Compositional Data Analysis in Time-Use Epidemiology: What, Why, How

. 2020 Mar 26 ; 17 (7) : . [epub] 20200326

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32224966

In recent years, the focus of activity behavior research has shifted away from univariate paradigms (e.g., physical activity, sedentary behavior and sleep) to a 24-h time-use paradigm that integrates all daily activity behaviors. Behaviors are analyzed relative to each other, rather than as individual entities. Compositional data analysis (CoDA) is increasingly used for the analysis of time-use data because it is intended for data that convey relative information. While CoDA has brought new understanding of how time use is associated with health, it has also raised challenges in how this methodology is applied, and how the findings are interpreted. In this paper we provide a brief overview of CoDA for time-use data, summarize current CoDA research in time-use epidemiology and discuss challenges and future directions. We use 24-h time-use diary data from Wave 6 of the Longitudinal Study of Australian Children (birth cohort, n = 3228, aged 10.9 ± 0.3 years) to demonstrate descriptive analyses of time-use compositions and how to explore the relationship between daily time use (sleep, sedentary behavior and physical activity) and a health outcome (in this example, adiposity). We illustrate how to comprehensively interpret the CoDA findings in a meaningful way.

Zobrazit více v PubMed

Paffenbarger R.S., Jr., Blair S.N., Lee I.-M. A history of physical activity, cardiovascular health and longevity: The scientific contributions of Jeremy N Morris, DSC, DPH, FRCP. Int. J. Epidemiol. 2001;305:1184–1192. doi: 10.1093/ije/30.5.1184. PubMed DOI

Shanahan M., Flaherty B. Dynamic patterns of time use in adolescence. Child Develpoment. 2001;722:385–401. doi: 10.1111/1467-8624.00285. PubMed DOI

Chastin S.F., Palarea-Albaladejo J., Dontje M.L., Skelton D.A. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS ONE. 2015;1010:e0139984. doi: 10.1371/journal.pone.0139984. PubMed DOI PMC

Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research—the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;461:135–146.

Pedišić Ž., Dumuid D., Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;492:252–269.

Matricciani L., Bin Y.S., Lallukka T., Kronholm E., Wake M., Paquet C., Dumuid D., Olds T. Rethinking the sleep-health link. Sleep Health. 2018;44:339–348. doi: 10.1016/j.sleh.2018.05.004. PubMed DOI

Mellow M.L., Dumuid D., Thacker J.S., Dorrian J., Smith A.E. Building your best day for healthy brain aging–the neuroprotective effects of optimal time use. Maturitas. 2019;125:33–40. doi: 10.1016/j.maturitas.2019.04.204. PubMed DOI

Rosenberger M.E., Fulton J.E., Buman M.P., Troiano R.P., Grandner M.A., Buchner D.M., Haskell W.L. The 24-hour activity cycle: A new paradigm for physical activity. Med. Sci. Sports Exerc. 2019;513:454–464. doi: 10.1249/MSS.0000000000001811. PubMed DOI PMC

Tremblay M.S. Introducing 24-h movement guidelines for the early years: A new paradigm gaining momentum. J. Phys. Act. Health. 2020;17:92–95. doi: 10.1123/jpah.2019-0401. PubMed DOI

Tremblay M.S., Carson V., Chaput J.-P., Connor Gorber S., Dinh T., Duggan M., Faulkner G., Gray C.E., Gruber R., Janson K. Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 2016;416:S311–S327. doi: 10.1139/apnm-2016-0151. PubMed DOI

Okely A.D., Ghersi D., Hesketh K.D., Santos R., Loughran S.P., Cliff D.P., Shilton T., Grant D., Jones R.A., Stanley R.M. A collaborative approach to adopting/adapting guidelines-the australian 24-hour movement guidelines for the early years (birth to 5 years): An integration of physical activity, sedentary behavior, and sleep. Bmc Public Health. 2017;175:869. doi: 10.1186/s12889-017-4867-6. PubMed DOI PMC

New Zealand Ministry of Health Sit Less, Move More, Sleep Well: Physical Activity Guidelines for Children and Young People. [(accessed on 26 January 2020)]; Available online: http://www.health.govt.nz/system/files/documents/pages/physical-activity-guidelines-for-children-and-young-people-may17.pdf.

