Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis
Jazyk angličtina Země Japonsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-09188S
Grantová Agentura České Republiky
PubMed
33504330
PubMed Central
PMC7842010
DOI
10.1186/s12199-021-00932-6
PII: 10.1186/s12199-021-00932-6
Knihovny.cz E-zdroje
- Klíčová slova
- Accelerometry, Compositional data analysis, Schools, Time-use epidemiology,
- MeSH
- adipozita * MeSH
- akcelerometrie MeSH
- cvičení * MeSH
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- sedavý životní styl * MeSH
- školy MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Little is known on how context-specific sedentary behaviors (SB) affect adiposity. This study aimed to investigate compositional associations between context-specific SB and adiposity and estimate the differences in adiposity associated with replacing school and out-of-school SB with physical activity (PA). METHODS: This study included 336 children and adolescents. Time spent in SB and PA was estimated using multi-day 24-hour raw accelerometer data. SB and PA were specified for school and out-of-school times. Fat mass percentage (FM%) and fat mass index (FMI) were used as adiposity indicators. A compositional isotemporal substitution model was used to estimate differences in adiposity associated with one-to-one reallocations of time from context-specific SB to PA. RESULTS: Participants spent approximately two thirds of their school and out-of-school time being sedentary. Relative to the remaining 24-h movement behaviors, significant associations between out-of-school SB and adiposity were found in both boys (βilr1 = 0.63, 95% confidence interval [CI] = 0.03-1.22 for FM%; βilr1 = 0.76, 95% CI = 0.03-1.49 for FMI) and girls (βilr1 = 0.62, 95% CI = 0.25-0.98 for FM%; βilr1 = 0.80, 95% CI = 0.28-1.32 for FMI). Replacing 30 min/day of out-of-school SB with out-of-school light PA decreased FM% by 10.1% (95% CI = 3.3-17.9) and FMI by 14% (95% CI = 2.7-24) in girls. No significant associations were found for school SB. CONCLUSIONS: A reduction of out-of-school SB in favor of light PA should be advocated as an appropriate target for interventions and strategies to prevent childhood obesity.
Zobrazit více v PubMed
Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, Chastin SFM, Altenburg TM, Chinapaw MJM, Participants STCP. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. doi: 10.1186/s12966-017-0525-8. PubMed DOI PMC
Pedisic Z, Dumuid D, Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49(2).
Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, Saunders TJ, Katzmarzyk PT, Okely AD, Connor Gorber S, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S240–S265. doi: 10.1139/apnm-2015-0630. PubMed DOI
Rodriguez-Ayllon M, Cadenas-Sánchez C, Estévez-López F, Muñoz NE, Mora-Gonzalez J, Migueles JH, Molina-García P, Henriksson H, Mena-Molina A, Martínez-Vizcaíno V, et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: a systematic review and meta-analysis. Sports Med. 2019;49(9):1383–1410. doi: 10.1007/s40279-019-01099-5. PubMed DOI
Aubert S, Barnes JD, Abdeta C, Abi Nader P, Adeniyi AF, Aguilar-Farias N, Andrade Tenesaca DS, Bhawra J, Brazo-Sayavera J, Cardon G, et al. Global matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(S2):S251–Ss73. doi: 10.1123/jpah.2018-0472. PubMed DOI
Han JC, Lawlor DA, Kimm SYS. Childhood obesity. Lancet. 2010;375(9727):1737–1748. doi: 10.1016/S0140-6736(10)60171-7. PubMed DOI PMC
Biddle SJ, García Bengoechea E, Wiesner G. Sedentary behaviour and adiposity in youth: a systematic review of reviews and analysis of causality. Int J Behav Nutr Phys Act. 2017;14(1):43. doi: 10.1186/s12966-017-0497-8. PubMed DOI PMC
Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, Carver A, Veitch J, Parrish AM, Hardy LL, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–344. doi: 10.1111/obr.12371. PubMed DOI
Tanaka C, Reilly JJ, Huang WY. Longitudinal changes in objectively measured sedentary behaviour and their relationship with adiposity in children and adolescents: systematic review and evidence appraisal. Obes Rev. 2014;15(10):791–803. doi: 10.1111/obr.12195. PubMed DOI
Sallis JF, Owen N. Health behavior: Theory, research, and practice. 5. Hoboken: Jossey-Bass/Wiley; 2015. Ecological models of health behavior; pp. 43–64.
