide Sequences by a Cytotoxic Platinum−Acridine Hybrid Agent. J. Am. Chem. Soc. 2003;125:9629–9637. doi: 10.1021/ja0351443. PubMed DOI

Barry C.G., Day C.S., Bierbach U. Duplex-Promoted Platination of Adenine-N3 in the Minor Groove of DNA: Challenging a Longstanding Bioinorganic Paradigm. J. Am. Chem. Soc. 2005;127:1160–1169. doi: 10.1021/ja0451620. PubMed DOI

Baruah H., Rector C.L., Monnier S.M., Bierbach U. Mechanism of action of non-cisplatin type DNA-targeted platinum anticancer agents: DNA interactions of novel acridinylthioureas and their platinum conjugates. Biochem. Pharm. 2002;64:191–200. doi: 10.1016/S0006-2952(02)01107-3. PubMed DOI

Baruah H., Wright M.W., Bierbach U. Solution Structural Study of a DNA Duplex Containing the Guanine-N7 Adduct Formed by a Cytotoxic Platinum−Acridine Hybrid Agent†,‡. Biochemistry. 2005;44:6059–6070. doi: 10.1021/bi050021b. PubMed DOI

Budiman M.E., Alexander R.W., Bierbach U. Unique Base-Step Recognition by a Platinum−Acridinylthiourea Conjugate Leads to a DNA Damage Profile Complementary to That of the Anticancer Drug Cisplatin†. Biochemistry. 2004;43:8560–8567. doi: 10.1021/bi049415d. PubMed DOI

Martins E.T., Baruah H., Kramarczyk J., Saluta G., Day C.S., Kucera G.L., Bierbach U. Design, Synthesis, and Biological Activity of a Novel Non-Cisplatin-type Platinum−Acridine Pharmacophore. J. Med. Chem. 2001;44:4492–4496. doi: 10.1021/jm010293m. PubMed DOI

Kostrhunova H., Malina J., Pickard A.J., Stepankova J., Vojtiskova M., Kasparkova J., Muchova T., Rohlfing M.L., Bierbach U., Brabec V. Replacement of a thiourea with an amidine group in a monofunctional platinum-acridine antitumor agent. Effect on DNA interactions, DNA adduct recognition and repair. Mol. Pharm. 2011;8:1941–1954. doi: 10.1021/mp200309x. PubMed DOI PMC

Guddneppanavar R., Choudhury J.R., Kheradi A.R., Steen B.D., Saluta G., Kucera G.L., Day C.S., Bierbach U. Effect of the Diamine Nonleaving Group in Platinum−Acridinylthiourea Conjugates on DNA Damage and Cytotoxicity. J. Med. Chem. 2007;50:2259–2263. doi: 10.1021/jm0614376. PubMed DOI

Smyre C.L., Saluta G., Kute T.E., Kucera G.L., Bierbach U. Inhibition of DNA Synthesis by a Platinum–Acridine Hybrid Agent Leads to Potent Cell Kill in Nonsmall Cell Lung Cancer. ACS Med. Chem. Lett. 2011;2:870–874. doi: 10.1021/ml2001888. PubMed DOI PMC

Lehmann A.R. Translesion synthesis in mammalian cells. Exp. Cell Res. 2006;312:2673–2676. doi: 10.1016/j.yexcr.2006.06.010. PubMed DOI

Avkin S., Adar S., Blander G., Livneh Z. Quantitative measurement of translesion replication in human cells: Evidence for bypass of abasic sites by a replicative DNA polymerase. Proc. Natl. Acad. Sci. USA. 2002;99:3764–3769. doi: 10.1073/pnas.062038699. PubMed DOI PMC

Hubscher U., Maga G., Spadari S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 2002;71:133–163. doi: 10.1146/annurev.biochem.71.090501.150041. PubMed DOI

Prakash S., Johnson R.E., Prakash L. Eukaryotic translesion synthesis dna polymerases: Specificity of Structure and Function. Annu. Rev. Biochem. 2005;74:317–353. doi: 10.1146/annurev.biochem.74.082803.133250. PubMed DOI

Ng L., Weiss S.J., Fisher P.A. Recognition and binding of template-primers containing defined abasic sites by Drosophila DNA polymerase alpha holoenzyme. J. Biol. Chem. 1989;264:13018–13023. PubMed

Weiss S.J., A. Fisher P. Interaction of Drosophila DNA polymerase alpha holoenzyme with synthetic template-primers containing mismatched primer bases or propanodeoxyguanosine adducts at various positions in template and primer regions. J. Biol. Chem. 1992;267:18520–18526. PubMed

