Reallocating Time from Sedentary Behavior to Light and Moderate-to-Vigorous Physical Activity: What Has a Stronger Association with Adiposity in Older Adult Women?

. 2018 Jul 09 ; 15 (7) : . [epub] 20180709

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29987233

This study is the first to use compositional data analysis to investigate movement behaviors of elderly women and their relationships with fat mass percentage (FM%). The focus of the study is on the associations of time reallocations from sedentary behavior (SB) to light physical activity (LIPA) or moderate-to-vigorous physical activity (MVPA) with adiposity. Over 400 older adult women were recruited as part of the cross-sectionally conducted measurements of older adults aged 60+ in Central European countries. An accelerometer was used to assess daily movement behaviors. Body mass index (BMI) and fat mass percentage (FM%) were assessed as adiposity indicators using InBody 720 MFBIA. Using LS-regression, we found positive relationships of BMI and FM% with SB (relative to remaining movement behaviors) (p < 0.001 for both), while their relationship with MVPA (relative to remaining movement behaviors) were negative (p < 0.001 for both). The estimated BMI and FM% associated with a 30-min SB-to-MVPA reallocation were reduced by 1.5 kg/m² and 2.2 percentage points, respectively, whereas they were not reduced significantly with the reallocation of 30 min from SB to LIPA. The findings highlight that SB and MVPA, but not LIPA, are significantly associated with adiposity in elderly women. The reallocation of time from SB to MVPA could be advocated in weight loss interventions in older women.

Zobrazit více v PubMed

World Health Organization (WHO) World Report on Ageing and Health. WHO; Geneva, Switzerland: 2015.

Doak C.M., Wijnhoven T.M.A., Schokker D.F., Visscher T.L.S., Seidell J.C. Age standardization in mapping adult overweight and obesity trends in the WHO European Region. Obes. Rev. 2012;13:174–191. doi: 10.1111/j.1467-789X.2011.00943.x. PubMed DOI

Hallal P.C., Andersen L.B., Bull F.C., Guthold R., Haskell W., Ekelund U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–257. doi: 10.1016/S0140-6736(12)60646-1. PubMed DOI

Franklin B.A., Brinks J., Sternburgh L. Move more, sit less: A first-line, public health preventive strategy? Prev. Cardiol. 2010;13:203–208. doi: 10.1111/j.1751-7141.2010.00075.x. PubMed DOI

Dunstan D.W., Howard B., Healy G.N., Owen N. Too much sitting-A health hazard. Diabetes Res. Clin. Pract. 2012;97:368–376. doi: 10.1016/j.diabres.2012.05.020. PubMed DOI

Dumuid D., Stanford T.E., Martin-Fernández J.-A., Pedišić Ž., Maher C.A., Lewis L.K., Hron K., Katzmarzyk P.T., Chaput J.-P., Fogelholm M., et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2017:1–13. doi: 10.1177/0962280217710835. PubMed DOI

Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research-The focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46:135–146.

Pedišić Ž., Dumuid D., Olds T.S. Integrating sleep, sedentary behaviour, and physical activity research in the emerging fied of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:252–269.

Chastin S.F.M., Palarea-Albaladejo J., Dontje M.L., Skelton D.A. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS ONE. 2015;10:e0139984. doi: 10.1371/journal.pone.0139984. PubMed DOI PMC

Dumuid D., Lewis L.K., Olds T.S., Maher C., Bondarenko C., Norton L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis. Maturitas. 2018;110:104–110. doi: 10.1016/j.maturitas.2018.02.003. PubMed DOI

Carson V., Tremblay M.S., Chastin S.F.M. Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among Canadian preschool-aged children using compositional analyses. BMC Public Health. 2017;17:848. doi: 10.1186/s12889-017-4852-0. PubMed DOI PMC

