Optimizing the Chemiluminescence of a Light-Producing Deoxyribozyme
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35286749
DOI
10.1002/cbic.202200026
Knihovny.cz E-zdroje
- Klíčová slova
- chemiluminescence, deoxyribozyme, in vitro selection, sensors, supernova,
- MeSH
- DNA katalytická * chemie MeSH
- DNA metabolismus MeSH
- kinetika MeSH
- luminiscence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA katalytická * MeSH
- DNA MeSH
Supernova is a chemiluminescent deoxyribozyme recently discovered in our group. It transfers the phosphate group from the 1,2-dioxetane substrate CDP-Star to its 5' hydroxyl group, which triggers a decomposition reaction and the production of light. Here we investigated the effects of reaction conditions on the ability of Supernova to generate a chemiluminescent signal (using a plate reader assay) and to phosphorylate itself (using a ligation assay). Our experiments indicate that multiple zinc ions are required for catalytic function, suggesting links between Supernova and protein enzymes that catalyze similar reactions. They also show how factors such as pH, potassium concentration, CDP-Star concentration, and DNA concentration affect the reaction. By combining information from different experiments, the rate enhancement of light production was increased by more than 1000-fold. These results should be useful for applications in which Supernova is used as a sensor.
Faculty of Science Charles University Prague 128 43 Prague Czech Republic
Institute of Organic Chemistry and Biochemistry 160 00 Prague Czech Republic
Zobrazit více v PubMed
J. W. Hastings, J. Mol. Evol. 1983, 19, 309-321.
J. R. De Wet, K. V. Woodt, D. R. Helinski, M. Delucat, Biochemistry 1985, 82, 7870-7873.
E. Conti, N. P. Franks, P. Brick, Structure 1996, 4, 287-298.
Z. M. Kaskova, A. S. Tsarkova, I. V. Yampolsky, Chem. Soc. Rev. 2016, 45, 6048-6077.
I. Bronstein, B. Edwards, J. C. Voyta, J. Biolumin. Chemilumin. 1989, 4, 99-111.
P. Trayhurn, M. E. A. Thomas, J. S. Duncan, D. Black, J. H. Beattie, D. V. Rayner, Biochem. Soc. Trans. 1995, 23, 494S.
O. Green, T. Eilon, N. Hananya, S. Gutkin, C. R. Bauer, D. Shabat, ACS Cent. Sci. 2017, 3, 349-358.
N. Hananya, D. A. Shabat, Angew. Chem. Int. Ed. 2017, 56, 16454-16463;
Angew. Chem. 2017, 129, 16674-16683.
N. Hananya, J. P. Reid, O. Green, M. S. Sigman, D. Shabat, Chem. Sci. 2019, 10, 1380-1385.
K. Svehlova, O. Lukšan, M. Jakubec, E. A. Curtis, Angew. Chem. Int. Ed. 2022, 61, e202109347.
M. Yarus, FASEB J. 1993, 7, 31-39.
R. K. O. Sigel, A. M. Pyle, Chem. Rev. 2007, 107, 97-113.
W. Zhou, R. Saran, J. Liu, Chem. Rev. 2017, 117, 8272-8325.
A. J. Cheng, M. W. van Dyke, Nucleic Acids Res. 1993, 21, 5630.
W. J. Moon, Y. Yang, J. Liu, ChemBioChem 2021, 22, 779-789.
Maret, B. L. Vallee, Methods Enzymol. 1993, 226, 52-71.
Y. Xiao, M. Chandra, S. K. Silverman, Biochemistry 2010, 49, 9630.
S. I. Nakano, N. Sugimoto, Biophys. Rev. Lett. 2016, 8, 11-23.
A. P. Schaap, M. D. Sandison, R. S. Handley, Tetrahedron Lett. 1987, 28, 1159-1162.
I. Bronstein, J. C. Voyta, O. J. Murphy, R. Tizard, C. W. Ehrenfels, R. L. Cate, Methods Enzymol. 1993, 217, 398-414.
G. B. Schuster, B. Dixon, J. Y. Koo, S. P. Schmidt, J. P. Smith, Photochem. Photobiol. 1979, 30, 17-26.
F. Guo, T. R. Cech, Nat. Struct. Biol. 2002, 9, 855-861.
F. Guo, A. R. Gooding, T. R. Cech, Mol. Cell 2004, 16, 351-362.
F. Guo, A. R. Gooding, T. R. Cech, RNA 2006, 12, 387-395.
Y. Xiao, V. Pavlov, R. Gill, T. Bourenko, I. Willner, ChemBioChem 2004, 5, 374-379.
J. Kosman, B. Juskowiak, Anal. Chim. Acta. 2011, 707, 7-17.
X. Li, L. Mo, J. L. Litke, S. K. Dey, S. R. Suter, S. R. Jaffrey, J. Am. Chem. Soc. 2020, 142, 14117-14124.
A. Autour, S. C. Y. Jeng, A. D. Cawte, A. Abdolahzadeh, A. Galli, S. S. S. Panchapakesan, D. Rueda, M. Ryckelynck, P. J. Unrau, Nat. Commun. 2018, 9, 1-12.
R. Sgallová, E. A. Curtis, Molecules 2021, 26, 1671.
T. Streckerová, J. Kurfürst, E. A. Curtis, Nucleic Acids Res. 2021, 49, 6971.
K. A. McCall, C. C. Huang, C. A. Fierke, J. Nutr. 2000, 130, 1437S-1446S.
K. M. Holtz, B. Stec, E. R. Kantrowitz, J. Biol. Chem. 1999, 274, 8351-8354.
K. M. Holtz, E. R. Kantrowitz, FEBS Lett. 1999, 462, 7-11.
N. A. Frøystein, J. T. Davis, B. R. Reid, E. Sletten, Acta Chem. Scand. 1993, 47, 649-657.
Apollon: a deoxyribozyme that generates a yellow product
Aurora: a fluorescent deoxyribozyme for high-throughput screening
Pushing the Limits of Nucleic Acid Function