DST-NRF Centre of Excellence in Human Development and Laureus “Sport for good” . South African 24-Hour Movement Guidelines for Birth to Five Years: An Integration of Physical Activity, Sitting Behaviour, Screen Time and Sleep. DST-NRF Centre of Excellence in Human Development and Laureus; Cape Town, South Africa: 2018.

UKK Institute for Health Promotion Research Aikuisten liikkumisen suositus [Movement Recommendations for Adults] [(accessed on 28 January 2020)]; Available online: https://www.ukkinstituutti.fi/liikkumisensuositus/aikuisten-liikkumisen-suositus.

Jurakic D., Pedišić Ž. Croatian 24-hour guidelines for physical activity, sedentary behaviour, and sleep: A proposal based on a systematic review of literature. Medicus. 2019;282:143–153.

World Health Organization . Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age. World Health Organization; Geneva, Switzerland: 2019. PubMed

O’Hara B.J., Grunseit A., Phongsavan P., Bellew W., Briggs M., Bauman A.E. Impact of the swap it, don’t stop it australian national mass media campaign on promoting small changes to lifestyle behaviors. J. Health Commun. 2016;2112:1276–1285. doi: 10.1080/10810730.2016.1245803. PubMed DOI

Saunders T.J., Gray C.E., Poitras V.J., Chaput J.-P., Janssen I., Katzmarzyk P.T., Olds T., Connor Gorber S., Kho M.E., Sampson M. Combinations of physical activity, sedentary behaviour and sleep: Relationships with health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016;416:S283–S293. doi: 10.1139/apnm-2015-0626. PubMed DOI

Tsiros M.D., Samaras M.G., Coates A.M., Olds T. Use-of-time and health-related quality of life in 10-to 13-year-old children: Not all screen time or physical activity minutes are the same. Qual. Life Res. 2017;2611:3119–3129. doi: 10.1007/s11136-017-1639-9. PubMed DOI

Aadland E., Kvalheim O.M., Anderssen S.A., Resaland G.K., Andersen L.B. The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 2018;151:77. doi: 10.1186/s12966-018-0707-z. PubMed DOI PMC

Mekary R.A., Willett W.C., Hu F.B., Ding E.L. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am. J. Epidemiol. 2009;1704:519–527. doi: 10.1093/aje/kwp163. PubMed DOI PMC

Buman M., Winkler E., Kurka J., Hekler E., Baldwin C., Owen N., Ainsworth B., Healy G., Gardiner P. Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, nhanes 2005–2006. Am. J. Epidemiol. 2014;1793:323–334. doi: 10.1093/aje/kwt292. PubMed DOI

Augustin N.H., Mattocks C., Faraway J.J., Greven S., Ness A.R. Modelling a response as a function of high-frequency count data: The association between physical activity and fat mass. Stat. Methods Med. Res. 2017;265:2210–2226. doi: 10.1177/0962280215595832. PubMed DOI

Kokoszka P., Reimherr M. Introduction to Functional Data Analysis. Chapman and Hall/CRC; Boca Raton, FL, USA: 2017.

Aitchison J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B. 1982;44:139–160. doi: 10.1111/j.2517-6161.1982.tb01195.x. DOI

Gloor G., Reimann C. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 2016;62:692–703. doi: 10.1139/cjm-2015-0821. PubMed DOI

Fernandes A., Reid J., Macklaim J., McMurrough T., Edgell D., Gloor G. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;15:1–13. doi: 10.1186/2049-2618-2-15. PubMed DOI PMC

Aitchison J. The Statistical Analysis of Compositional Data. Chapman & Hall; London, UK: 1986. p. 416. Reprinted in 2003 by Blackburn Press.

Corey J., Gallagher J., Davis E., Marquardt M. The Times of Their Lives: Collecting Time Use Data from Children in the Longitudinal Study of Australian Children (LSAC). Technical Paper 13. Australian Bureau of Statistics; Canberra, Australia: 2014.

Soloff C., Lawrence D., Johnstone R. LSAC Technical Paper No. 1. [(accessed on 10 February 2020)]; Available online: https://growingupinaustralia.gov.au/sites/default/files/tp1.pdf.

Mateu-Figueras G., Pawlowsky-Glahn V., Egozcue J. The normal distribution in some constrained sample spaces. Sort-Stat. Oper. Res. Trans. 2013;371:29–56.

Pawlowsky-Glahn V., Egozcue J. Blu estimators and compositional data. Math. Geol. 2002;343:259–274. doi: 10.1023/A:1014890722372. DOI

Mateu-Figueras G., Pawlowsky-Glahn V., Egozcue J.J. Compositional Data Analysis: Theory and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011. The principle of working on coordinates; pp. 29–42.

Dumuid D., Pedišić Ž., Stanford T.E., Martín-Fernández J.-A., Hron K., Maher C.A., Lewis L.K., Olds T. The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat. Methods Med. Res. 2019;283:846–857. doi: 10.1177/0962280217737805. PubMed DOI

Dumuid D., Stanford T.E., Martín-Fernández J., Pedišić Ž., Maher C.A., Lewis L.K., Hron K., Katzmarzyk P.T., Chaput J.-P., Fogelholm M. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2018;2712:3726–3738. doi: 10.1177/0962280217710835. PubMed DOI

Egozcue J.J., Pawlowsky-Glahn V. Groups of parts and their balances in compositional data analysis. Math. Geol. 2005;377:795–828. doi: 10.1007/s11004-005-7381-9. DOI

R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 20 March 2020)]; Available online: https://www.R-project.org/

Van den Boogaart K.G., Tolosana-Delgado R. “Compositions”: A unified r package to analyze compositional data. Comput. Geosci. 2008;344:320–338. doi: 10.1016/j.cageo.2006.11.017. DOI

Templ M., Hron K., Filzmoser P. Robcompositions: An r-package for robust statistical analysis of compositional data. In: Pawlowsky-Glahn V., Buccianti A., editors. Compositional Data Analysis: Theory and Applications. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2011.

Palarea-Albaladejo J., Martín-Fernández J. Zcompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015;143:85–96. doi: 10.1016/j.chemolab.2015.02.019. DOI

Comas-Cufí M., Thió-Henestrosa S. CoDaPack 2.0: A stand-alone, multi-platform compositional software. In: Egozcue J.J., Tolosana-Delgado R., Ortego M.I., editors. CoDAWork’11: 4th International Workshop on Compositional Data Analysis, Sant Feliu De Guíxols. CoDAWork’11; Girona, Spain: 2011. [(accessed on 20 February 2020)]. Available online: http://ima.udg.edu/codapack/

International Network of Time-Use Epidemiologists. Publications. [(accessed on 20 February 2020)]; Available online: https://www.intue.org/publications/

Hunt T., Williams M., Olds T., Dumuid D. Patterns of time use across the chronic obstructive pulmonary disease severity spectrum. Int. J. Environ. Res. Public Health. 2018;153:533. doi: 10.3390/ijerph15030533. PubMed DOI PMC

Foley L., Dumuid D., Atkin A.J., Olds T., Ogilvie D. Patterns of health behaviour associated with active travel: A compositional data analysis. Int. J. Behav. Nutr. Phys. Act. 2018;15:26. doi: 10.1186/s12966-018-0662-8. PubMed DOI PMC

Foley L., Dumuid D., Atkin A.J., Wijndaele K., Ogilvie D., Olds T. Cross-sectional and longitudinal associations between active commuting and patterns of movement behaviour during discretionary time: A compositional data analysis. PLoS ONE. 2019;141:e0216650. doi: 10.1371/journal.pone.0216650. PubMed DOI PMC

Egozcue J.J., Pawlowsky-Glahn V., Mateu-Figueras G., Barcelo-Vidal C. Isometric Logratio Transformations for Compositional Data Analysis. Math. Geol. 2003;353:279–300. doi: 10.1023/A:1023818214614. DOI

McGregor D., Palarea-Albaladejo J., Dall P., Hron K., Chastin S. Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns. Stat. Methods Med Res. 2019:0962280219864125. doi: 10.1177/0962280219864125. PubMed DOI

Hron K., Filzmoser P., Thompson K. Linear regression with compositional explanatory variables. J. Appl. Stat. 2012;395:1115–1128. doi: 10.1080/02664763.2011.644268. DOI

McGregor D., Carson V., Palarea-Albaladejo J., Dall P., Tremblay M., Chastin S. Compositional analysis of the associations between 24-h movement behaviours and health indicators among adults and older adults from the canadian health measure survey. Int. J. Environ. Res. Public Health. 2018;15:1779. doi: 10.3390/ijerph15081779. PubMed DOI PMC