Dumuid D., Stanford T.E., Pedišić Ž., Maher C., Lewis L.K., Martín-Fernández J.A., Katzmarzyk P.T., Chaput J.P., Fogelholm M., Standage M., et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: A compositional data analysis approach. BMC Public Health. 2018;18:1–11. doi: 10.1186/s12889-018-5207-1. PubMed DOI PMC

Dumuid D., Olds T., Lewis L.K., Martin-Fernández J.A., Barreira T., Broyles S., Chaput J.P., Fogelholm M., Hu G., Kuriyan R., et al. The adiposity of children is associated with their lifestyle behaviours: A cluster analysis of school-aged children from 12 nations. Pediatr. Obes. 2018;13:111–119. doi: 10.1111/ijpo.12196. PubMed DOI

Recio-Rodríguez J.I., Sanchez-Aguadero N., Rodríguez-Sánchez E., Martinez-Vizcaino V., Martin-Cantera C., Patino-Alonso M.C., Maderuelo-Fernandez J.A., Gómez-Marcos M.A., Garcia-Ortiz L. Physical activity and adiposity among older adults of the EVIDENT study. J. Aging Phys. Act. 2017;25:254–260. doi: 10.1123/japa.2016-0065. PubMed DOI

Hill J., Wyatt H. Role of physical activity in preventing and treating obesity. J. Appl. Physiol. 2005:765–770. doi: 10.1152/japplphysiol.00137.2005. PubMed DOI

Fairclough S.J., Dumuid D., Taylor S., Curry W., McGrane B., Stratton G., Maher C., Olds T. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. Int. J. Behav. Nutr. Phys. Act. 2017;14:1–12. doi: 10.1186/s12966-017-0521-z. PubMed DOI PMC

Carson V., Tremblay M.S., Chaput J., Chastin S.F.M. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses 1. Appl. Physiol. Nutr. Metab. 2016;302:294–302. doi: 10.1139/apnm-2016-0026. PubMed DOI

Troiano R., Berrigan D., Dodd K., Mâsse L., Tilert T., Mcdowell M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008;40:181–188. doi: 10.1249/mss.0b013e31815a51b3. PubMed DOI

Tudor-Locke C., Camhi S., Troiano R. A catalog of rules, variables, and definitions applied to accelerometer data in the national health and nutrition examination survey, 2003–2006. Prev. Chronic Dis. 2012;9:1–16. doi: 10.5888/pcd9.110332. PubMed DOI PMC

Zajac-Gawlak I., Pośpiech D., Kroemeke A., Mossakowska M., Gába A., Pelclová J., Přidalová M., Kłapcińska B. Physical activity, body composition and general health status of physically active students of the University of the Third Age (U3A) Arch. Gerontol. Geriatr. 2016;64:66–74. doi: 10.1016/j.archger.2016.01.008. PubMed DOI

Zając-Gawlak I., Kłapcińska B., Kroemeke A., Pośpiech D., Pelclová J., Přidalová M. Associations of visceral fat area and physical activity levels with the risk of metabolic syndrome in postmenopausal women. Biogerontology. 2017;18:357–366. doi: 10.1007/s10522-017-9693-9. PubMed DOI PMC

Pelclová J., Gába A., Tlučáková L., PoŚpiech D. Association between physical activity (PA) guidelines and body composition variables in middle-aged and older women. Arch. Gerontol. Geriatr. 2012;55:e14–e20. doi: 10.1016/j.archger.2012.06.014. PubMed DOI

Gába A., Kapuš O., Pelclová J., Riegerová J. The relationship between accelerometer-determined physical activity (PA) and body composition and bone mineral density (BMD) in postmenopausal women. Arch. Gerontol. Geriatr. 2012;54:e315–e321. doi: 10.1016/j.archger.2012.02.001. PubMed DOI

Freedson P.S., Melanson E., Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998;30:777–781. doi: 10.1097/00005768-199805000-00021. PubMed DOI

Gába A., Přidalová M. Diagnostic performance of body mass index to identify adiposity in women. Eur. J. Clin. Nutr. 2016;70:898–903. doi: 10.1038/ejcn.2015.211. PubMed DOI

Gába A., Kapuš O., Cuberek R., Botek M. Comparison of multi- and single-frequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in post-menopausal women: Effects of body mass index and accelerometer-determined physical activity. J. Hum. Nutr. Diet. 2014;28:390–400. doi: 10.1111/jhn.12257. PubMed DOI

Pawlowsky-Glahn V., Egozcue J.J., Tolosana-Delgado R. Modeling and Analysis of Compositional Data. John Wiley & Sons; Hoboken, NJ, USA: 2015.

Kuk J.L., Saunders T.J., Davidson L.E., Ross R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 2009;8:339–348. doi: 10.1016/j.arr.2009.06.001. PubMed DOI

Cohen A.K., Rai M., Rehkopf D.H., Abrams B. Educational attainment and obesity: A systematic review. Obes. Rev. 2013;14:989–1005. doi: 10.1111/obr.12062. PubMed DOI PMC

Pikhart H., Bobak M., Malyutina S., Pajak A., Kubínová R., Marmot M., Kubínová R. Obesity and education in three countries of the central and Eastern Europe: The HAPIEE study. Cent. Eur. J. Public Health. 2007;15:140–142. PubMed

Imai K., Gregg E.W., Chen Y.J., Zhang P., Rekeneire N., Williamson D.F. The association of BMI with functional status and self-rated health in US adults. Obesity. 2008;16:402–408. doi: 10.1038/oby.2007.70. PubMed DOI

Clair C., Chiolero A., Faeh D., Cornuz J., Marques-Vidal P., Paccaud F., Mooser V., Waeber G., Vollenweider P. Dose-dependent positive association between cigarette smoking, abdominal obesity and body fat: Cross-sectional data from a population-based survey. BMC Public Health. 2011;11:23. doi: 10.1186/1471-2458-11-23. PubMed DOI PMC

Department of Health of Australian Goverment Australia’s Physical Activity and Sedentary Behaviour Guidelines for Adults (18–64 Years) [(accessed on 20 January 2018)];2014 Available online: http://www.health.gov.au/internet/main/publishing.nsf/content/health-pubhlth-strateg-phys-act-guidelines.

World Health Organization . Global Recommendations on Physical Activity for Health. World Helath Organization; Geneva, Switzerland: 2010. PubMed

Larsen R.N., Kingwell B.A., Sethi P., Cerin E., Owen N., Dunstan D.W. Breaking up prolonged sitting reduces resting blood pressure in overweight/obese adults. Nutr. Metab. Cardiovasc. Dis. 2014;24:976–982. doi: 10.1016/j.numecd.2014.04.011. PubMed DOI

Buman M.P., Hekler E.B., Haskell W.L., Pruitt L., Conway T.L., Cain K.L., Sallis J.F., Saelens B.E., Frank L.D., King A.C. Objective light-intensity physical activity associations with rated health in older adults. Am. J. Epidemiol. 2010;172:1155–1165. doi: 10.1093/aje/kwq249. PubMed DOI PMC

Jefferis B.J., Parsons T.J., Sartini C., Ash S., Lennon L.T., Wannamethee S.G., Lee I.M., Whincup P.H. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. Int. J. Behav. Nutr. Phys. Act. 2016;13 doi: 10.1186/s12966-016-0361-2. PubMed DOI PMC

Guidry M.A., Blanchard B.E., Thompson P.D., Maresh C.M., Seip R.L., Taylor A.L., Pescatello L.S. The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am. Heart J. 2006;151:3–10. doi: 10.1016/j.ahj.2006.03.010. PubMed DOI

Sabia S., Cogranne P., van Hees V.T., Bell J.A., Elbaz A., Kivimaki M., Singh-Manoux A. Physical activity and adiposity markers at older ages: Accelerometer Vs questionnaire data. J. Am. Med. Dir. Assoc. 2015;16:438.e7–438.e13. doi: 10.1016/j.jamda.2015.01.086. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace