Translesion DNA Synthesis Across Lesions Induced by Oxidative Products of Pyrimidines: An Insight into the Mechanism by Microscale Thermophoresis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-09436S
Grantová Agentura České Republiky
PubMed
31658654
PubMed Central
PMC6829345
DOI
10.3390/ijms20205012
PII: ijms20205012
Knihovny.cz E-zdroje
- Klíčová slova
- 2’-deoxyribo-5-hydroxymethyl- uridin, 2’-deoxyribo-5-hydroxyuridin, DNA polymerases, microscale thermophoresis, oxidized nucleotides, translesion DNA synthesis,
- MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA biosyntéza účinky léků MeSH
- HIV-1 MeSH
- lidé MeSH
- mutageny chemie metabolismus farmakologie MeSH
- oprava DNA MeSH
- oxidace-redukce MeSH
- oxidační stres * MeSH
- pentoxyl analogy a deriváty chemie metabolismus farmakologie MeSH
- poškození DNA MeSH
- pyrimidiny chemie metabolismus farmakologie MeSH
- replikace DNA účinky léků MeSH
- termodynamika MeSH
- uracil analogy a deriváty chemie metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5-hydroxymethyluracil MeSH Prohlížeč
- 5-hydroxyuracil MeSH Prohlížeč
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
- mutageny MeSH
- pentoxyl MeSH
- pyrimidiny MeSH
- Rad30 protein MeSH Prohlížeč
- uracil MeSH
Oxidative stress in cells can lead to the accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized nucleotides such as 2'-deoxyribo-5-hydroxyuridin (HdU) and 2'-deoxyribo-5-hydroxymethyluridin (HMdU) can be inserted into DNA during replication and repair. HdU and HMdU have attracted particular interest because they have different effects on damaged-DNA processing enzymes that control the downstream effects of the lesions. Herein, we studied the chemically simulated translesion DNA synthesis (TLS) across the lesions formed by HdU or HMdU using microscale thermophoresis (MST). The thermodynamic changes associated with replication across HdU or HMdU show that the HdU paired with the mismatched deoxyribonucleoside triphosphates disturbs DNA duplexes considerably less than thymidine (dT) or HMdU. Moreover, we also demonstrate that TLS by DNA polymerases across the lesion derived from HdU was markedly less extensive and potentially more mutagenic than that across the lesion formed by HMdU. Thus, DNA polymerization by DNA polymerase η (polη), the exonuclease-deficient Klenow fragment of DNA polymerase I (KF-), and reverse transcriptase from human immunodeficiency virus type 1 (HIV-1 RT) across these pyrimidine lesions correlated with the different stabilization effects of the HdU and HMdU in DNA duplexes revealed by MST. The equilibrium thermodynamic data obtained by MST can explain the influence of the thermodynamic alterations on the ability of DNA polymerases to bypass lesions induced by oxidative products of pyrimidines. The results also highlighted the usefulness of MST in evaluating the impact of oxidative products of pyrimidines on the processing of these lesions by damaged DNA processing enzymes.
Zobrazit více v PubMed
Douki T., Delatour T., Paganon F., Cadet J. Measurement of oxidative damage at pyrimidine bases in gamma-irradiated DNA. Chem. Res. Toxicol. 1996;9:1145–1151. doi: 10.1021/tx960095b. PubMed DOI
Purmal A.A., Kow Y.W., Wallace S.S. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in-vitro. Nucleic Acids Res. 1994;22:72–78. doi: 10.1093/nar/22.1.72. PubMed DOI PMC
Thiviyanathan V., Somasunderam A., Volk D.E., Gorenstein D.G. 5-Hydroxyuracil can form stable base pairs with all four bases in a DNA duplex. Chem. Commun. 2005;3:400–402. doi: 10.1039/b414474k. PubMed DOI
Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Kawasaki F., Cuesta S.M., Beraldi D., Mahtey A., Hardisty R.E., Carrington M., Balasubramanian S. Sequencing 5-hydroxymethyluracil at single-base resolution. Angew. Chem. Int. Ed. 2018;57:9694–9696. doi: 10.1002/anie.201804046. PubMed DOI PMC
Kreutzer D.A., Essigmann J.M. Oxidized, deaminated cytosines are a source of C- > T transitions in vivo. Proc. Natl. Acade Sci. USA. 1998;95:3578–3582. doi: 10.1073/pnas.95.7.3578. PubMed DOI PMC
Purmal A.A., Lampman G.W., Bond J.P., Hatahet Z., Wallace S.S. Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine. J. Biol. Chem. 1998;273:10026–10035. doi: 10.1074/jbc.273.16.10026. PubMed DOI
Thiviyanathan V., Somasunderam A., Volk D.E., Hazra T.K., Mitra S., Gorenstein D.G. Base-pairing properties of the oxidized cytosine derivative, 5-hydroxy uracil. Biochem. Biophys. Res. Commun. 2008;366:752–757. doi: 10.1016/j.bbrc.2007.12.010. PubMed DOI PMC
Greim H., Albertini R.J. The Cellular Response to the Genotoxic Insult. The Question of Treshold for Genootoxic Carcinogens. The Royal Society of Chemistry; Cambridge, UK: 2012.
