Compositional Data Analysis in Time-Use Epidemiology: What, Why, How
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32224966
PubMed Central
PMC7177981
DOI
10.3390/ijerph17072220
PII: ijerph17072220
Knihovny.cz E-zdroje
- Klíčová slova
- compositional data, physical activity, sedentary behavior, sleep,
- MeSH
- adipozita MeSH
- analýza dat * MeSH
- činnosti denního života MeSH
- cvičení * MeSH
- dítě MeSH
- kohortové studie MeSH
- lidé MeSH
- longitudinální studie MeSH
- sedavý životní styl * MeSH
- spánek MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
In recent years, the focus of activity behavior research has shifted away from univariate paradigms (e.g., physical activity, sedentary behavior and sleep) to a 24-h time-use paradigm that integrates all daily activity behaviors. Behaviors are analyzed relative to each other, rather than as individual entities. Compositional data analysis (CoDA) is increasingly used for the analysis of time-use data because it is intended for data that convey relative information. While CoDA has brought new understanding of how time use is associated with health, it has also raised challenges in how this methodology is applied, and how the findings are interpreted. In this paper we provide a brief overview of CoDA for time-use data, summarize current CoDA research in time-use epidemiology and discuss challenges and future directions. We use 24-h time-use diary data from Wave 6 of the Longitudinal Study of Australian Children (birth cohort, n = 3228, aged 10.9 ± 0.3 years) to demonstrate descriptive analyses of time-use compositions and how to explore the relationship between daily time use (sleep, sedentary behavior and physical activity) and a health outcome (in this example, adiposity). We illustrate how to comprehensively interpret the CoDA findings in a meaningful way.
Biomathematics and Statistics Scotland EH9 3FD Edinburgh Scotland UK
Institute for Health and Sport Victoria University Melbourne 3000 Australia
Zobrazit více v PubMed
Paffenbarger R.S., Jr., Blair S.N., Lee I.-M. A history of physical activity, cardiovascular health and longevity: The scientific contributions of Jeremy N Morris, DSC, DPH, FRCP. Int. J. Epidemiol. 2001;305:1184–1192. doi: 10.1093/ije/30.5.1184. PubMed DOI
Shanahan M., Flaherty B. Dynamic patterns of time use in adolescence. Child Develpoment. 2001;722:385–401. doi: 10.1111/1467-8624.00285. PubMed DOI
Chastin S.F., Palarea-Albaladejo J., Dontje M.L., Skelton D.A. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS ONE. 2015;1010:e0139984. doi: 10.1371/journal.pone.0139984. PubMed DOI PMC
Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research—the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;461:135–146.
Pedišić Ž., Dumuid D., Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;492:252–269.
Matricciani L., Bin Y.S., Lallukka T., Kronholm E., Wake M., Paquet C., Dumuid D., Olds T. Rethinking the sleep-health link. Sleep Health. 2018;44:339–348. doi: 10.1016/j.sleh.2018.05.004. PubMed DOI
Mellow M.L., Dumuid D., Thacker J.S., Dorrian J., Smith A.E. Building your best day for healthy brain aging–the neuroprotective effects of optimal time use. Maturitas. 2019;125:33–40. doi: 10.1016/j.maturitas.2019.04.204. PubMed DOI
Rosenberger M.E., Fulton J.E., Buman M.P., Troiano R.P., Grandner M.A., Buchner D.M., Haskell W.L. The 24-hour activity cycle: A new paradigm for physical activity. Med. Sci. Sports Exerc. 2019;513:454–464. doi: 10.1249/MSS.0000000000001811. PubMed DOI PMC
Tremblay M.S. Introducing 24-h movement guidelines for the early years: A new paradigm gaining momentum. J. Phys. Act. Health. 2020;17:92–95. doi: 10.1123/jpah.2019-0401. PubMed DOI
Tremblay M.S., Carson V., Chaput J.-P., Connor Gorber S., Dinh T., Duggan M., Faulkner G., Gray C.E., Gruber R., Janson K. Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 2016;416:S311–S327. doi: 10.1139/apnm-2016-0151. PubMed DOI
Okely A.D., Ghersi D., Hesketh K.D., Santos R., Loughran S.P., Cliff D.P., Shilton T., Grant D., Jones R.A., Stanley R.M. A collaborative approach to adopting/adapting guidelines-the australian 24-hour movement guidelines for the early years (birth to 5 years): An integration of physical activity, sedentary behavior, and sleep. Bmc Public Health. 2017;175:869. doi: 10.1186/s12889-017-4867-6. PubMed DOI PMC
New Zealand Ministry of Health Sit Less, Move More, Sleep Well: Physical Activity Guidelines for Children and Young People. [(accessed on 26 January 2020)]; Available online: http://www.health.govt.nz/system/files/documents/pages/physical-activity-guidelines-for-children-and-young-people-may17.pdf.
DST-NRF Centre of Excellence in Human Development and Laureus “Sport for good” . South African 24-Hour Movement Guidelines for Birth to Five Years: An Integration of Physical Activity, Sitting Behaviour, Screen Time and Sleep. DST-NRF Centre of Excellence in Human Development and Laureus; Cape Town, South Africa: 2018.
UKK Institute for Health Promotion Research Aikuisten liikkumisen suositus [Movement Recommendations for Adults] [(accessed on 28 January 2020)]; Available online: https://www.ukkinstituutti.fi/liikkumisensuositus/aikuisten-liikkumisen-suositus.
Jurakic D., Pedišić Ž. Croatian 24-hour guidelines for physical activity, sedentary behaviour, and sleep: A proposal based on a systematic review of literature. Medicus. 2019;282:143–153.
World Health Organization . Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age. World Health Organization; Geneva, Switzerland: 2019. PubMed
O’Hara B.J., Grunseit A., Phongsavan P., Bellew W., Briggs M., Bauman A.E. Impact of the swap it, don’t stop it australian national mass media campaign on promoting small changes to lifestyle behaviors. J. Health Commun. 2016;2112:1276–1285. doi: 10.1080/10810730.2016.1245803. PubMed DOI
Saunders T.J., Gray C.E., Poitras V.J., Chaput J.-P., Janssen I., Katzmarzyk P.T., Olds T., Connor Gorber S., Kho M.E., Sampson M. Combinations of physical activity, sedentary behaviour and sleep: Relationships with health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016;416:S283–S293. doi: 10.1139/apnm-2015-0626. PubMed DOI
Tsiros M.D., Samaras M.G., Coates A.M., Olds T. Use-of-time and health-related quality of life in 10-to 13-year-old children: Not all screen time or physical activity minutes are the same. Qual. Life Res. 2017;2611:3119–3129. doi: 10.1007/s11136-017-1639-9. PubMed DOI
Aadland E., Kvalheim O.M., Anderssen S.A., Resaland G.K., Andersen L.B. The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 2018;151:77. doi: 10.1186/s12966-018-0707-z. PubMed DOI PMC
Mekary R.A., Willett W.C., Hu F.B., Ding E.L. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am. J. Epidemiol. 2009;1704:519–527. doi: 10.1093/aje/kwp163. PubMed DOI PMC
Buman M., Winkler E., Kurka J., Hekler E., Baldwin C., Owen N., Ainsworth B., Healy G., Gardiner P. Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, nhanes 2005–2006. Am. J. Epidemiol. 2014;1793:323–334. doi: 10.1093/aje/kwt292. PubMed DOI
Augustin N.H., Mattocks C., Faraway J.J., Greven S., Ness A.R. Modelling a response as a function of high-frequency count data: The association between physical activity and fat mass. Stat. Methods Med. Res. 2017;265:2210–2226. doi: 10.1177/0962280215595832. PubMed DOI
Kokoszka P., Reimherr M. Introduction to Functional Data Analysis. Chapman and Hall/CRC; Boca Raton, FL, USA: 2017.
Aitchison J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B. 1982;44:139–160. doi: 10.1111/j.2517-6161.1982.tb01195.x. DOI
Gloor G., Reimann C. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 2016;62:692–703. doi: 10.1139/cjm-2015-0821. PubMed DOI
Fernandes A., Reid J., Macklaim J., McMurrough T., Edgell D., Gloor G. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;15:1–13. doi: 10.1186/2049-2618-2-15. PubMed DOI PMC
Aitchison J. The Statistical Analysis of Compositional Data. Chapman & Hall; London, UK: 1986. p. 416. Reprinted in 2003 by Blackburn Press.
Corey J., Gallagher J., Davis E., Marquardt M. The Times of Their Lives: Collecting Time Use Data from Children in the Longitudinal Study of Australian Children (LSAC). Technical Paper 13. Australian Bureau of Statistics; Canberra, Australia: 2014.
Soloff C., Lawrence D., Johnstone R. LSAC Technical Paper No. 1. [(accessed on 10 February 2020)]; Available online: https://growingupinaustralia.gov.au/sites/default/files/tp1.pdf.
Mateu-Figueras G., Pawlowsky-Glahn V., Egozcue J. The normal distribution in some constrained sample spaces. Sort-Stat. Oper. Res. Trans. 2013;371:29–56.
Pawlowsky-Glahn V., Egozcue J. Blu estimators and compositional data. Math. Geol. 2002;343:259–274. doi: 10.1023/A:1014890722372. DOI
Mateu-Figueras G., Pawlowsky-Glahn V., Egozcue J.J. Compositional Data Analysis: Theory and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011. The principle of working on coordinates; pp. 29–42.
Dumuid D., Pedišić Ž., Stanford T.E., Martín-Fernández J.-A., Hron K., Maher C.A., Lewis L.K., Olds T. The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat. Methods Med. Res. 2019;283:846–857. doi: 10.1177/0962280217737805. PubMed DOI
Dumuid D., Stanford T.E., Martín-Fernández J., Pedišić Ž., Maher C.A., Lewis L.K., Hron K., Katzmarzyk P.T., Chaput J.-P., Fogelholm M. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2018;2712:3726–3738. doi: 10.1177/0962280217710835. PubMed DOI
Egozcue J.J., Pawlowsky-Glahn V. Groups of parts and their balances in compositional data analysis. Math. Geol. 2005;377:795–828. doi: 10.1007/s11004-005-7381-9. DOI
R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 20 March 2020)]; Available online: https://www.R-project.org/
Van den Boogaart K.G., Tolosana-Delgado R. “Compositions”: A unified r package to analyze compositional data. Comput. Geosci. 2008;344:320–338. doi: 10.1016/j.cageo.2006.11.017. DOI
Templ M., Hron K., Filzmoser P. Robcompositions: An r-package for robust statistical analysis of compositional data. In: Pawlowsky-Glahn V., Buccianti A., editors. Compositional Data Analysis: Theory and Applications. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2011.
Palarea-Albaladejo J., Martín-Fernández J. Zcompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015;143:85–96. doi: 10.1016/j.chemolab.2015.02.019. DOI
Comas-Cufí M., Thió-Henestrosa S. CoDaPack 2.0: A stand-alone, multi-platform compositional software. In: Egozcue J.J., Tolosana-Delgado R., Ortego M.I., editors. CoDAWork’11: 4th International Workshop on Compositional Data Analysis, Sant Feliu De Guíxols. CoDAWork’11; Girona, Spain: 2011. [(accessed on 20 February 2020)]. Available online: http://ima.udg.edu/codapack/
International Network of Time-Use Epidemiologists. Publications. [(accessed on 20 February 2020)]; Available online: https://www.intue.org/publications/
Hunt T., Williams M., Olds T., Dumuid D. Patterns of time use across the chronic obstructive pulmonary disease severity spectrum. Int. J. Environ. Res. Public Health. 2018;153:533. doi: 10.3390/ijerph15030533. PubMed DOI PMC
Foley L., Dumuid D., Atkin A.J., Olds T., Ogilvie D. Patterns of health behaviour associated with active travel: A compositional data analysis. Int. J. Behav. Nutr. Phys. Act. 2018;15:26. doi: 10.1186/s12966-018-0662-8. PubMed DOI PMC
Foley L., Dumuid D., Atkin A.J., Wijndaele K., Ogilvie D., Olds T. Cross-sectional and longitudinal associations between active commuting and patterns of movement behaviour during discretionary time: A compositional data analysis. PLoS ONE. 2019;141:e0216650. doi: 10.1371/journal.pone.0216650. PubMed DOI PMC
Egozcue J.J., Pawlowsky-Glahn V., Mateu-Figueras G., Barcelo-Vidal C. Isometric Logratio Transformations for Compositional Data Analysis. Math. Geol. 2003;353:279–300. doi: 10.1023/A:1023818214614. DOI
McGregor D., Palarea-Albaladejo J., Dall P., Hron K., Chastin S. Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns. Stat. Methods Med Res. 2019:0962280219864125. doi: 10.1177/0962280219864125. PubMed DOI
Hron K., Filzmoser P., Thompson K. Linear regression with compositional explanatory variables. J. Appl. Stat. 2012;395:1115–1128. doi: 10.1080/02664763.2011.644268. DOI
McGregor D., Carson V., Palarea-Albaladejo J., Dall P., Tremblay M., Chastin S. Compositional analysis of the associations between 24-h movement behaviours and health indicators among adults and older adults from the canadian health measure survey. Int. J. Environ. Res. Public Health. 2018;15:1779. doi: 10.3390/ijerph15081779. PubMed DOI PMC
Rodríguez-Gómez I., Mañas A., Losa-Reyna J., Rodríguez-Mañas L., Chastin S.F., Alegre L.M., García-García F.J., Ara I. Compositional influence of movement behaviours on bone health during ageing. Med. Sci. Sports Exerc. 2019;518:1736–1744. doi: 10.1249/MSS.0000000000001972. PubMed DOI
Dumuid D., Lewis L., Olds T., Maher C., Bondarenko C., Norton L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis. Maturitas. 2018;110:104–110. doi: 10.1016/j.maturitas.2018.02.003. PubMed DOI
Carson V., Tremblay M.S., Chastin S.F. Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among canadian preschool-aged children using compositional analyses. BMC Public Health. 2017;175:848. doi: 10.1186/s12889-017-4852-0. PubMed DOI PMC
Dumuid D., Wake M., Clifford S., Burgner D., Carlin J.B., Mensah F.K., Fraysse F., Lycett K., Baur L., Olds T. The association of the body composition of children with 24-hour activity composition. J. Pediatrics. 2019;208:43–49. doi: 10.1016/j.jpeds.2018.12.030. PubMed DOI
Grgic J., Dumuid D., Bengoechea E.G., Shrestha N., Bauman A., Olds T., Pedisic Z. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int. J. Behav. Nutr. Phys. Act. 2018;151:69. doi: 10.1186/s12966-018-0691-3. PubMed DOI PMC
Carson V., Tremblay M.S., Chaput J.-P., Chastin S.F. Associations between sleep duration, sedentary time, physical activity, and health indicators among canadian children and youth using compositional analyses. Appl. Physiol. Nutr. Metab. 2016;416:S294–S302. doi: 10.1139/apnm-2016-0026. PubMed DOI
Talarico R., Janssen I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. Int. J. Obes. 2018;428:1508–1514. doi: 10.1038/s41366-018-0053-x. PubMed DOI
Powell C., Browne L.D., Carson B.P., Dowd K.P., Perry I.J., Kearney P.M., Harrington J.M., Donnelly A.E. Use of compositional data analysis to show estimated changes in cardiometabolic health by reallocating time to light-intensity physical activity in older adults. Sports Med. 2019;501:205–217. doi: 10.1007/s40279-019-01153-2. PubMed DOI
Carson V., Tremblay M.S., Chaput J.-P., McGregor D., Chastin S. Compositional analyses of the associations between sedentary time, different intensities of physical activity, and cardiometabolic biomarkers among children and youth from the united states. PLoS ONE. 2019;147:e0220009. doi: 10.1371/journal.pone.0220009. PubMed DOI PMC
Gupta N., Dumuid D., Korshøj M., Jørgensen M.B., Søgaard K., Holtermann A. Is daily composition of movement behaviors related to blood pressure in working adults? Med. Sci. Sports Exerc. 2018;5010:2150–2155. doi: 10.1249/MSS.0000000000001680. PubMed DOI
Aadland E., Kvalheim O.M., Anderssen S.A., Resaland G.K., Andersen L.B. Multicollinear physical activity accelerometry data and associations to cardiometabolic health: Challenges, pitfalls, and potential solutions. Int. J. Behav. Nutr. Phys. Act. 2019;161:74. doi: 10.1186/s12966-019-0836-z. PubMed DOI PMC
McGregor D.E., Palarea-Albaladejo J., Dall P.M., del Pozo Cruz B., Chastin S.F. Compositional analysis of the association between mortality and 24-hour movement behaviour from nhanes. Eur. J. Prev. Cardiol. 2019:2047487319867783. doi: 10.1177/2047487319867783. PubMed DOI
Martín-Fernández J., Thió-Henestrosa S. Rounded zeros: Some practical aspects for compositional data. Geol. Soc. Lond. Spec. Publ. 2006;2641:191–201. doi: 10.1144/GSL.SP.2006.264.01.14. DOI
Martín-Fernández J.A., Barceló-Vidal C., Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math. Geol. 2003;353:253–278. doi: 10.1023/A:1023866030544. DOI
Martín-Fernández J.-A., Hron K., Templ M., Filzmoser P., Palarea-Albaladejo J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 2015;152:134–158. doi: 10.1177/1471082X14535524. DOI
Palarea-Albaladejo J., Martín-Fernández J.A., Gómez-García J. A parametric approach for dealing with compositional rounded zeros. Math. Geol. 2007;397:625–645. doi: 10.1007/s11004-007-9100-1. DOI
Martín-Fernández J., Palarea-Albaladejo J., Olea R. Dealing with zeros. In: Pawlowsky-Glahm V., Buccianti A., editors. Compositional Data Analysis: Theory and Applications. Wiley; Chicester, UK: 2011.
Templ M., Hron K., Filzmoser P. Exploratory tools for outlier detection in compositional data with structural zeros. J. Appl. Stat. 2017;444:734–752. doi: 10.1080/02664763.2016.1182135. DOI
Kynčlová P., Hron K., Filzmoser P. Correlation between compositional parts based on symmetric balances. Math. Geosci. 2017;496:777–796. doi: 10.1007/s11004-016-9669-3. DOI
Filzmoser P., Hron K. Correlation analysis for compositional data. Math. Geosci. 2009;41:905. doi: 10.1007/s11004-008-9196-y. DOI
Alin A. Multicollinearity. Wiley Interdiscip. Rev. Comput. Stat. 2010;2:370–374. doi: 10.1002/wics.84. DOI
Wang H., Meng J., Tenenhaus M. Regression modelling analysis on compositional data. In: Esposito Vinzi V., Chin W., Henseler J., Wang H., editors. Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics. Springer; Berlin/Heidelberg, Germany: 2010.
Hinkle J., Rayens W. Partial least squares and compositional data: Problems and alternatives. Chemom. Intell. Lab. Syst. 1995;20:159–172. doi: 10.1016/0169-7439(95)00062-3. DOI
Harrell F. Regression Modeling Strategies. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2015.
Ridley K., Olds T., Hill A. The Multimedia Activity Recall for Children and Adolescents (MARCA): Development and evaluation. Int. J. Behav. Nutr. Phys. Act. 2006;3:10. doi: 10.1186/1479-5868-3-10. PubMed DOI PMC