Rodríguez-Gómez I., Mañas A., Losa-Reyna J., Rodríguez-Mañas L., Chastin S.F., Alegre L.M., García-García F.J., Ara I. Compositional influence of movement behaviours on bone health during ageing. Med. Sci. Sports Exerc. 2019;518:1736–1744. doi: 10.1249/MSS.0000000000001972. PubMed DOI

Dumuid D., Lewis L., Olds T., Maher C., Bondarenko C., Norton L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis. Maturitas. 2018;110:104–110. doi: 10.1016/j.maturitas.2018.02.003. PubMed DOI

Carson V., Tremblay M.S., Chastin S.F. Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among canadian preschool-aged children using compositional analyses. BMC Public Health. 2017;175:848. doi: 10.1186/s12889-017-4852-0. PubMed DOI PMC

Dumuid D., Wake M., Clifford S., Burgner D., Carlin J.B., Mensah F.K., Fraysse F., Lycett K., Baur L., Olds T. The association of the body composition of children with 24-hour activity composition. J. Pediatrics. 2019;208:43–49. doi: 10.1016/j.jpeds.2018.12.030. PubMed DOI

Grgic J., Dumuid D., Bengoechea E.G., Shrestha N., Bauman A., Olds T., Pedisic Z. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int. J. Behav. Nutr. Phys. Act. 2018;151:69. doi: 10.1186/s12966-018-0691-3. PubMed DOI PMC

Carson V., Tremblay M.S., Chaput J.-P., Chastin S.F. Associations between sleep duration, sedentary time, physical activity, and health indicators among canadian children and youth using compositional analyses. Appl. Physiol. Nutr. Metab. 2016;416:S294–S302. doi: 10.1139/apnm-2016-0026. PubMed DOI

Talarico R., Janssen I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. Int. J. Obes. 2018;428:1508–1514. doi: 10.1038/s41366-018-0053-x. PubMed DOI

Powell C., Browne L.D., Carson B.P., Dowd K.P., Perry I.J., Kearney P.M., Harrington J.M., Donnelly A.E. Use of compositional data analysis to show estimated changes in cardiometabolic health by reallocating time to light-intensity physical activity in older adults. Sports Med. 2019;501:205–217. doi: 10.1007/s40279-019-01153-2. PubMed DOI

Carson V., Tremblay M.S., Chaput J.-P., McGregor D., Chastin S. Compositional analyses of the associations between sedentary time, different intensities of physical activity, and cardiometabolic biomarkers among children and youth from the united states. PLoS ONE. 2019;147:e0220009. doi: 10.1371/journal.pone.0220009. PubMed DOI PMC

Gupta N., Dumuid D., Korshøj M., Jørgensen M.B., Søgaard K., Holtermann A. Is daily composition of movement behaviors related to blood pressure in working adults? Med. Sci. Sports Exerc. 2018;5010:2150–2155. doi: 10.1249/MSS.0000000000001680. PubMed DOI

Aadland E., Kvalheim O.M., Anderssen S.A., Resaland G.K., Andersen L.B. Multicollinear physical activity accelerometry data and associations to cardiometabolic health: Challenges, pitfalls, and potential solutions. Int. J. Behav. Nutr. Phys. Act. 2019;161:74. doi: 10.1186/s12966-019-0836-z. PubMed DOI PMC

McGregor D.E., Palarea-Albaladejo J., Dall P.M., del Pozo Cruz B., Chastin S.F. Compositional analysis of the association between mortality and 24-hour movement behaviour from nhanes. Eur. J. Prev. Cardiol. 2019:2047487319867783. doi: 10.1177/2047487319867783. PubMed DOI

Martín-Fernández J., Thió-Henestrosa S. Rounded zeros: Some practical aspects for compositional data. Geol. Soc. Lond. Spec. Publ. 2006;2641:191–201. doi: 10.1144/GSL.SP.2006.264.01.14. DOI

Martín-Fernández J.A., Barceló-Vidal C., Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math. Geol. 2003;353:253–278. doi: 10.1023/A:1023866030544. DOI

Martín-Fernández J.-A., Hron K., Templ M., Filzmoser P., Palarea-Albaladejo J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 2015;152:134–158. doi: 10.1177/1471082X14535524. DOI

Palarea-Albaladejo J., Martín-Fernández J.A., Gómez-García J. A parametric approach for dealing with compositional rounded zeros. Math. Geol. 2007;397:625–645. doi: 10.1007/s11004-007-9100-1. DOI

Martín-Fernández J., Palarea-Albaladejo J., Olea R. Dealing with zeros. In: Pawlowsky-Glahm V., Buccianti A., editors. Compositional Data Analysis: Theory and Applications. Wiley; Chicester, UK: 2011.

