Optimizing the Chemiluminescence of a Light-Producing Deoxyribozyme

. 2022 May 18 ; 23 (10) : e202200026. [epub] 20220330

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35286749

Supernova is a chemiluminescent deoxyribozyme recently discovered in our group. It transfers the phosphate group from the 1,2-dioxetane substrate CDP-Star to its 5' hydroxyl group, which triggers a decomposition reaction and the production of light. Here we investigated the effects of reaction conditions on the ability of Supernova to generate a chemiluminescent signal (using a plate reader assay) and to phosphorylate itself (using a ligation assay). Our experiments indicate that multiple zinc ions are required for catalytic function, suggesting links between Supernova and protein enzymes that catalyze similar reactions. They also show how factors such as pH, potassium concentration, CDP-Star concentration, and DNA concentration affect the reaction. By combining information from different experiments, the rate enhancement of light production was increased by more than 1000-fold. These results should be useful for applications in which Supernova is used as a sensor.

Zobrazit více v PubMed

J. W. Hastings, J. Mol. Evol. 1983, 19, 309-321.

J. R. De Wet, K. V. Woodt, D. R. Helinski, M. Delucat, Biochemistry 1985, 82, 7870-7873.

E. Conti, N. P. Franks, P. Brick, Structure 1996, 4, 287-298.

Z. M. Kaskova, A. S. Tsarkova, I. V. Yampolsky, Chem. Soc. Rev. 2016, 45, 6048-6077.

I. Bronstein, B. Edwards, J. C. Voyta, J. Biolumin. Chemilumin. 1989, 4, 99-111.

P. Trayhurn, M. E. A. Thomas, J. S. Duncan, D. Black, J. H. Beattie, D. V. Rayner, Biochem. Soc. Trans. 1995, 23, 494S.

O. Green, T. Eilon, N. Hananya, S. Gutkin, C. R. Bauer, D. Shabat, ACS Cent. Sci. 2017, 3, 349-358.

N. Hananya, D. A. Shabat, Angew. Chem. Int. Ed. 2017, 56, 16454-16463;

Angew. Chem. 2017, 129, 16674-16683.

N. Hananya, J. P. Reid, O. Green, M. S. Sigman, D. Shabat, Chem. Sci. 2019, 10, 1380-1385.

K. Svehlova, O. Lukšan, M. Jakubec, E. A. Curtis, Angew. Chem. Int. Ed. 2022, 61, e202109347.

M. Yarus, FASEB J. 1993, 7, 31-39.

R. K. O. Sigel, A. M. Pyle, Chem. Rev. 2007, 107, 97-113.

W. Zhou, R. Saran, J. Liu, Chem. Rev. 2017, 117, 8272-8325.

A. J. Cheng, M. W. van Dyke, Nucleic Acids Res. 1993, 21, 5630.

W. J. Moon, Y. Yang, J. Liu, ChemBioChem 2021, 22, 779-789.

Maret, B. L. Vallee, Methods Enzymol. 1993, 226, 52-71.

Y. Xiao, M. Chandra, S. K. Silverman, Biochemistry 2010, 49, 9630.

S. I. Nakano, N. Sugimoto, Biophys. Rev. Lett. 2016, 8, 11-23.

A. P. Schaap, M. D. Sandison, R. S. Handley, Tetrahedron Lett. 1987, 28, 1159-1162.

I. Bronstein, J. C. Voyta, O. J. Murphy, R. Tizard, C. W. Ehrenfels, R. L. Cate, Methods Enzymol. 1993, 217, 398-414.

G. B. Schuster, B. Dixon, J. Y. Koo, S. P. Schmidt, J. P. Smith, Photochem. Photobiol. 1979, 30, 17-26.

F. Guo, T. R. Cech, Nat. Struct. Biol. 2002, 9, 855-861.

F. Guo, A. R. Gooding, T. R. Cech, Mol. Cell 2004, 16, 351-362.

F. Guo, A. R. Gooding, T. R. Cech, RNA 2006, 12, 387-395.

Y. Xiao, V. Pavlov, R. Gill, T. Bourenko, I. Willner, ChemBioChem 2004, 5, 374-379.

J. Kosman, B. Juskowiak, Anal. Chim. Acta. 2011, 707, 7-17.

X. Li, L. Mo, J. L. Litke, S. K. Dey, S. R. Suter, S. R. Jaffrey, J. Am. Chem. Soc. 2020, 142, 14117-14124.

A. Autour, S. C. Y. Jeng, A. D. Cawte, A. Abdolahzadeh, A. Galli, S. S. S. Panchapakesan, D. Rueda, M. Ryckelynck, P. J. Unrau, Nat. Commun. 2018, 9, 1-12.

R. Sgallová, E. A. Curtis, Molecules 2021, 26, 1671.

T. Streckerová, J. Kurfürst, E. A. Curtis, Nucleic Acids Res. 2021, 49, 6971.

K. A. McCall, C. C. Huang, C. A. Fierke, J. Nutr. 2000, 130, 1437S-1446S.

K. M. Holtz, B. Stec, E. R. Kantrowitz, J. Biol. Chem. 1999, 274, 8351-8354.

K. M. Holtz, E. R. Kantrowitz, FEBS Lett. 1999, 462, 7-11.

N. A. Frøystein, J. T. Davis, B. R. Reid, E. Sletten, Acta Chem. Scand. 1993, 47, 649-657.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...