Mellac S., Fazakerley G.V., Sowers L.C. Structures of base-pairs with 5-(hydroxymethyl)-2′-deoxyuridine in DNA determined by NMR-spectroscopy. Biochemistry. 1993;32:7779–7786. doi: 10.1021/bi00081a025. PubMed DOI
Carson S., Wilson J., Aksimentiev A., Weigele P.R., Wanunu M. Hydroxymethyluracil modifications enhance the flexibility and hydrophilicity of double-stranded DNA. Nucleic Acids Res. 2016;44:2085–2092. doi: 10.1093/nar/gkv1199. PubMed DOI PMC
Greene J.R., Morrissey L.M., Foster L.M., Geiduschek E.P. DNA-binding by the bacteriophage-SPO1-encoded type-II DNA-binding protein, transcription factor-1 formation of nested complexes at a selective binding-site. J. Biol. Chem. 1986;261:2820–2827. PubMed
Pfaffeneder T., Spada F., Wagner M., Brandmayr C., Laube S.K., Eisen D., Truss M., Steinbacher J., Hackner B., Kotljarova O. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 2014;10:574–581. doi: 10.1038/nchembio.1532. PubMed DOI
Herrala A.M., Vilpo J.A. Template-primer activity of 5-(hydroxymethyl)uracil-containing DNA for prokaryotic and eukaryotic DNA and RNA polymerases. Biochemistry. 1989;28:8274–8277. doi: 10.1021/bi00447a003. PubMed DOI
Levy D.D., Teebor G.W. Site directed substitution of 5-hydroxymethyluracil for thymine in replicating øX-M4am3 DNA via synthesis of 5-hydroxymethyl-2′-deoxyuridine-5′-triphosphate. Nucleic Acids Res. 1991;19:3337–3343. doi: 10.1093/nar/19.12.3337. PubMed DOI PMC
Kawasaki F., Murat P., Li Z., Santner T., Balasubramanian S. Synthesis and biophysical analysis of modified thymine-containing DNA oligonucleotides. Chem. Commun. 2017;53:1389–1392. doi: 10.1039/C6CC08670E. PubMed DOI PMC
Papaluca A., Wagner J.R., Saragovi H.U., Ramotar D. UNG-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. Sci. Rep. 2018;8:6860. doi: 10.1038/s41598-018-25124-1. PubMed DOI PMC
Jacobs A.L., Schar P. DNA glycosylases: In DNA repair and beyond. Chromosoma. 2012;121:1–20. doi: 10.1007/s00412-011-0347-4. PubMed DOI PMC
Boorstein R.J., Teebor G.W. Mutagenicity of 5-hydroxymethyl-2′-deoxyuridine to Chinese Hamster cells. Cancer Res. 1988;48:5466–5470. PubMed
Boorstein R.J., Teebor G.W. Effects of 5-hydroxymethyluracil and 3-aminobenzamide on the repair and toxicity of 5-hydroxymethyl-2′-deoxyuridine in mammalian cells. Cancer Res. 1989;49:1509–1514. PubMed
Shiau G.T., Schinazi R.F., Chen M.S., Prusoff W.H. Synthesis and biological activities of 5-(hydroxymethyl, azidomethyl, or aminomethyl)-2′-deoxyuridine and related 5′-substituted analogs. J. Med. Chem. 1980;23:127–133. doi: 10.1021/jm00176a005. PubMed DOI
Bassett E., Vaisman A., Havener J.M., Masutani C., Hanaoka F., Chaney S.G. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. Biochemistry. 2003;42:14197–14206. doi: 10.1021/bi035359p. PubMed DOI
Arana M.E., Song L., Le Gac N.T., Parris D.S., Villani G., Boehmer P.E.B. On the role of proofreading exonuclease in bypass of a 1,2 d(GpG) cisplatin adduct by the herpes simplex virus-1 DNA polymerase. DNA Repair. 2004;3:659–669. doi: 10.1016/j.dnarep.2004.02.006. PubMed DOI
Wickramaratne S., Boldry E.J., Buehler C., Wang Y.-C., Distefano M.D., Tretyakova N.Y. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine. J. Biol. Chem. 2015;290:775–787. doi: 10.1074/jbc.M114.613638. PubMed DOI PMC
O’Flaherty D.K., Guengerich F.P., Egli M., Wilds C.J. Backbone flexibility influences nucleotide incorporation by human translesion DNA polymerase η opposite intrastrand cross-linked DNA. Biochemistry. 2015;54:7449–7456. doi: 10.1021/acs.biochem.5b01078. PubMed DOI PMC
Villani G., Hubscher U., Gironis N., Parkkinen S., Pospiech H., Shevelev I., di Cicco G., Markkanen E., Syvaoja J.E., Tanguy Le Gac N. In vitro gap-directed translesion DNA synthesis of an abasic site involving human DNA polymerases epsilon, lambda, and beta. J. Biol. Chem. 2011;286:32094–32104. doi: 10.1074/jbc.M111.246611. PubMed DOI PMC
Ho T.V., Guainazzi A., Derkunt S.B., Enoiu M., Schärer O.D. Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases. Nucleic Acids Res. 2011;39:7455–7464. doi: 10.1093/nar/gkr448. PubMed DOI PMC
Beard W.A., Wilson S.H. Structural insights into the origins of DNA polymerase fidelity. Structure. 2003;11:489–496. doi: 10.1016/S0969-2126(03)00051-0. PubMed DOI
Novakova O., Farrell N.P., Brabec V. Translesion DNA synthesis across double-base lesions derived from cross-links of an antitumor trinuclear platinum compound: Primer extension, conformational and thermodynamic studies. Metallomics. 2018;10:132–144. doi: 10.1039/C7MT00266A. PubMed DOI
Kasparkova J., Suchankova T., Halamikova A., Zerzankova L., Vrana O., Margiotta N., Natile G., Brabec V. Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring PtII chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochem. Pharmacol. 2010;79:552–564. doi: 10.1016/j.bcp.2009.09.019. PubMed DOI
Minetti C., Remeta D.P., Miller H., Gelfand C.A., Plum G.E., Grollman A.P., Breslauer K.J. The thermodynamics of template-directed DNA synthesis: Base insertion and extension enthalpies. Proc. Natl. Acad. Sci. USA. 2003;100:14719–14724. doi: 10.1073/pnas.2336142100. PubMed DOI PMC
Kieft R., Bullard W., Sabatini R. A method for the efficient and selective identification of 5-hydroxymethyluracil in genomic DNA. Biol. Methods Protoc. 2017;2:1–10. PubMed PMC
Liang F., Cho B.P. Probing the thermodynamics of aminofluorene-induced translesion DNA synthesis by differential scanning calorimetry. J. Am. Chem. Soc. 2007;129:12108–12109. doi: 10.1021/ja075271p. PubMed DOI
Novakova O., Malina J., Kasparkova J., Halamikova A., Bernard V., Intini F., Natile G., Brabec V. Energetics, conformation, and recognition of DNA duplexes modified by methylated analogues of [PtCl(dien)]+ Chem. Eur. J. 2009;15:6211–6221. doi: 10.1002/chem.200900388. PubMed DOI
Novakova O., Malina J., Suchankova T., Kasparkova J., Bugarcic T., Sadler P.J., Brabec V. Energetics, conformation, and recognition of DNA duplexes modified by monodentate RuII complexes containing terphenyl arenes. Chem. Eur. J. 2010;16:5744–5754. doi: 10.1002/chem.200903078. PubMed DOI
Florian J., Brabec V. Thermodynamics of translesion synthesis across a major DNA adduct of antitumor oxaliplatin: Differential scanning calorimetric study. Chem. Eur. J. 2012;18:1634–1639. doi: 10.1002/chem.201102425. PubMed DOI
Malina J., Novakova O., Natile G., Brabec V. The thermodynamics of translesion DNA synthesis past major adducts of enantiomeric analogues of antitumor cisplatin. Chem. Asian J. 2012;7:1026–1031. doi: 10.1002/asia.201100886. PubMed DOI
Malina J., Brabec V. Thermodynamic impact of abasic sites on simulated translesion DNA synthesis. Chem. Eur. J. 2014;20:7566–7570. doi: 10.1002/chem.201402600. PubMed DOI
Minetti C., Remeta D.P., Iden C.R., Johnson F., Grollman A.P., Breslauer K.J. Impact of thymine glycol damage on DNA duplex energetics: Correlations with lesion-induced biochemical and structural consequences. Biopolymers. 2015;103:491–508. doi: 10.1002/bip.22680. PubMed DOI
Cai A., Wilson K.A., Patnaik S., Wetmore S.D., Cho B.P. DNA base sequence effects on bulky lesion-induced conformational heterogeneity during DNA replication. Nucleic Acids Res. 2018;46:6356–6370. doi: 10.1093/nar/gky409. PubMed DOI PMC
Malina J., Brabec V. Probing the thermodynamics of incorporation of N6-methyl-dATP opposite an abasic site, dCMP, and dTMP during simulated DNA synthesis by differential scanning calorimetry. ChemSelect. 2018;3:13076–13080.
Jerabek-Willemsen M., André T., Wanner R., Roth H.M., Duhr S., Baaske P., Breitsprecher D. MicroScale Thermophoresis: Interaction analysis and beyond. J. Mol. Struct. 2014;1077:101–113. doi: 10.1016/j.molstruc.2014.03.009. DOI
Prakash S., Johnson R.E., Prakash L. Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function. Annu. Rev. Biochem. 2005;74:317–353. doi: 10.1146/annurev.biochem.74.082803.133250. PubMed DOI
Turner R.M., Grindley N.D.F., Joyce C.M. Interaction of DNA polymerase I (Klenow fragment) with the single-stranded template beyond the site of synthesis. Biochemistry. 2003;42:2373–2385. doi: 10.1021/bi026566c. PubMed DOI
Lam W.C., Van der Schans E.J.C., Sowers L.C., Millar D.P. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: Implications for proofreading of frameshift errors during DNA synthesis. Biochemistry. 1999;38:2661–2668. doi: 10.1021/bi9820762. PubMed DOI
Patel P.H., Suzuki M., Adman E., Shinkai A., Loeb L.A. Prokaryotic DNA polymerase I: Evolution, structure, and "base flipping" mechanism for nucleotide selection. J. Mol. Biol. 2001;308:823–837. doi: 10.1006/jmbi.2001.4619. PubMed DOI
Villani G., Le Gac N.T., Wasungu L., Burnouf D., Fuchs R.P., Boehmer P.E. Effect of manganese on in vitro replication of damaged DNA catalyzed by the herpes simplex virus type-1 DNA polymerase. Nucl. Acids. Res. 2002;30:3323–3332. doi: 10.1093/nar/gkf463. PubMed DOI PMC
Johnson K.A. Conformational coupling in DNA-polymerase fidelity. Annu. Rev. Biochem. 1993;62:685–713. doi: 10.1146/annurev.bi.62.070193.003345. PubMed DOI
Brabec V., Reedijk J., Leng M. Sequence-dependent distortions induced in DNA by monofunctional platinum(II) binding. Biochemistry. 1992;31:12397–12402. doi: 10.1021/bi00164a014. PubMed DOI
Asmari M., Ratih R., Alhazmi H.A., El Deeb S. Thermophoresis for characterizing biomolecular interaction. Methods. 2018;146:107–119. doi: 10.1016/j.ymeth.2018.02.003. PubMed DOI
Jerabek-Willemsen M., Wienken C.J., Braun D., Baaske P., Duhr S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 2011;9:342–353. doi: 10.1089/adt.2011.0380. PubMed DOI PMC
Seidel S.A.I., Dijkman P.M., Lea W.A., van den Bogaart G., Jerabek-Willemsen M., Lazic A., Joseph J.S., Srinivasan P., Baaske P., Simeonov A., et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013;59:301–3015. doi: 10.1016/j.ymeth.2012.12.005. PubMed DOI PMC
Kasparkova J., Novakova O., Marini V., Najajreh Y., Gibson D., Perez J.-M., Brabec V. Activation of trans geometry in bifunctional mononuclear platinum complexes by a piperidine ligand: Mechanistic studies on antitumor action. J. Biol. Chem. 2003;278:47516–47525. doi: 10.1074/jbc.M304720200. PubMed DOI
Novakova O., Chen H., Vrana O., Rodger A., Sadler P.J., Brabec V. DNA interactions of monofunctional organometallic ruthenium(II) antitumor complexes in cell-free media. Biochemistry. 2003;42:11544–11554. doi: 10.1021/bi034933u. PubMed DOI