Lindsley J.E., Fuchs R.P.P. Use of single-turnover kinetics to study bulky adduct bypass by T7 DNA polymerase. Biochemistry. 1994;33:764–772. doi: 10.1021/bi00169a018. PubMed DOI

Miller H., Grollman A.P. Kinetics of DNA Polymerase I (Klenow Fragment Exo-) Activity on Damaged DNA Templates: Effect of Proximal and Distal Template Damage on DNA Synthesis. Biochemistry. 1997;36:15336–15342. doi: 10.1021/bi971927n. PubMed DOI

Minetti C.A., Remeta D.P., Miller H., Gelfand C.A., Plum G.E., Grollman A.P., Breslauer K.J. The thermodynamics of template-directed DNA synthesis: Base insertion and extension enthalpies. Proc. Natl. Acad. Sci. USA. 2003;100:14719–14724. doi: 10.1073/pnas.2336142100. PubMed DOI PMC

Liang F., Cho B.P. Probing the Thermodynamics of Aminofluorene-Induced Translesion DNA Synthesis by Differential Scanning Calorimetry. J. Am. Chem. Soc. 2007;129:12108–12109. doi: 10.1021/ja075271p. PubMed DOI

Florian J., Brabec V. Thermodynamics of Translesion Synthesis across a Major DNA Adduct of Antitumor Oxaliplatin: Differential Scanning Calorimetric Study. Chem. Eur. J. 2011;18:1634–1639. doi: 10.1002/chem.201102425. PubMed DOI

Creighton S., Goodman M.F. Gel Kinetic Analysis of DNA Polymerase Fidelity in the Presence of Proofreading Using Bacteriophage T4 DNA Polymerase. J. Biol. Chem. 1995;270:4759–4774. doi: 10.1074/jbc.270.9.4759. PubMed DOI

Lam W.-C., Van Der Schans E.J.C., Sowers L.C., Millar D.P. Interaction of DNA Polymerase I (Klenow Fragment) with DNA Substrates Containing Extrahelical Bases: Implications for Proofreading of Frameshift Errors during DNA Synthesis†. Biochemistry. 1999;38:2661–2668. doi: 10.1021/bi9820762. PubMed DOI

Patel P.H., Suzuki M., Adman E., Shinkai A., Loeb L.A. Prokaryotic DNA polymerase I: Evolution, structure, and “base flipping” mechanism for nucleotide selection. J. Mol. Biol. 2001;308:823–837. doi: 10.1006/jmbi.2001.4619. PubMed DOI

Gali V.K., Balint E., Serbyn N., Frittmann O., Stutz F., Unk I. Translesion synthesis DNA polymerase η exhibits a specific RNA extension activity and a transcription-associated function. Sci. Rep. 2017;7:13055. doi: 10.1038/s41598-017-12915-1. PubMed DOI PMC

Lemaire M.A., Schwartz A., Rahmouni A.R., Leng M. Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA. Proc. Natl. Acad. Sci. USA. 1991;88:1982–1985. doi: 10.1073/pnas.88.5.1982. PubMed DOI PMC

Brabec V., Leng M. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc. Natl. Acad. Sci. USA. 1993;90:5345–5349. doi: 10.1073/pnas.90.11.5345. PubMed DOI PMC

Novakova O., Malina J., Kašpárková J., Halámiková A., Bernard V., Intini F.P., Natile G., Brabec V. Energetics, Conformation, and Recognition of DNA Duplexes Modified by Methylated Analogues of [PtCl(dien)]+ Chem. Eur. J. 2009;15:6211–6221. doi: 10.1002/chem.200900388. PubMed DOI

McGregor T.D., Hegmans A., Kašpárková J., Neplechová K., Nováková O., Peňazová H., Vrána O., Brabec V., Farrell N. A comparison of DNA binding profiles of dinuclear platinum compounds with polyamine linkers and the trinuclear platinum phase II clinical agent BBR3464. JBIC J. Biol. Inorg. Chem. 2002;7:397–404. doi: 10.1007/s00775-001-0312-4. PubMed DOI

Kasparkova J., Novakova O., Marini V., Najajreh Y., Gibson D., Perez J.-M., Brabec V. Activation of Trans Geometry in Bifunctional Mononuclear Platinum Complexes by a Piperidine Ligand. J. Biol. Chem. 2003;278:47516–47525. doi: 10.1074/jbc.M304720200. PubMed DOI