Templ M., Hron K., Filzmoser P. Exploratory tools for outlier detection in compositional data with structural zeros. J. Appl. Stat. 2017;444:734–752. doi: 10.1080/02664763.2016.1182135. DOI

Kynčlová P., Hron K., Filzmoser P. Correlation between compositional parts based on symmetric balances. Math. Geosci. 2017;496:777–796. doi: 10.1007/s11004-016-9669-3. DOI

Filzmoser P., Hron K. Correlation analysis for compositional data. Math. Geosci. 2009;41:905. doi: 10.1007/s11004-008-9196-y. DOI

Alin A. Multicollinearity. Wiley Interdiscip. Rev. Comput. Stat. 2010;2:370–374. doi: 10.1002/wics.84. DOI

Wang H., Meng J., Tenenhaus M. Regression modelling analysis on compositional data. In: Esposito Vinzi V., Chin W., Henseler J., Wang H., editors. Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics. Springer; Berlin/Heidelberg, Germany: 2010.

Hinkle J., Rayens W. Partial least squares and compositional data: Problems and alternatives. Chemom. Intell. Lab. Syst. 1995;20:159–172. doi: 10.1016/0169-7439(95)00062-3. DOI

Harrell F. Regression Modeling Strategies. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2015.

Ridley K., Olds T., Hill A. The Multimedia Activity Recall for Children and Adolescents (MARCA): Development and evaluation. Int. J. Behav. Nutr. Phys. Act. 2006;3:10. doi: 10.1186/1479-5868-3-10. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The interplay between lying, sitting, standing, moving, and walking on obesity risk in older adults: a compositional and isotemporal substitution analysis

. 2024 Dec 28 ; 24 (1) : 1047. [epub] 20241228

Movement behaviour typologies and their associations with adiposity indicators in children and adolescents: a latent profile analysis of 24-h compositional data

. 2024 Jun 10 ; 24 (1) : 1553. [epub] 20240610

A 24-h activity profile and adiposity among children and adolescents: Does the difference between school and weekend days matter?

. 2023 ; 18 (5) : e0285952. [epub] 20230518

Associations of activity, sedentary, and sleep behaviors with cognitive and social-emotional health in early childhood

. 2023 ; 2 (1) : 7. [epub] 20230403

Your best day: An interactive app to translate how time reallocations within a 24-hour day are associated with health measures

. 2022 ; 17 (9) : e0272343. [epub] 20220907

The Physical Behaviour Intensity Spectrum and Body Mass Index in School-Aged Youth: A Compositional Analysis of Pooled Individual Participant Data

. 2022 Jul 19 ; 19 (14) : . [epub] 20220719

Surveillance of physical activity and sedentary behaviour in czech children and adolescents: a scoping review of the literature from the past two decades

. 2022 Feb 21 ; 22 (1) : 363. [epub] 20220221

Changes in sedentary behavior patterns during the transition from childhood to adolescence and their association with adiposity: a prospective study based on compositional data analysis

. 2022 Jan 04 ; 80 (1) : 1. [epub] 20220104

Day-to-day pattern of work and leisure time physical behaviours: are low socioeconomic status adults couch potatoes or work warriors?

. 2021 Jul 07 ; 21 (1) : 1342. [epub] 20210707

A study on prospective associations between adiposity and 7-year changes in movement behaviors among older women based on compositional data analysis

. 2021 Mar 23 ; 21 (1) : 203. [epub] 20210323

Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis

. 2021 Jan 27 ; 26 (1) : 16. [epub] 20210127

How do short sleepers use extra waking hours? A compositional analysis of 24-h time-use patterns among children and adolescents

. 2020 Aug 14 ; 17 (1) : 104. [epub] 20200814

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace