Adiposity and changes in movement-related behaviors in older adult women in the context of the built environment: a protocol for a prospective cohort study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-16423S
Grantová Agentura České Republiky
PubMed
31727040
PubMed Central
PMC6857272
DOI
10.1186/s12889-019-7905-8
PII: 10.1186/s12889-019-7905-8
Knihovny.cz E-zdroje
- Klíčová slova
- Causality, Health risk behaviors, Healthy aging, Regression analysis, Risk factors,
- MeSH
- adipozita * MeSH
- cvičení * MeSH
- hmotnostní přírůstek MeSH
- index tělesné hmotnosti MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- následné studie MeSH
- obezita komplikace MeSH
- prospektivní studie MeSH
- průřezové studie MeSH
- sedavý životní styl * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- tuková tkáň metabolismus MeSH
- výzkumný projekt MeSH
- zdravé chování * MeSH
- životní prostředí - projekt * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In older adults, sedentary behaviors increase while physical activity decreases over time following the compositional nature of 24-h behaviors. These changes in movement-related behaviors (MRBs) might be associated with unhealthy weight gain and several health comorbidities. However, information is lacking on how obesity influences longitudinal changes in the composition of MRBs in older adults. Furthermore, the moderating effect of the built environment on prospective associations between obesity and MRBs in older adults is not fully understood. Therefore, using an integrated time-use approach, this study aims to identify prospective associations between obesity and MRBs together with an assessment of the moderating effect of the built environment in elderly women. METHODS: The study was designed as a prospective 7-year follow-up study. It is based on two previous cross-sectional studies that enable the use of participant data (women aged 60+ years, n = 409) as a baseline dataset in the current study. All methods designed for 7-year follow-up are based on previous studies. The data collection comprises device-based measurement of MRBs (ActiGraph GT1M accelerometer), objective assessment of body adiposity (multi-frequency bioelectrical impedance analysis), subjective assessment of the built environment (NEWS-A questionnaire), and other possible confounding factors. Time spent in sedentary behavior, light physical activity, and moderate-to-vigorous physical activity will be used as three components in a composition reflecting individual MRBs. In linear multiple compositional regression analysis assessing the prospective association between obesity and MRBs, the 7-year follow-up composition of the three mentioned components represents the dependent variable. The 7-year changes in the percentage of body fat (body adiposity), baseline composition of MRBs, and parameters of the built environment represent regressors. DISCUSSION: This study will use an integrated time-use approach to explore causality from obesity to device-measured behaviors in older women. The design and respective analysis consider the compositional nature of MRBs data and the potential moderating effects of various factors. A comprehensive assessment of causality may help to develop multilevel interventional models that enhance physical activity in older adults.
Zobrazit více v PubMed
World Health Organization. World report on ageing and health. Geneve, Switzerland: World Health Organization; 2015.
Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Heal. 2018;6(10):e1077–e1086. doi: 10.1016/S2214-109X(18)30357-7. PubMed DOI
Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–2642. doi: 10.1016/S0140-6736(17)32129-3. PubMed DOI PMC
Chodzko-Zajko W, Schwingel A, Chae HP. Successful aging: the role of physical activity. Am J Lifestyle Med. 2009;3(1):20–28. doi: 10.1177/1559827608325456. DOI
Anderson LH, Martinson BC, Crain AL, Pronk NP, Whitebird RR, O’Connor PJ, et al. Health care charges associated with physical inactivity, overweight, and obesity. Prev Chronic Dis. 2005;2(4):A09. PubMed PMC
Bensimhon DR, Kraus WE, Donahue MP. Obesity and physical activity: a review. Am Heart J. 2006;151(3):598–603. doi: 10.1016/j.ahj.2005.03.005. PubMed DOI
Ross R, Janssen I. Physical activity, total and regional obesity: Dose-response considerations. Med Sci Sport Exerc. 2001;33(Supplement):S521–S527. doi: 10.1097/00005768-200106001-00023. PubMed DOI
Pelclová J, Gába A, Tlučáková L, Pośpiech D. Association between physical activity (PA) guidelines and body composition variables in middle-aged and older women. Arch Gerontol Geriatr. 2012;55(2):e14–e20. doi: 10.1016/j.archger.2012.06.014. PubMed DOI
Golubic R, Ekelund U, Wijndaele K, Luben R, Khaw K-T, Wareham NJ, et al. Rate of weight gain predicts change in physical activity levels: a longitudinal analysis of the EPIC-Norfolk cohort. Int J Obes. 2013;37(3):404–409. doi: 10.1038/ijo.2012.58. PubMed DOI PMC
Lakerveld J, Dunstan D, Bot S, Salmon J, Dekker J, Nijpels G, et al. Abdominal obesity, TV-viewing time and prospective declines in physical activity. Prev Med (Baltim) 2011;53(4–5):299–302. doi: 10.1016/j.ypmed.2011.07.012. PubMed DOI
Tucker JM, Tucker LA, LeCheminant J, Bailey B. Obesity increases risk of declining physical activity over time in women: a prospective cohort study. Obesity. 2013;21(12):E715–E720. doi: 10.1002/oby.20415. PubMed DOI
Petersen L, Schnohr P, Sørensen TIA. Longitudinal study of the long-term relation between physical activity and obesity in adults. Int J Obes. 2004;28(1):105–112. doi: 10.1038/sj.ijo.0802548. PubMed DOI
Pulsford RM, Stamatakis E, Britton AR, Brunner EJ, Hillsdon MM. Sitting behavior and obesity: evidence from the Whitehall II study. Am J Prev Med. 2013;44(2):132–138. doi: 10.1016/j.amepre.2012.10.009. PubMed DOI PMC
van der Berg JD, Bosma H, Caserotti P, Eiriksdottir G, Arnardottir NY, Martin KR, et al. Midlife determinants associated with sedentary behavior in old age. Med Sci Sport Exerc. 2014;46(7):1359–1365. doi: 10.1249/MSS.0000000000000246. PubMed DOI PMC
Guo W, Key TJ, Reeves GK. Accelerometer compared with questionnaire measures of physical activity in relation to body size and composition: a large cross-sectional analysis of UK biobank. BMJ Open. 2019;9(1):e024206. doi: 10.1136/bmjopen-2018-024206. PubMed DOI PMC
Gába A, Přidalová M. Diagnostic performance of body mass index to identify adiposity in women. Eur J Clin Nutr. 2016;70(8):898–903. doi: 10.1038/ejcn.2015.211. PubMed DOI
Gomes GA, Reis RS, Parra DC, Ribeiro I, Hino AA, Hallal PC, et al. Walking for leisure among adults from three Brazilian cities and its association with perceived environment attributes and personal factors. Int J Behav Nutr Phys Act. 2011;8(1):111. doi: 10.1186/1479-5868-8-111. PubMed DOI PMC
Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322. doi: 10.1146/annurev.publhealth.27.021405.102100. PubMed DOI
Sallis JF, Owen N, Fisher EB. Ecological models of health behavior. In: Glanz K, Rimer BK, Viswanath K, editors. Health behavior and health education: theory, research, and practice. 4. San Francisco: Jossey-Bass; 2008. pp. 465–485.
Balfour JL, Kaplan GA. Neighborhood environment and loss of physical function in older adults: evidence from the Alameda County study. Am J Epidemiol. 2002;155(6):507–515. doi: 10.1093/aje/155.6.507. PubMed DOI
Yen IH, Michael YL, Perdue L. Neighborhood environment in studies of health of older adults. Am J Prev Med. 2009;37(5):455–463. doi: 10.1016/j.amepre.2009.06.022. PubMed DOI PMC
King AC, Sallis JF, Frank LD, Saelens BE, Cain K, Conway TL, et al. Aging in neighborhoods differing in walkability and income: associations with physical activity and obesity in older adults. Soc Sci Med. 2011;73(10):1525–1533. doi: 10.1016/j.socscimed.2011.08.032. PubMed DOI PMC
Berke EM, Koepsell TD, Moudon AV, Hoskins RE, Larson EB. Association of the built environment with physical activity and obesity in older persons. Am J Public Health. 2007;97(3):486–492. doi: 10.2105/AJPH.2006.085837. PubMed DOI PMC
Sallis JF, Cerin E, Conway TL, Adams MA, Frank LD, Pratt M, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):2207–2217. doi: 10.1016/S0140-6736(15)01284-2. PubMed DOI PMC
Pelclová J, Frömel K, Cuberek R. Gender-specific associations between perceived neighbourhood walkability and meeting walking recommendations when walking for transport and recreation for Czech inhabitants over 50 years of age. Int J Environ Res Public Health. 2013;11(1):527–536. doi: 10.3390/ijerph110100527. PubMed DOI PMC
Li F, Harmer PA, Cardinal BJ, Bosworth M, Acock A, Johnson-Shelton D, et al. Built environment, adiposity, and physical activity in adults aged 50–75. Am J Prev Med. 2008;35(1):38–46. doi: 10.1016/j.amepre.2008.03.021. PubMed DOI PMC
Michael YL, Gold R, Perrin N, Hillier TA. Built environment and change in body mass index in older women. Health Place. 2013;22:7–10. doi: 10.1016/j.healthplace.2013.02.001. PubMed DOI PMC
Michael YL, Nagel CL, Gold R, Hillier TA. Does change in the neighborhood environment prevent obesity in older women? Soc Sci Med. 2014;102:129–137. doi: 10.1016/j.socscimed.2013.11.047. PubMed DOI PMC
Sofková T, Pridalová M, Mitáš J, Pelclová J. The level of neighborhood walkability in a place of residence and its effect on body composition in obese and overweight women. Cent Eur J Public Health. 2013;21(4):184–189. doi: 10.21101/cejph.a3849. PubMed DOI
Baert V, Gorus E, Mets T, Geerts C, Bautmans I. Motivators and barriers for physical activity in the oldest old: a systematic review. Ageing Res Rev. 2011;10(4):464–474. doi: 10.1016/j.arr.2011.04.001. PubMed DOI
Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes. 2008;32(6):949–958. doi: 10.1038/ijo.2008.25. PubMed DOI PMC
Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis. 1990;10(4):497–511. doi: 10.1161/01.ATV.10.4.497. PubMed DOI
Carlson JA, Sallis JF, Conway TL, Saelens BE, Frank LD, Kerr J, et al. Interactions between psychosocial and built environment factors in explaining older adults’ physical activity. Prev Med (Baltim) 2012;54(1):68–73. doi: 10.1016/j.ypmed.2011.10.004. PubMed DOI PMC
Ding D, Gebel K. Built environment, physical activity, and obesity: what have we learned from reviewing the literature? Health Place. 2012;18(1):100–105. doi: 10.1016/j.healthplace.2011.08.021. PubMed DOI
Chastin SFM, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984. doi: 10.1371/journal.pone.0139984. PubMed DOI PMC
Dumuid D, Stanford TE, Martin-Fernández JA, Pedišić Ž, Maher CA, Lewis LK, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2017;27(12):3726–3738. doi: 10.1177/0962280217710835. PubMed DOI
Pedišić Ž, Dumuid D, Olds TS. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49(2):135–145. doi: 10.26582/k.49.2.14. DOI
Aitchison J. The statistical analysis of compositional data. J R Stat Soc. 1982;44(2):139–177.
Gába A, Kapuš O, Pelclová J, Riegerová J. The relationship between accelerometer-determined physical activity (PA) and body composition and bone mineral density (BMD) in postmenopausal women. Arch Gerontol Geriatr. 2012;54(3):e315–e321. doi: 10.1016/j.archger.2012.02.001. PubMed DOI
Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021. PubMed DOI
World Health Organization. Physical status: The use and interpretation of anthropometry - report of a WHO Expert Committee. Geneve, Switzerland: World Health Organization; 1995. PubMed
Kuk JL, Saunders TJ, Davidson LE, Ross R. Age-related changes in total and regional fat distribution. Ageing Res Rev. 2009;8(4):339–348. doi: 10.1016/j.arr.2009.06.001. PubMed DOI
Cohen AK, Rai M, Rehkopf DH, Abrams B. Educational attainment and obesity: a systematic review. Obes Rev. 2013;14(12):989–1005. doi: 10.1111/obr.12062. PubMed DOI PMC
Pikhart H, Bobak M, Malyutina S, Pajak A, Kubínová R, Marmot M. Obesity and education in three countries of the central and Eastern Europe: the HAPIEE study. Cent Eur J Public Health. 2007;15(4):140–142. doi: 10.21101/cejph.a3452. PubMed DOI
Imai K, Gregg EW, Chen YJ, Zhang P, de Rekeneire N, Williamson DF. The association of BMI with functional status and self-rated health in US adults. Obesity. 2008;16(2):402–408. doi: 10.1038/oby.2007.70. PubMed DOI
Clair C, Chiolero A, Faeh D, Cornuz J, Marques-Vidal P, Paccaud F, et al. Dose-dependent positive association between cigarette smoking, abdominal obesity and body fat: cross-sectional data from a population-based survey. BMC Public Health. 2011;11(1):23. doi: 10.1186/1471-2458-11-23. PubMed DOI PMC
Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and analysis of compositional data. Chichester: Wiley; 2015.
Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2019;28(3):846–857. doi: 10.1177/0962280217737805. PubMed DOI
Gába A, Kapuš O, Cuberek R, Botek M. Comparison of multi- and single-frequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in post-menopausal women: effects of body mass index and accelerometer-determined physical activity. J Hum Nutr Diet. 2015;28(4):390–400. doi: 10.1111/jhn.12257. PubMed DOI
Cerin E, Saelens BE, Sallis JF, Frank LD. Neighborhood environment walkability scale: validity and development of a short form. Med Sci Sports Exerc. 2006;38(9):1682–1691. doi: 10.1249/01.mss.0000227639.83607.4d. PubMed DOI
Štefelová N, Dygrýn J, Hron K, Gába A, Rubín L, Palarea-Albaladejo J. Robust compositional analysis of physical activity and sedentary behaviour data. Int J Environ Res Public Health. 2018;15(10):2248. doi: 10.3390/ijerph15102248. PubMed DOI PMC
Pedisic Z, Grunseit A, Ding D, Chau JY, Banks E, Stamatakis E, et al. High sitting time or obesity: which came first? Bidirectional association in a longitudinal study of 31,787 Australian adults. Obesity. 2014;22(10):2126–2130. doi: 10.1002/oby.20817. PubMed DOI PMC
Dumuid D, Lewis LK, Olds TS, Maher C, Bondarenko C, Norton L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: a compositional isotemporal substitution analysis. Maturitas. 2018;110:104–110. doi: 10.1016/j.maturitas.2018.02.003. PubMed DOI
McGregor D, Carson V, Palarea-Albaladejo J, Dall P, Tremblay M, Chastin SFM. Compositional analysis of the associations between 24-h movement Behaviours and health indicators among adults and older adults from the Canadian health measure survey. Int J Environ Res Public Health. 2018;15(8):1779. doi: 10.3390/ijerph15081779. PubMed DOI PMC
Pelclová J, Štefelová N, Hodonská J, Dygrýn J, Gába A, Zając-Gawlak I. Reallocating time from sedentary behavior to light and moderate-to-vigorous physical activity: what has a stronger association with adiposity in older adult women? Int J Environ Res Public Health. 2018;15(7):1444. doi: 10.3390/ijerph15071444. PubMed DOI PMC
Grgic J, Dumuid D, Bengoechea EG, Shrestha N, Bauman A, Olds T, et al. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. Int J Behav Nutr Phys Act. 2018;15(1):69. doi: 10.1186/s12966-018-0691-3. PubMed DOI PMC
Tuckett AG, Banchoff AW, Winter SJ, King AC. The built environment and older adults: a literature review and an applied approach to engaging older adults in built environment improvements for health. Int J Older People Nursing. 2018;13(1):12171. doi: 10.1111/opn.12171. PubMed DOI
Garfinkel-Castro A, Kim K, Hamidi S, Ewing R. Obesity and the built environment at different urban scales: examining the literature. Nutr Rev. 2017;75(suppl 1):51–61. doi: 10.1093/nutrit/nuw037. PubMed DOI
Martinson BC, Crain AL, Sherwood NE, Hayes MG, Pronk NP, O’Connor PJ. Population reach and recruitment bias in a maintenance RCT in physically active older adults. J Phys Act Health. 2010;7(1):127–135. doi: 10.1123/jpah.7.1.127. PubMed DOI PMC