Fairclough SJ, Dumuid D, Mackintosh KA, Stone G, Dagger R, Stratton G, Davies I, Boddy LM. Adiposity, fitness, health-related quality of life and the reallocation of time between children’s school day activity behaviours: a compositional data analysis. Prev Med Rep. 2018;11:254–261. doi: 10.1016/j.pmedr.2018.07.011. PubMed DOI PMC
Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, Smith K, Sacheck J. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school- and out-of-school time. Int J Behav Nutr Phys Act. 2016;13(1):39. doi: 10.1186/s12966-016-0358-x. PubMed DOI PMC
Nettlefold L, McKay HA, Warburton DER, McGuire KA, Bredin SSD, Naylor PJ. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J Sports Med. 2011;45(10):813–819. doi: 10.1136/bjsm.2009.068072. PubMed DOI
Egan CA, Webster CA, Beets MW, Weaver RG, Russ L, Michael D, Nesbitt D, Orendorff KL. Sedentary time and behavior during school: a systematic review and meta-analysis. Am J Health Educ. 2019;50(5):283–290. doi: 10.1080/19325037.2019.1642814. DOI
Rhodes RE, Guerrero MD, Vanderloo LM, Barbeau K, Birken CS, Chaput J-P, Faulkner G, Janssen I, Madigan S, Mâsse LC, et al. Development of a consensus statement on the role of the family in the physical activity, sedentary, and sleep behaviours of children and youth. Int J Behav Nutr Phys Act. 2020;17(1):74. doi: 10.1186/s12966-020-00973-0. PubMed DOI PMC
Ashdown-Franks G, Vancampfort D, Firth J, Veronese N, Jackson SE, Smith L, Stubbs B, Koyanagi A. Leisure-time sedentary behavior and obesity among 116,762 adolescents aged 12-15 years from 41 low- and middle-income countries. Obesity. 2019;27(5):830–836. doi: 10.1002/oby.22424. PubMed DOI
Shakir RN, Coates AM, Olds T, Rowlands A, Tsiros MD. Not all sedentary behaviour is equal: Children’s adiposity and sedentary behaviour volumes, patterns and types. Obes Res Clin Pract. 2018;12(6):506–512. doi: 10.1016/j.orcp.2018.09.001. PubMed DOI
Gába A, Dygrýn J, Štefelová N, Rubín L, Hron K, Jakubec L, Pedišić Ž. How do short sleepers use extra waking hours? A compositional analysis of 24-h time-use patterns among children and adolescents. Int J Behav Nutr Phys Act. 2020;17(1):104. doi: 10.1186/s12966-020-01004-8. PubMed DOI PMC
Dumuid D, Pedišić Ž, Palarea-Albaladejo J, Martín-Fernández JA, Hron K, Olds T. Compositional data analysis in time-use epidemiology: what, why, how. Int J Environ Res Public Health. 2020;17(7):2220. doi: 10.3390/ijerph17072220. PubMed DOI PMC
Dumuid D, Stanford TE, Martin-Fernández J-A, Pedišić Ž, Maher CA, Lewis LK, Hron K, Katzmarzyk PT, Chaput J-P, Fogelholm M, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2018;27(12):3726–3738. doi: 10.1177/0962280217710835. PubMed DOI
Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, Lewis LK, Olds T. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2018;28(3):846–857. doi: 10.1177/0962280217737805. PubMed DOI
Jakubec L, Gába A, Dygrýn J, Rubín L, Šimůnek A, Sigmund E. Is adherence to the 24-h movement guidelines associated with a reduced risk of adiposity among children and adolescents? BMC Public Health. 2020;20(1):1119. doi: 10.1186/s12889-020-09213-3. PubMed DOI PMC
Clevenger KA, Pfeiffer KA, Montoye AHK. Cross-generational comparability of raw and count-based metrics from ActiGraph GT9X and wGT3X-BT accelerometers during free-living in youth. Meas Phys Educ Exerc Sci. 2020;24(3):194–204. doi: 10.1080/1091367X.2020.1773827. DOI
Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–364. doi: 10.1249/MSS.0b013e3181ed61a3. PubMed DOI PMC
Knaier R, Höchsmann C, Infanger D, Hinrichs T, Schmidt-Trucksäss A. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X+ BMC Public Health. 2019;19(1):244. doi: 10.1186/s12889-019-6568-9. PubMed DOI PMC
Chandler JL, Brazendale K, Beets MW, Mealing BA. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children. Pediatr Obes. 2016;11(2):120–127. doi: 10.1111/ijpo.12033. PubMed DOI
Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from wrist activity. Sleep. 1992;15(5):461–469. doi: 10.1093/sleep/15.5.461. PubMed DOI
Quante M, Kaplan ER, Cailler M, Rueschman M, Wang R, Weng J, Taveras EM, Redline S. Actigraphy-based sleep estimation in adolescents and adults: a comparison with polysomnography using two scoring algorithms. Nat Sci Sleep. 2018;10:13–20. doi: 10.2147/NSS.S151085. PubMed DOI PMC
Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, Cheon GJ. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr Int. 2009;51(2):263–268. doi: 10.1111/j.1442-200X.2008.02698.x. PubMed DOI
Katzmarzyk PT, Shen W, Baxter-Jones A, Bell JD, Butte NF, Demerath EW, Gilsanz V, Goran MI, Hirschler V, Hu HH, et al. Adiposity in children and adolescents: correlates and clinical consequences of fat stored in specific body depots. Pediatr Obes. 2012;7(5):e42–e61. doi: 10.1111/j.2047-6310.2012.00073.x. PubMed DOI
Kowarik A, Templ M. Imputation with the R Package VIM. J Stat Softw. 2016;74(7):1–16. doi: 10.18637/jss.v074.i07. DOI
Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and analysis of compositional data. Chichester, West Sussex: Wiley; 2015.
Martín-Fernández J-A, Hron K, Templ M, Filzmoser P, Palarea-Albaladejo J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat Modelling. 2014;15(2):134–158. doi: 10.1177/1471082X14535524. DOI
Štefelová N, Dygrýn J, Hron K, Gába A, Rubín L, Palarea-Albaladejo J. Robust compositional analysis of physical activity and sedentary behaviour data. Int J Environ Res Public Health. 2018;15(10):2248. doi: 10.3390/ijerph15102248. PubMed DOI PMC
Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. doi: 10.1037//0033-2909.112.1.155. PubMed DOI
Arundell L, Fletcher E, Salmon J, Veitch J, Hinkley T. A systematic review of the prevalence of sedentary behavior during the after-school period among children aged 5-18 years. Int J Behav Nutr Phys Act. 2016;13(1):93. doi: 10.1186/s12966-016-0419-1. PubMed DOI PMC
Atkin AJ, Gorely T, Biddle SJH, Marshall SJ, Cameron N. Critical hours: physical activity and sedentary behavior of adolescents after school. Pediatr Exerc Sci. 2008;20(4):446. doi: 10.1123/pes.20.4.446. PubMed DOI
Hegarty LM, Mair JL, Kirby K, Murtagh E, Murphy MH. School-based interventions to reduce sedentary behaviour in children: a systematic review. AIMS Public Health. 2016;3(3):520–541. doi: 10.3934/publichealth.2016.3.520. PubMed DOI PMC
Beets MW, Beighle A, Erwin HE, Huberty JL. After-school program impact on physical activity and fitness: a meta-analysis. Am J Prev Med. 2009;36(6):527–537. doi: 10.1016/j.amepre.2009.01.033. PubMed DOI
Gába A, Pedišić Ž, Štefelová N, Dygrýn J, Hron K, Dumuid D, Tremblay M. Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis. BMC Pediatr. 2020;20(1):147. doi: 10.1186/s12887-020-02036-6. PubMed DOI PMC
Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, Tremblay MS. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian Health Measures Survey. BMC Public Health. 2013;13(1):200. doi: 10.1186/1471-2458-13-200. PubMed DOI PMC
Carson V, Stone M, Faulkner G. Patterns of sedentary behavior and weight status among children. Pediatr Exerc Sci. 2014;26(1):95–102. doi: 10.1123/pes.2013-0061. PubMed DOI
Donnelly JE, Greene JL, Gibson CA, Smith BK, Washburn RA, Sullivan DK, DuBose K, Mayo MS, Schmelzle KH, Ryan JJ, et al. Physical Activity Across the Curriculum (PAAC): a randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Prev Med. 2009;49(4):336–341. doi: 10.1016/j.ypmed.2009.07.022. PubMed DOI PMC
Sarmiento OL, Lemoine P, Gonzalez SA, Broyles ST, Denstel KD, Larouche R, Onywera V, Barreira TV, Chaput JP, Fogelholm M, et al. Relationships between active school transport and adiposity indicators in school-age children from low-, middle- and high-income countries. Int J Obes. 2015;5(2):S107–SS14. doi: 10.1038/ijosup.2015.27. PubMed DOI PMC
Cairney J, Veldhuizen S. Organized sport and physical activity participation and body mass index in children and youth: a longitudinal study. Prev Med Rep. 2017;6:336–338. doi: 10.1016/j.pmedr.2017.04.005. PubMed DOI PMC
Morrissey B, Taveras E, Allender S, Strugnell C. Sleep and obesity among children: a systematic review of multiple sleep dimensions. Pediatr Obes. 2020;15(4):e12619. doi: 10.1111/ijpo.12619. PubMed DOI PMC
Dumuid D, Stanford TE, Pedišić Ž, Maher C, Lewis LK, Martín-Fernández J-A, Katzmarzyk PT, Chaput J-P, Fogelholm M, Standage M, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18(1):311. doi: 10.1186/s12889-018-5207-1. PubMed DOI PMC
Contardo Ayala AM, Salmon J, Dunstan DW, Arundell L, Timperio A. Does light-intensity physical activity moderate the relationship between sitting time and adiposity markers in adolescents? J Sport Health Sci. 2020: [Published Ahead of Print]. 10.1016/j.jshs.2020.04.002. PubMed PMC
Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J Sci Med Sport. 2015;18(3):294–298. doi: 10.1016/j.jsams.2014.03.008. PubMed DOI
Jones MA, Skidmore PM, Stoner L, Harrex H, Saeedi P, Black K, Barone GB. Associations of accelerometer-measured sedentary time, sedentary bouts, and physical activity with adiposity and fitness in children. J Sport Sci. 2020;38(1):114–120. doi: 10.1080/02640414.2019.1685842. PubMed DOI
Talarico R, Janssen I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. Int J Obes. 2018;42(8):1508–1514. doi: 10.1038/s41366-018-0053-x. PubMed DOI
The Goldilocks Day for healthy adiposity measures among children and adolescents
Associations of novel 24-h accelerometer-derived metrics with adiposity in children and adolescents