Conformation and recognition of DNA modified by a new antitumor dinuclear PtII complex resistant to decomposition by sulfur nucleophiles
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 CA078754
NCI NIH HHS - United States
R01 CA078754-12
NCI NIH HHS - United States
PubMed
19682435
PubMed Central
PMC3078055
DOI
10.1016/j.bcp.2009.08.009
PII: S0006-2952(09)00689-3
Knihovny.cz E-zdroje
- MeSH
- bezbuněčný systém MeSH
- DNA chemie MeSH
- fluorescence MeSH
- glutathion chemie MeSH
- konformace nukleové kyseliny * MeSH
- molekulární sekvence - údaje MeSH
- oprava DNA MeSH
- organoplatinové sloučeniny chemie farmakologie MeSH
- protinádorové látky chemie farmakologie MeSH
- sekvence nukleotidů MeSH
- síra chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- glutathion MeSH
- organoplatinové sloučeniny MeSH
- protinádorové látky MeSH
- síra MeSH
Reported herein is a detailed biochemical and molecular biophysics study of the molecular mechanism of action of antitumor dinuclear Pt(II) complex [{PtCl(DACH)}(2)-mu-Y](4+) [DACH=1,2-diaminocyclohexane, Y=H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2)] (complex 1). This new, long-chain bifunctional dinuclear Pt(II) complex is resistant to metabolic decomposition by sulfur-containing nucleophiles. The results show that DNA adducts of 1 can largely escape repair and yet inhibit very effectively transcription so that they should persist longer than those of conventional cisplatin. Hence, they could trigger a number of downstream cellular effects different from those triggered in cancer cells by DNA adducts of cisplatin. This might lead to the therapeutic effects that could radically improve chemotherapy by platinum complexes. In addition, the findings of the present work make new insights into mechanisms associated with antitumor effects of dinuclear/trinuclear Pt(II) complexes possible.
Zobrazit více v PubMed
Vrana O, Brabec V, Kleinwächter V. Polarographic studies on the conformation of some platinum complexes: relations to anti-tumour activity. Anti-Cancer Drug Des. 1986;1:95–109. PubMed
Farrell N, Kelland LR, Roberts JD, Van Beusichem M. Activation of the trans geometry in platinum antitumor complexes: a survey of the cytotoxicity of trans complexes containing planar ligands in murine-L1210 and human tumor panels and studies on their mechanism of action. Cancer Res. 1992;52:5065–5072. PubMed
Calvert PM, Highley MS, Hughes AN, Plummer ER, Azzabi AST, Verrill MW, et al. A phase I study of a novel, trinuclear, platinum analogue, BBR3464, in patients with advanced solid tumors. Clin Cancer Res. 1999;5:3796.
Colella G, Pennati M, Bearzatto A, Leone R, Colangelo D, Manzotti C, et al. Activity of a trinuclear platinum complex in human ovarian cancer cell lines sensitive and resistant to cisplatin: cytotoxicity and induction and gene-specific repair of DNA lesions. Br J Cancer. 2001;84:1387–1390. PubMed PMC
Jodrell DI, Evans TRJ, Steward W, Cameron D, Prendiville J, Aschele C, et al. Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesopliageal adenocarcinoma. Eur J Cancer. 2004;40:1872–1877. PubMed
Kasparkova J, Farrell N, Brabec V. Sequence specificity, conformation, and recognition by HMG1 protein of major DNA interstrand cross-links of anti-tumor dinuclear platinum complexes. J Biol Chem. 2000;275:15789–15798. PubMed
Kasparkova J, Zehnulova J, Farrell N, Brabec V. DNA interstrand cross-links of the novel antitumor trinuclear platinum complex BBR3464. Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair. J Biol Chem. 2002;277:48076–48078. PubMed
Brabec V, Kasparkova J, Vrana O, Novakova O, Cox JW, Qu Y, et al. DNA modifications by a novel bifunctional trinuclear platinum phase I anticancer agent. Biochemistry. 1999;38:6781–6790. PubMed
Kasparkova J, Novakova O, Vrana O, Farrell N, Brabec V. Effect of geometric isomerism in dinuclear platinum antitumor complexes on DNA interstrand cross-linking. Biochemistry. 1999;38:10997–11005. PubMed
Zehnulova J, Kasparkova J, Farrell N, Brabec V. Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair of DNA intrastrand cross-links of novel antitumor trinuclear platinum complex BBR3464. J Biol Chem. 2001;276:22191–22199. PubMed
Farrell N. Polynuclear platinum drugs. In: Sigel A, Sigel H, editors. Metal ions in biological systems. New York, Basel: Marcel Dekker, Inc.; 2004. pp. 251–296. PubMed
Farrell N, Qu Y, Feng L, Van Houten B. Comparison of chemical reactivity, cytotoxicity, interstrand cross-linking and DNA sequence specificity of bis(−platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogues. Biochemistry. 1990;29:9522–9531. PubMed
Oehlsen ME, Qu Y, Farrell N. Reaction of polynuclear platinum antitumor compounds with reduced glutathione studied by multinuclear (1H, 1H–15N gradient heteronuclear single-quantum coherence, and 195Pt) NMR spectroscopy. Inorg Chem. 2003;42:5498–5506. PubMed
Billecke C, Finniss S, Tahash L, Miller C, Mikkelsen T, Farrell NP, et al. Polynuclear platinum anticancer drugs are more potent than cisplatin and induce cell cycle arrest in glioma. Neuro-Oncology. 2006;8:215–226. PubMed PMC
Mitchell C, Kabolizadeh P, Ryan J, Roberts JD, Yacoub A, Curiel DT, et al. Low-dose BBR3610 toxicity in colon cancer cells is p53-independent and enhanced by inhibition of epidermal growth factor receptor (ERBB1)-phosphatidyl inositol 3 kinase signaling. Mol Pharmacol. 2007;72:704–714. PubMed
Summa N, Maigut J, Puchta R, van Eldik R. Possible biotransformation reactions of polynuclear Pt(II) complexes. Inorg Chem. 2007;46:2094–2104. PubMed
Oehlsen M, Hegmans A, Qu Y, Farrell N. Effects of geometric isomerism in dinuclear antitumor platinum complexes on their interactions with N-acetyl-L-methionine. J Biol Inorg Chem. 2005;10:433–442. PubMed
Williams JW, Qu Y, Bulluss GH, Alvorado E, Farrell NP. Dinuclear platinum complexes with biological relevance based on the 1,2-diaminocyclohexane carrier ligand. Inorg Chem. 2007;46:5820–5822. PubMed
Rauter H, Di Domenico R, Menta E, Oliva A, Qu Y, Farrell N. Selective platination of biologically relevant polyamines. Linear coordinating spermidine and spermine as amplifying linkers in dinuclear platinum complexes. Inorg Chem. 1997;36:3919–3927.
Brabec V, Palecek E. The influence of salts and pH on polarographic currents produced by denatured DNA. Biophysik. 1970;6:290–300. PubMed
Brabec V, Palecek E. Interaction of nucleic acids with electrically charged surfaces. II. Conformational changes in double-helical polynucleotides. Biophys Chem. 1976;4:76–92. PubMed
Reardon JT, Vaisman A, Chaney SG, Sancar A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res. 1999;59:3968–3971. PubMed
Kim SD, Vrana O, Kleinwächter V, Niki K, Brabec V. Polarographic determination of subnanogram quantities of free platinum in reaction mixture with DNA. Anal Lett. 1990;23:1505–1518.
Novakova O, Kasparkova J, Vrana O, van Vliet PM, Reedijk J, Brabec V. Correlation between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry. 1995;34:12369–12378. PubMed
Dabrowiak JC, Goodisman J, Souid AK. Kinetic study of the reaction of cisplatin with thiols. Drug Metab Dispos. 2002;30:1378–1384. PubMed
Brabec V, Leng M. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc Natl Acad Sci USA. 1993;90:5345–5349. PubMed PMC
Butour JL, Alvinerie P, Souchard JP, Colson P, Houssier C, Johnson NP. Effect of the amine nonleaving group on the structure and stability of DNA complexes with cis-[Pt(R-NH2)2(NO3)2] Eur J Biochem. 1991;202:975–980. PubMed
Keck MV, Lippard SJ. Unwinding of supercoiled DNA by platinum ethidium and related complexes. J Am Chem Soc. 1992;114:3386–3390.
Cullinane C, Mazur SJ, Essigmann JM, Phillips DR, Bohr VA. Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage. Biochemistry. 1999;38:6204–6212. PubMed
Bagchi MK, Tsai SY, Weigel NL, Tsai MJ, O’Malley BW. Regulation of in vitro transcription by progesterone receptor. Characterization and kinetic studies. J Biol Chem. 1990;265:5129–5134. PubMed
Vichi P, Coin F, Renaud JP, Vermeulen W, Hoeijmakers JHJ, Moras D, et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 1997;16:7444–7456. PubMed PMC
Reedijk J. Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev. 1999;99:2499–2510. PubMed
Romero-Isart N, Vasak M. Advances in the structure and chemistry of metallothioneins. J Inorg Biochem. 2002;88:388–396. PubMed
Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin–DNA adducts. Chem Rev. 1999;99:2467–2498. PubMed
Cullen KJ, Yang ZJ, Schumaker L, Guo ZM. Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr. 2007;39:43–50. PubMed
Rebillard A, Tekpli X, Meurette O, Sergent O, LeMoigne-Muller G, Vernhet L, et al. Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Cancer Res. 2007;67:7865–7874. PubMed
Ragunathan N, Dairou J, Pluvinage B, Martins M, Petit E, Janel N, et al. Identification of the xenobiotic-metabolizing enzyme arylamine N-acetyl-transferase 1 as a new target of cisplatin in breast cancer cells: molecular and cellular mechanisms of inhibition. Mol Pharmacol. 2008;73:1761–1768. PubMed
Jung Y, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. Chem Rev. 2007;107:1387–1407. PubMed
McGregor TD, Hegmans A, Kasparkova J, Neplechova K, Novakova O, Penazova H, et al. A comparison of DNA binding profiles of dinuclear platinum compounds with polyamine linkers and the trinuclear platinum phase II clinical agent BBR3464. J Biol Inorg Chem. 2002;7:397–404. PubMed
Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–7279. PubMed
Brabec V, Kasparkova J. Modifications of DNA by platinum complexes: relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updates. 2005;8:131–146. PubMed
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7:573–584. PubMed
Tremeau-Bravard A, Riedl T, Egly J-M, Dahmus ME. Fate of RNA polymerase II stalled at a cisplatin lesion. J Biol Chem. 2003;279:7751–7759. PubMed
Tornaletti S, Patrick SM, Turchi JJ, Hanawalt PC. Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J Biol Chem. 2003;278:35791–35797. PubMed
Damsma GE, Alt A, Brueckner F, Carell T, Cramer P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat Struct Mol Biol. 2007;14:1127–1133. PubMed
Lovejoy KS, Todd RC, Zhang SZ, McCormick MS, D’Aquino JA, Reardon JT, et al. cis-diammine(pyridine)chloroplatinum(II), a monofunctional platinum(II) antitumor agent: uptake, structure, function, and prospects. Proc Natl Acad Sci USA. 2008;105:8902–8907. PubMed PMC
Lee KB, Wang D, Lippard SJ, Sharp PA. Transcription-coupled and DNA damage dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci USA. 2002;99:4239–4244. PubMed PMC
Garner MM, Burg MB. Macromolecular crowding and confinement in cells exposed to hypertonicity. Am J Physiol. 1994;266:C877–C892. PubMed
Zhai XQ, Beckmann H, Jantzen HM, Essigmann JM. Cisplatin–DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Biochemistry. 1998;37:16307–16315. PubMed
Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M, et al. Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res. 1999;59:342–346. PubMed
Fichtinger-Schepman AMJ, Van der Veer JL, Den Hartog JHJ, Lohman PHM, Reedijk J. Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry. 1985;24:707–713. PubMed
Roberts JD, Beggiolin G, Manzotti C, Piazzoni L, Farrell N. Comparison of cytotoxicity and cellular accumulation of polynuclear platinum complexes in L1210 murine leukemia cell lines. J Inorg Biochem. 1999;77:47–50. PubMed
Harris AL, Ryan JJ, Farrell N. Biological consequences of trinuclear platinum complexes: comparison of [{trans-PtCl(NH3)2}2μ-(trans-Pt(NH3)2(H2N(CH2)6–NH2)2)]4+ (BBR 3464) with its noncovalent congeners. Mol Pharmacol. 2006;69:666–672. PubMed
Reedijk J, Teuben JM. Platinum–sulfur interactions involved in antitumor drugs, rescue agents, and biomolecules. In: Lippert B, editor. Cisplatin chemistry and biochemistry of a leading anticancer drug. Zürich, Weinheim: VHCA, Wiley-VCH; pp. 339–362.
Wang X, Guo Z. The role of sulfur in platinum anticancer chemotherapy. Anti-Cancer Agents Med Chem. 2007;7:19–34. PubMed
Zhang J, Thomas DS, Berners-Price SJ, Farrell N. Effects of geometric isomerism and anions on the kinetics and mechanism of the stepwise formation of long-range DNA interstrand cross-links by dinuclear platinum antitumor complexes. Chem Eur J. 2008;14:6391–6405. PubMed PMC
Hagrman D, Goodisman J, Dabrowiak JC, Souid AK. Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab Dispos. 2003;31:916–923. PubMed
Bancroft DP, Lepre CA, Lippard SJ. 195Pt NMR kinetic and mechanistic studies of cis-diamminedichloroplatinum and trans-diamminedichloroplatinum(II) binding to DNA. J Am Chem Soc. 1990;112:6860–6871.
Antitumor carboplatin is more toxic in tumor cells when photoactivated: enhanced DNA binding