Comess K.M., Burstyn J.N., Essigmann J.M., Lippard S.J. Replication inhibition and translesion synthesis on templates containing site- specifically placed cis-diamminedichloroplatinum(II) DNA adducts. Biochemistry. 1992;31:3975–3990. doi: 10.1021/bi00131a013. PubMed DOI

Suo Z., Johnson K.A. DNA secondary structure effects on DNA synthesis catalyzed by HIV-1 reverse transcriptase. J. Biol. Chem. 1998;273:27259–27267. doi: 10.1074/jbc.273.42.27259. PubMed DOI

Vaisman A., Warren M.W., Chaney S.G. The effect of DNA structure on the catalytic efficiency and fidelity of human DNA polymerase beta on templates with platinum-DNA adducts. J. Biol. Chem. 2001;276:18999–19005. doi: 10.1074/jbc.M007805200. PubMed DOI

Bassett E., Vaisman A., Havener J.M., Masutani C., Hanaoka F., Chaney S.G. Efficiency of Extension of Mismatched Primer Termini across from Cisplatin and Oxaliplatin Adducts by Human DNA Polymerases β and η in Vitro†. Biochemistry. 2003;42:14197–14206. doi: 10.1021/bi035359p. PubMed DOI

Moriarity B., Novakova O., Farrell N., Brabec V., Kasparkova J. 1,2-GG intrastrand cross-link of antitumor dinuclear bifunctional platinum compound with spermidine linker inhibits DNA polymerization more effectively than the cross-link of conventional cisplatin. Arch. Biochem. Biophys. 2007;459:264–272. doi: 10.1016/j.abb.2006.11.022. PubMed DOI

Alt A., Lammens K., Chiocchini C., Lammens A., Pieck J.C., Kuch D., Hopfner K.-P., Carell T. Bypass of DNA Lesions Generated During Anticancer Treatment with Cisplatin by DNA Polymerase. Science. 2007;318:967–970. doi: 10.1126/science.1148242. PubMed DOI

Creighton S., Bloom L.B., Goodman M.F. [19] Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. 1995;262:232–256. doi: 10.1016/0076-6879(95)62021-4. PubMed DOI

Minetti C., Remeta D.P., Johnson F., Iden C.R., Breslauer K.J. Impact of alpha-hydroxy-propanodeoxyguanine adducts on DNA duplex energetics: Opposite base modulation and implications for mutagenicity and genotoxicity. Biopolymers. 2010;93:370–382. doi: 10.1002/bip.21355. PubMed DOI PMC

Hrabina O., Brabec V., Novakova O. Translesion DNA Synthesis Across Lesions Induced by Oxidative Products of Pyrimidines: An Insight into the Mechanism by Microscale Thermophoresis. Int. J. Mol. Sci. 2019;20:5012. doi: 10.3390/ijms20205012. PubMed DOI PMC

Jerabek-Willemsen M., André T., Wanner R., Roth H.M., Duhr S., Baaske P., Breitsprecher D. MicroScale Thermophoresis: Interaction analysis and beyond. J. Mol. Struct. 2014;1077:101–113. doi: 10.1016/j.molstruc.2014.03.009. DOI

Petruska J., Goodman M.F., Boosalis M.S., Sowers L.C., Cheong C.I., Tinoco J. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc. Natl. Acad. Sci. USA. 1988;85:6252–6256. doi: 10.1073/pnas.85.17.6252. PubMed DOI PMC

Guengerich F.P. Interactions of carcinogen-bound DNA with individual DNA polymerases. Chem. Rev. 2006;106:420–452. doi: 10.1021/cr0404693. PubMed DOI

Kasparkova J., Mellish K.J., Qu Y., Brabec V., Farrell N. Site-Specific d(GpG) Intrastrand Cross-Links Formed by Dinuclear Platinum Complexes. Bending and NMR Studies†. Biochemistry. 1996;35:16705–16713. doi: 10.1021/bi961160j. PubMed DOI

Mendelman L.V., Petruska J., Goodman M.F. Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J. Biol. Chem. 1990;265:2338–2346. PubMed

Goodman M.F., Creighton S., Bloom L.B., Petruska J., Kunkel T.A. Biochemical Basis of DNA Replication Fidelity. Crit. Rev. Biochem. Mol. Biol. 1993;28:83–126. doi: 10.3109/10409239309086792. PubMed DOI

Brown J.A., Newmister S.A., Fiala K.A., Suo Z. Mechanism of double-base lesion bypass catalyzed by a Y-family DNA polymerase. Nucleic Acids Res. 2008;36:3867–3878. doi: 10.1093/nar/gkn309. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...