Changes in sedentary behavior patterns during the transition from childhood to adolescence and their association with adiposity: a prospective study based on compositional data analysis

. 2022 Jan 04 ; 80 (1) : 1. [epub] 20220104

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34983643

Grantová podpora
18-09188S Grantová Agentura České Republiky

Odkazy

PubMed 34983643
PubMed Central PMC8725475
DOI 10.1186/s13690-021-00755-5
PII: 10.1186/s13690-021-00755-5
Knihovny.cz E-zdroje

BACKGROUND: To date, no longitudinal study using a compositional approach has examined sedentary behavior (SB) patterns in relation to adiposity in the pediatric population. Therefore, our aims were to (1) investigate the changes in SB patterns and adiposity from childhood to adolescence, (2) analyze the prospective compositional associations between changes in SB patterns and adiposity, and (3) estimate the changes in adiposity associated with substituting SB with physical activity (PA) of different intensities. METHODS: The study presents a longitudinal design with a 5-year follow-up. A total of 88 participants (61% girls) were included in the analysis. PA and SB were monitored for seven consecutive days using a hip-worn accelerometer. Adiposity markers (fat mass percentage [FM%], fat mass index [FMI], and visceral adiposity tissue [VAT]) were assessed using the multi-frequency bioimpedance analysis. The prospective associations were examined using compositional data analysis. RESULTS: Over the follow-up period, the proportion of time spent in total SB increased by 154.8 min/day (p < 0.001). The increase in total SB was caused mainly by an increase in middle and long sedentary bouts, as these SB periods increased by 79.8 min/day and 62.0 min/day (p < 0.001 for both), respectively. FM%, FMI, and VAT increased by 2.4% points, 1.0 kg/m2, and 31.5 cm2 (p < 0.001 for all), respectively. Relative to the remaining movement behaviors, the increase in time spent in middle sedentary bouts was significantly associated with higher FM% (βilr1 = 0.27, 95% confidence interval [CI]: 0.02 to 0.53) at follow-up. Lower VAT by 3.3% (95% CI: 0.8 to 5.7), 3.8% (95% CI: 0.03 to 7.4), 3.9% (95% CI: 0.8 to 6.9), and 3.8% (95% CI: 0.7 to 6.9) was associated with substituting 15 min/week spent in total SB and in short, middle, and long sedentary bouts, respectively, with an equivalent amount of time spent in vigorous PA. CONCLUSIONS: This study showed unfavorable changes in SB patterns and adiposity status in the transition from childhood to adolescence. Incorporating high-intensity PA at the expense of SB appears to be an appropriate approach to reduce the risk of excess adiposity in the pediatric population.

Zobrazit více v PubMed

World Health Organization . Obesity and overweight [Internet] 2021.

NCD Risk Factor Collaboration Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–2642. PubMed PMC

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766–781. PubMed PMC

Ronque ERV, Werneck AO, Bueno MRO, Cyrino ES, Stanganelli LCR, Arruda M. Tracking of body adiposity indicators from childhood to adolescence: mediation by BMI. PLoS One. 2018;13(2):e0191908. PubMed PMC

Araújo J, Severo M, Barros H, Mishra GD, Guimarães JT, Ramos E. Developmental trajectories of adiposity from birth until early adulthood and association with cardiometabolic risk factors. Int J Obes. 2015;39:1443–1449. PubMed

Blasquez Shigaki G, Barbosa CCL, Batista MB, Romanzini CLP, Gonçalves EM, Serassuelo Junior H, et al. Tracking of health-related physical fitness between childhood and adulthood. Am J Hum Biol. 2020;32(4):e23381. PubMed

Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: causes and consequences. J Fam Med Prim Care. 2015;4(2):187–192. PubMed PMC

Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep. 2015;4:363–370. PubMed

Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35(7):891–898. PubMed

Dumuid D, Stanford TE, Pedišić Ž, Maher C, Lewis LK, Martín-Fernádez J-A, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18(1):311. PubMed PMC

Grgic J, Dumuid D, Bengoechea EG, Shrestha N, Bauman A, Olds T, et al. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. Int J Behav Nutr Phys Act. 2018;15:69. PubMed PMC

Dumuid D, Wake M, Burgner D, Tremblay MS, Okely AD, Edwards B, et al. Balancing time use for children’s fitness and adiposity: evidence to inform 24-hour guidelines for sleep, sedentary time and physical activity. PLoS One. 2021;16(1):e0245501. PubMed PMC

Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14:75. PubMed PMC

Gába A, Pedišić Ž, Štefelová N, Dygrýn J, Hron K, Dumuid D, et al. Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis. BMC Pediatr. 2020;20:147. PubMed PMC

Pedišić Ž, Dumuid D, Olds TS. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49(2):252–269.

Dumuid D, Pedišić Ž, Palarea-Albaladejo J, Martín-Fernández JA, Hron K, Olds T. Compositional data analysis in time-use epidemiology: what, why, how. Int J Environ Res Public Health. 2020;17(7):2220. PubMed PMC

Migueles JH, Aadland E, Andersen LB, Brønd JC, Chastin SF, Hansen BH, et al. GRANADA consensus on analytical approaches to assess associations with accelerometer-determined physical behaviours (physical activity, sedentary behaviour and sleep) in epidemiological studies. Br J Sports Med. 2021. https://bjsm.bmj.com/content/early/2021/04/14/bjsports-2020-103604.info. PubMed PMC

Dumuid D, Wake M, Clifford S, Burgner D, Carlin JB, Mensah FK, et al. The association of the body composition of children with 24-hour activity composition. J Pediatr. 2019;208:43–49.e9. PubMed

Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead millennium study. Int J Behav Nutr Phys Act. 2016;13:88. PubMed PMC

van Ekris E, Wijndaele K, Altenburg TM, Atkin AJ, Twisk J, Andersen LB, et al. Tracking of total sedentary time and sedentary patterns in youth: a pooled analysis using the International Children’s Accelerometry database (ICAD) Int J Behav Nutr Phys Act. 2020;17:65. PubMed PMC

Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. PubMed

de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–667. PubMed PMC

Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr Int. 2009;51(2):263–268. PubMed

Gába A, Mitáš J, Jakubec L. Associations between accelerometer-measured physical activity and body fatness in school-aged children. Environ Health Prev Med. 2017;22(1):1–8. PubMed PMC

Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. PubMed

Aadland E, Andersen LB, Anderssen SA, Resaland GK. A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health. 2018;18:323. PubMed PMC

Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–1565. PubMed

Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–1368. PubMed

Farooq A, Martin A, Janssen X, Wilson MG, Gibson A-M, Hughes A, et al. Longitudinal changes in moderate-to-vigorous-intensity physical activity in children and adolescents: a systematic review and meta-analysis. Obes Rev. 2020;21(1):e12953. PubMed PMC

Altenburg TM, Chinapaw MJM. Bouts and breaks in children’s sedentary time: currently used operational definitions and recommendations for future research. Prev Med. 2015;77:1–3. PubMed

Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):426–431. PubMed

Štefelová N, Dygrýn J, Hron K, Gába A, Rubín L, Palarea-Albaladejo J. Robust compositional analysis of physical activity and sedentary behaviour data. Int J Environ Res Public Health. 2018;15(10):2248. PubMed PMC

Martín-Fernández J-A, Hron K, Templ M, Filzmoser P, Palarea-Albaladejo J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat Model. 2015;15(2):134–158.

Pelclová J, Štefelová N, Dumuid D, Pedišić Ž, Hron K, Gába A, et al. Are longitudinal reallocations of time between movement behaviours associated with adiposity among elderly women? A compositional isotemporal substitution analysis. Int J Obes. 2020;44(4):857–864. PubMed PMC

Gába A, Dygrýn J, Štefelová N, Rubín L, Hron K, Jakubec L, et al. How do short sleepers use extra waking hours? A compositional analysis of 24-h time-use patterns among children and adolescents. Int J Behav Nutr Phys Act. 2020;17:104. PubMed PMC

Tanaka C, Reilly JJ, Huang WY. Longitudinal changes in objectively measured sedentary behaviour and their relationship with adiposity in children and adolescents: systematic review and evidence appraisal. Obes Rev. 2014;15(10):791–803. PubMed

Reilly JJ. When does it all go wrong? Longitudinal studies of changes in moderate-to-vigorous-intensity physical activity across childhood and adolescence. J Exerc Sci Fit. 2016;14(1):1–6. PubMed PMC

Katzmarzyk PT, Shen W, Baxter-Jones A, Bell JD, Butte NF, Demerath EW, et al. Adiposity in children and adolescents: correlates and clinical consequences of fat stored in specific body depots. Pediatr Obes. 2012;7(5):42–61. PubMed

Chong KH, Parrish A-M, Cliff DP, Kemp BJ, Zhang Z, Okely AD. Changes in physical activity, sedentary behaviour and sleep across the transition from primary to secondary school: a systematic review. J Sci Med Sport. 2020;23(5):498–505. PubMed

Tassitano RM, Weaver RG, Tenório MCM, Brazendale K, Beets MW. Physical activity and sedentary time of youth in structured settings: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2020;17:160. PubMed PMC

Gába A, Dygrýn J, Štefelová N, Rubín L, Hron K, Jakubec L. Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis. Environ Health Prev Med. 2021;26:16. PubMed PMC

Mitra R, Buliung RN. Exploring differences in school travel mode choice behaviour between children and youth. Transp Policy. 2015;42:4–11.

Kemp BJ, Cliff DP, Chong KH, Parrish A-M. Longitudinal changes in domains of physical activity during childhood and adolescence: a systematic review. J Sci Med Sport. 2019;22(6):695–701. PubMed

Mann KD, Howe LD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Longitudinal study of the associations between change in sedentary behavior and change in adiposity during childhood and adolescence: Gateshead millennium study. Int J Obes. 2017;41(7):1042–1047. PubMed PMC

Gralla MH, McDonald SM, Breneman C, Beets MW, Moore JB. Associations of objectively measured vigorous physical activity with body composition, cardiorespiratory fitness, and cardiometabolic health in youth: a review. Am J Lifestyle Med. 2019;13(1):61–97. PubMed PMC

Broadney MM, Belcher BR, Berrigan DA, Brychta RJ, Tigner IL, Shareef F, et al. Effects of interrupting sedentary behavior with short bouts of moderate physical activity on glucose tolerance in children with overweight and obesity: a randomized crossover trial. Diabetes Care. 2018;41(10):2220–2228. PubMed PMC

Edwardson CL, Gorely T. Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc. 2010;42(5):928–934. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...