Compositional data analysis for physical activity, sedentary time and sleep research
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28555522
DOI
10.1177/0962280217710835
Knihovny.cz E-zdroje
- Klíčová slova
- Compositional data analysis, multicollinearity, physical activity, sedentary behaviour, sleep,
- MeSH
- cvičení * MeSH
- dítě MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- obezita dětí a dospívajících * MeSH
- sedavý životní styl * MeSH
- spánek * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
Department for Health University of Bath Bath UK
Department of Exercise Science Syracuse University Syracuse NY USA
Department of Food and Environmental Sciences Helsingin Yliopisto Helsinki Finland
Department of Human Biology University of Cape Town Cape Town South Africa
Department of Kinesiology University of Massachusetts Amherst MA USA
Dept Informàtica Matemàtica Aplicada i Estadística Universitat de Girona Girona Spain
Faculdade de Desporto Universidade do Porto Porto Portugal
Faculty of Medicine Universidad de los Andes Bogota Colombia
Institute of Sport Exercise and Active Living Victoria University Melbourne Australia
Pennington Biomedical Research Center Baton Rouge LA USA
School of Health Sciences University of South Australia Adelaide Australia
School of Mathematical Sciences University of Adelaide Adelaide Australia
Citace poskytuje Crossref.org
Robust principal component analysis for compositional tables
Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis
Compositional Data Analysis in Time-Use Epidemiology: What, Why, How
Robust Compositional Analysis of Physical Activity and Sedentary Behaviour Data