miRNA in blood-brain barrier repair: role of extracellular vesicles in stroke recovery
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39990970
PubMed Central
PMC11842324
DOI
10.3389/fncel.2025.1503193
Knihovny.cz E-zdroje
- Klíčová slova
- acute ischemic stroke, blood-brain barrier, blood-brain barrier integrity, exosome, extracellular vesicle, mesenchymal stem cell, miRNA, tight junction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ischemic stroke is a leading cause of mortality and long-term disability globally. One of its aspects is the breakdown of the blood-brain barrier (BBB). The disruption of BBB's integrity during stroke exacerbates neurological damage and hampers therapeutic intervention. Recent advances in regenerative medicine suggest that mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) show promise for restoring BBB integrity. This review explores the potential of MSC-derived EVs in mediating neuroprotective and reparative effects on the BBB after ischemic stroke. We highlight the molecular cargo of MSC-derived EVs, including miRNAs, and their role in enhancing angiogenesis, promoting the BBB and neural repair, and mitigating apoptosis. Furthermore, we discuss the challenges associated with the clinical translation of MSC-derived EV therapies and the possibilities of further enhancing EVs' innate protective qualities. Our findings underscore the need for further research to optimize the therapeutic potential of EVs and establish their efficacy and safety in clinical settings.
Zobrazit více v PubMed
Arif S., Moulin V. J. (2023). Extracellular vesicles on the move: traversing the complex matrix of tissues. Eur. J. Cell Biol. 102:151372. doi: 10.1016/j.ejcb.2023.151372, PMID: PubMed DOI
Armulik A., Genové G., Mäe M., Nisancioglu M. H., Wallgard E., Niaudet C., et al. . (2010). Pericytes regulate the blood-brain barrier. Nature 468, 557–561. doi: 10.1038/nature09522, PMID: PubMed DOI
Bang O. Y., Kim E. H. (2019). Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and Progress. Front. Neurol. 10:211. doi: 10.3389/fneur.2019.00211, PMID: PubMed DOI PMC
Bao H., Mao S., Xiaowei H., Li L., Tao H., Zhou J., et al. . (2024). Exosomal MiR – 486 derived from bone marrow mesenchymal stem cells promotes angiogenesis following cerebral ischemic injury by regulating the PTEN/AKT pathway. Sci. Rep. 14:18086. doi: 10.1038/s41598-024-69172-2, PMID: PubMed DOI PMC
Bartel D. P. (2018). Metazoan MicroRNAs. Cell 173, 20–51. doi: 10.1016/j.cell.2018.03.006, PMID: PubMed DOI PMC
Bell R. D., Winkler E. A., Sagare A. P., Singh I., LaRue B., Deane R., et al. . (2010). Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427. doi: 10.1016/j.neuron.2010.09.043, PMID: PubMed DOI PMC
Boon R. A., Vickers K. C. (2013). Intercellular transport of MicroRNAs. Arterioscler. Thromb. Vasc. Biol. 33, 186–192. doi: 10.1161/ATVBAHA.112.300139, PMID: PubMed DOI PMC
Bosch S., De Beaurepaire L., Allard M., Mosser M., Heichette C., Chrétien D., et al. . (2016). Trehalose prevents aggregation of exosomes and Cryodamage. Sci. Rep. 6:36162. doi: 10.1038/srep36162, PMID: PubMed DOI PMC
Budgude P., Kale V., Vaidya A. (2021). Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using Trehalose maintains their ability to expand hematopoietic stem cells in vitro. Cryobiology 98, 152–163. doi: 10.1016/j.cryobiol.2020.11.009, PMID: PubMed DOI
Burki T. (2024). 2024 Nobel Prize awarded for work on microRNAs. The Lancet, 404, 1507–1508. doi: 10.1016/S0140-6736(24)02303-1 PubMed DOI
Carden D. L., Granger D. N. (2000). Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 190, 255–266. doi: 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6 PubMed DOI
Cepparulo P., Brancaccio P., Sirabella R., Anzilotti S., Guida N., Laudati G., et al. . (2024). MiR135a administration ameliorates brain ischemic damage by preventing TRPM7 activation during brain ischemia. CNS Neurosci. Ther. 30, e14448–e14449. doi: 10.1111/cns.14448, PMID: PubMed DOI PMC
Chang L. H., Wu S. C., Chen C. H., Chen J. W., Huang W. C., Wu C. W., et al. . (2023). Exosomes derived from hypoxia-cultured human adipose stem cells alleviate articular chondrocyte inflammaging and post-traumatic osteoarthritis progression. Int. J. Mol. Sci. 24:13414. doi: 10.3390/ijms241713414, PMID: PubMed DOI PMC
Charoenviriyakul C., Takahashi Y., Nishikawa M., Takakura Y. (2018). Preservation of exosomes at room temperature using Lyophilization. Int. J. Pharm. 553, 1–7. doi: 10.1016/j.ijpharm.2018.10.032, PMID: PubMed DOI
Chen Z., Fan T., Zhao X., Zhang Z. (2021). Depleting SOX2 improves ischemic stroke via lncRNA PVT1/microRNA-24-3p/STAT3 axis. Mol. Med. 27:107. doi: 10.1186/s10020-021-00346-8, PMID: PubMed DOI PMC
Chen M., Li X., Zhang X., He X., Lai L., Liu Y., et al. . (2015). The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. J. Neuroinflammation 12:61. doi: 10.1186/s12974-015-0284-x, PMID: PubMed DOI PMC
Chen S., Shao L., Ma L. (2021). Cerebral edema formation after stroke: emphasis on blood–brain barrier and the lymphatic drainage system of the brain. Front. Cell. Neurosci. 15:716825. doi: 10.3389/fncel.2021.716825, PMID: PubMed DOI PMC
Chung A. G., Frye J. B., Zbesko J. C., Constantopoulos E., Hayes M., Figueroa A. G., et al. . (2018). Liquefaction of the brain following stroke shares a similar molecular and morphological profile with atherosclerosis and mediates secondary neurodegeneration in an Osteopontin-dependent mechanism. ENeuro 5, ENEURO.0076–ENEU18.2018. doi: 10.1523/ENEURO.0076-18.2018, PMID: PubMed DOI PMC
Danielson K. M., Estanislau J., Tigges J., Toxavidis V., Camacho V., Felton E. J., et al. . (2016). Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One 11:e0144678. doi: 10.1371/journal.pone.0144678, PMID: PubMed DOI PMC
de Almeida Moraes M., de Jesus P. A. P., Muniz L. S., Costa G. A., Pereira L. V., Nascimento L. M., et al. . (2023). Ischemic stroke mortality and time for hospital arrival: analysis of the first 90 days. Revista Da Escola de Enfermagem 57:e20220309. doi: 10.1590/1980-220X-REEUSP-2022-0309en PubMed DOI PMC
Deb P., Sharma S., Hassan K. M. (2010). Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 17, 197–218. doi: 10.1016/j.pathophys.2009.12.001 PubMed DOI
Ding D. C., Shyu W. C., Lin S. Z. (2011). Mesenchymal stem cells. Cell Transplant. 20, 5–14. doi: 10.3727/096368910X PubMed DOI
Do P. T., Chung Che W., Chiang Y. H., Chaur Jong H., Chen K. Y. (2021). Mesenchymal stem/stromal cell therapy in blood-brain barrier preservation following ischemia: molecular mechanisms and prospects. Int. J. Mol. Sci. 22:10045. doi: 10.3390/ijms221810045, PMID: PubMed DOI PMC
Doeppner T. R., Herz J., Görgens A., Schlechter J., Ludwig A.-K., Radtke S., et al. . (2015). Extracellular vesicles improve post-stroke Neuroregeneration and prevent Postischemic immunosuppression. Stem Cells Transl. Med. 4, 1131–1143. doi: 10.5966/sctm.2015-0078, PMID: PubMed DOI PMC
Dong C., Chen M., Cai B., Zhang C., Xiao G., Luo W. (2022). Mesenchymal stem cell-derived exosomes improved cerebral infarction via transferring miR-23a-3p to activate microglia. NeuroMolecular Med. 24, 290–298. doi: 10.1007/s12017-021-08686-8, PMID: PubMed DOI
Donnan G. A., Fisher M., Macleod M., Davis S. M. (2008). Stroke. The Lancet 371, 1612–1623. doi: 10.1016/S0140-6736(08)60694-7 PubMed DOI
Eigenmann D. E., Xue G., Kim K. S., Moses A. V., Hamburger M., Oufir M.. (2013). “Comparative study of four immortalized human brain capillary endothelial cell lines, HCMEC/D3, HBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies FLUIDS AND BARRIERS OF TH.” Fluids and Barriers of the CNS. Available online at: http://www.fluidsbarrierscns.com/content/10/1/33 PubMed PMC
Eirin A., Zhu X.-y., Puranik A. S., Woollard J. R., Tang H., Dasari S., et al. . (2017). Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One 12:e0174303. doi: 10.1371/journal.pone.0174303 PubMed DOI PMC
Eulalio A., Huntzinger E., Nishihara T., Rehwinkel J., Fauser M., Izaurralde E. (2009). Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32. doi: 10.1261/rna.1399509, PMID: PubMed DOI PMC
Fennema E. M., Renard A. J. S., Leusink A., van Blitterswijk C. A., de Boer J. (2009). The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Acta Orthopaedica, 80, 618–621. doi: 10.3109/17453670903278241 PubMed DOI PMC
Gao L., Sun Y., Zhang X., Ma D., Xie A., Wang E., et al. . (2023). Wnt3a-loaded extracellular vesicles promote alveolar epithelial regeneration after lung injury. Adv. Sci. 10:e2206606. doi: 10.1002/advs.202206606, PMID: PubMed DOI PMC
Gregorius J., Wang C., Stambouli O., Hussner T., Qi Y., Tertel T., et al. . (2021). Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res. Cardiol. 116:40. doi: 10.1007/s00395-021-00881-9, PMID: PubMed DOI PMC
Groot M., Lee H. (2020). Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells 9:1044. doi: 10.3390/cells9041044, PMID: PubMed DOI PMC
Guan X., Zhang Y., Gareev I., Beylerli O., Li X., Guitian L., et al. . (2021). MiR-499a prevents astrocytes mediated inflammation in ischemic stroke by targeting PTEN. Non-Coding RNA Res. 6, 146–152. doi: 10.1016/j.ncrna.2021.09.002, PMID: PubMed DOI PMC
Han D., Dong X., Zheng D., Nao J. (2020). MiR-124 and the underlying therapeutic promise of neurodegenerative disorders. Front. Pharmacol. 10:1555. doi: 10.3389/fphar.2019.01555, PMID: PubMed DOI PMC
Han Q. F., Li W. J., Kai Shun H., Gao J., Zhai W. L., Yang J. H., et al. . (2022). Exosome biogenesis: Machinery, regulation, and therapeutic implications in Cancer. Mol. Cancer 21:207. doi: 10.1186/s12943-022-01671-0, PMID: PubMed DOI PMC
Harati R., Hammad S., Tlili A., Mahfood M., Mabondzo A., Hamoudi R. (2022). miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability. PLoS One 17:262152. doi: 10.1371/journal.pone.0262152, PMID: PubMed DOI PMC
Harvey B. K., Airavaara M., Hinzman J., Wires E. M., Chiocco M. J., Howard D. B., et al. . (2011). Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6:e22135. doi: 10.1371/journal.pone.0022135, PMID: PubMed DOI PMC
He W., Meng D. L., Yang D., Chen Q. Y., Li L., Wang L. H. (2024). MiRNA-192-5p targets Dyrk1a to attenuate cerebral injury in MCAO mice by suppressing neuronal apoptosis and Neuroinflammation. Folia Histochem. Cytobiol. 61, 217–230. doi: 10.5603/fhc.96703, PMID: PubMed DOI
Heit B. S., Chu A., Sane A., Featherstone D. E., Park T. J., Larson J. (2023). Tonic extracellular glutamate and Ischaemia: glutamate antiporter system x c − regulates anoxic depolarization in Hippocampus. J. Physiol. 601, 607–629. doi: 10.1113/JP283880, PMID: PubMed DOI PMC
Hessvik N. P., Llorente A. (2018). Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75, 193–208. doi: 10.1007/s00018-017-2595-9, PMID: PubMed DOI PMC
Hou Y., Xie Y., Liu X., Chen Y., Zhou F., Yang B. (2024). Oxygen glucose deprivation-pretreated astrocyte-derived exosomes attenuates intracerebral hemorrhage (ICH)-induced BBB disruption through miR-27a-3p /ARHGAP25/Wnt/β-catenin axis. Fluids Barriers CNS 21:8. doi: 10.1186/s12987-024-00510-2, PMID: PubMed DOI PMC
Hsieh W. J., Lin F. M., Da Huang H., Wang H. (2014). Investigating microRNA-target interaction-supported tissues in human cancer tissues based on miRNA and target gene expression profiling. PLoS One 9:e95697. doi: 10.1371/journal.pone.0095697, PMID: PubMed DOI PMC
Hu H., Hu X., Li L., Fang Y., Yang Y., Gu J., et al. . (2022). Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of MiR-21-5p. Biomol. Ther. 12:883. doi: 10.3390/biom12070883, PMID: PubMed DOI PMC
Hu Y., Zheng Y., Wang T., Jiao L., Luo Y. (2022). VEGF, a key factor for blood brain barrier injury after cerebral ischemic stroke. Aging Dis. 13, 647–654. doi: 10.14336/AD.2021.1121, PMID: PubMed DOI PMC
Huang W., Fan Y., Jiang C., Jiao J., Ji W., Huang H., et al. . (2023). Marrow mesenchymal stem cell-derived exosomes upregulate astrocytic glutamate Transporter-1 expression via miR-124/mTOR pathway against oxygen-glucose deprivation/reperfusion injury. J. Integr. Neurosci. 22:144. doi: 10.31083/j.jin2206144, PMID: PubMed DOI
Ichimura A., Ruike Y., Terasawa K., Tsujimoto G. (2011). MiRNAs and regulation of cell signaling. FEBS J. 278, 1610–1618. doi: 10.1111/j.1742-4658.2011.08087.x PubMed DOI
Iqbal K., Muhammad B. K., Hifsa N., YuXuan G., Mujahid M., Kiyani M. M., et al. . (2024). The impact of the blood-brain barrier and its dysfunction in Parkinson’s disease: Contributions to pathogenesis and progression. ACS Omega 9, 45663–45672. doi: 10.1021/acsomega.4c06546, PMID: PubMed DOI PMC
Jiang X., Andjelkovic A. V., Zhu L., Yang T., Bennett M. V. L., Chen J., et al. . (2018). Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress Neurobiol. 163-164, 144–171. doi: 10.1016/j.pneurobio.2017.10.001, PMID: PubMed DOI PMC
Kang T., Atukorala I., Mathivanan S. (2021). Biogenesis of extracellular vesicles. Subcell. Biochem. 97, 19–43. doi: 10.1007/978-3-030-67171-6_2, PMID: PubMed DOI
Kehl T., Backes C., Kern F., Fehlmann T., Ludwig N., Meese E., et al. . (2017). About miRNAs, miRNA seeds, target genes and target pathways. Available online at: www.impactjournals.com/oncotarget PubMed PMC
Kodam S. P., Ullah M. (2021). “Diagnostic and therapeutic potential of extracellular vesicles” in Technology in Cancer Research and Treatment, vol. 20 (Thousand Oaks, CA: SAGE Publications Inc.). PubMed PMC
Krawczenko A., Klimczak A. (2022). Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to Angiogenic processes in tissue regeneration. Int. J. Mol. Sci. 23:2425. doi: 10.3390/ijms23052425, PMID: PubMed DOI PMC
Kristián T., Siesjö B. K. (1996). Calcium-related damage in ischemia. Life Sci. 59, 357–367. doi: 10.1016/0024-3205(96)00314-1, PMID: PubMed DOI
Kurozumi K., Nakamura K., Tamiya T., Kawano Y., Ishii K., Kobune M., et al. . (2005). Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther. 11, 96–104. doi: 10.1016/j.ymthe.2004.09.020, PMID: PubMed DOI
Kurz C., Walker L., Rauchmann B. S., Perneczky R. (2022). Dysfunction of the blood–brain barrier in Alzheimer’s disease: evidence from human studies. Neuropathol. Appl. Neurobiol. 48:12782. doi: 10.1111/nan.12782, PMID: PubMed DOI
Lee D. H., Ng J., Kim S. B., Sonn C. H., Lee K. M., Han S. B. (2015). Effect of donor age on the proportion of mesenchymal stem cells derived from anterior cruciate ligaments. PLoS ONE, 10. doi: 10.1371/journal.pone.0117224 PubMed DOI PMC
Lewis B. P., Shih I., Jones-Rhoades M. W., Bartel D. P., Burge C. B. (2003). Prediction of mammalian MicroRNA targets. Cell 115, 787–798. doi: 10.1016/s0092-8674(03)01018-3, PMID: PubMed DOI
Li X., Bi T., Yang S. (2022). Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered 13, 3029–3042. doi: 10.1080/21655979.2021.2012402, PMID: PubMed DOI PMC
Li W., Chen Z., Chin I., Chen Z., Dai H. (2018). The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions. Curr. Neuropharmacol. 16, 1375–1384. doi: 10.2174/1570159x16666180222164809, PMID: PubMed DOI PMC
Li Y., Chen J., Quan X., Chen Y., Han Y., Chen J., et al. . (2024). Extracellular vesicles maintain blood-brain barrier integrity by the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after ischemic stroke. Int J Nanomedicine 19, 1451–1467. doi: 10.2147/IJN.S444009 PubMed DOI PMC
Li C., Fei K., Tian F., Gao C., Song Y. (2019). Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction. Croat. Med. J. 60, 439–448. doi: 10.3325/cmj.2019.60.439, PMID: PubMed DOI PMC
Li Y., Liu B., Zhao T., Quan X., Han Y., Cheng Y., et al. . (2023). Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J. Nanobiotechnol. 21:70. doi: 10.1186/s12951-023-01828-z, PMID: PubMed DOI PMC
Liang Z., Lou Y., Hao Y., Li H., Feng J., Liu S. (2023). The relationship of astrocytes and microglia with different stages of ischemic stroke. Curr. Neuropharmacol. 21, 2465–2480. doi: 10.2174/1570159x21666230718104634, PMID: PubMed DOI PMC
Liang X., Zhang L., Wang S., Han Q., Zhao R. C. (2016). Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring MiR-125a. J Cell Sci 129, 2182–2189. doi: 10.1242/jcs.170373 PubMed DOI
Liu C., Chen X., Liu Y., Sun L., Yu Z., Ren Y., et al. . (2023). Engineering extracellular matrix-bound Nanovesicles secreted by three-dimensional human mesenchymal stem cells. Adv. Healthc. Mater. 12:e2301112. doi: 10.1002/adhm.202301112, PMID: PubMed DOI PMC
Liu D., Ye Y., Xu L., Yuan W., Zhang Q. (2018). Icariin and mesenchymal stem cells synergistically promote angiogenesis and neurogenesis after cerebral ischemia via PI3K and ERK1/2 pathways. Biomed. Pharmacother. 108, 663–669. doi: 10.1016/j.biopha.2018.09.071, PMID: PubMed DOI
Liu Y., Zhao Y., Min Y., Guo K., Chen Y., Huang Z., et al. . (2022). Effects and mechanisms of bone marrow mesenchymal stem cell transplantation for treatment of ischemic stroke in hypertensive rats. Int. J. Stem Cells 15, 217–226. doi: 10.15283/ijsc21136, PMID: PubMed DOI PMC
Mu J., Bakreen A., Juntunen M., Korhonen P., Oinonen E., Cui L., et al. . (2019). Combined adipose tissue-derived mesenchymal stem cell therapy and rehabilitation in experimental stroke. Front. Neurol. 10:235. doi: 10.3389/fneur.2019.00235, PMID: PubMed DOI PMC
Murphy S. J. X., Werring D. J. (2020). Stroke: causes and clinical features. Medicine, 48, 561–566. doi: 10.1016/j.mpmed.2020.06.002 PubMed DOI PMC
Mo Z., Zeng Z., Liu Y., Zeng L., Fang J., Ma Y. (2022). Activation of Wnt/Beta-catenin signaling pathway as a promising therapeutic candidate for cerebral ischemia/reperfusion injury. Front. Pharmacol. 13:914537. doi: 10.3389/fphar.2022.914537, PMID: PubMed DOI PMC
Moñivas Gallego E., Zurita Castillo M. (2024). Mesenchymal stem cell therapy in ischemic stroke trials. A systematic review. Regenerat. Ther. 27, 301, 26–306. doi: 10.1016/j.reth.2024.03.026, PMID: PubMed DOI PMC
Morales D. X., Grineski S. E., Collins T. W. (2016). Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Physiol. Behav. 176, 139–148. doi: 10.1007/s10571-016-0366-z.Introduction PubMed DOI PMC
Naeli P., Winter T., Hackett A. P., Alboushi L., Jafarnejad S. M. (2023). The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J. 290, 2508–2524. doi: 10.1111/febs.16422, PMID: PubMed DOI
Nawashiro H., Brenner M., Fukui S., Shima K. (2000). High susceptibility to cerebral ischemia in GFAP-null mice. J. Cerebral Blood Flow Alld Metabol. 20, 1040–1044. doi: 10.1097/00004647-200007000-00003, PMID: PubMed DOI
Nian K., Harding I. C., Herman I. M., Ebong E. E. (2020). Blood-brain barrier damage in ischemic stroke and its regulation by endothelial Mechanotransduction. Front. Physiol. 11:605398. doi: 10.3389/fphys.2020.605398, PMID: PubMed DOI PMC
Nitta T., Hata M., Gotoh S., Seo Y., Sasaki H., Hashimoto N., et al. . (2003). Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660. doi: 10.1083/jcb.200302070, PMID: PubMed DOI PMC
Obermeier B., Daneman R., Ransohoff R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596. doi: 10.1038/nm.3407, PMID: PubMed DOI PMC
Phelps J., Hart D. A., Mitha A. P., Duncan N. A., Sen A. (2023). Physiological oxygen conditions enhance the Angiogenic properties of extracellular vesicles from human mesenchymal stem cells. Stem Cell Research and Therapy 14:218. doi: 10.1186/s13287-023-03439-9, PMID: PubMed DOI PMC
Phelps J., Hart D. A., Mitha A. P., Duncan N. A., Sen A. (2024). Extracellular vesicles generated by mesenchymal stem cells in stirred suspension bioreactors promote angiogenesis in human-brain-derived endothelial cells. Int. J. Mol. Sci. 25:5219. doi: 10.3390/ijms25105219, PMID: PubMed DOI PMC
Profaci C. P., Munji R. N., Pulido R. S., Daneman R. (2020). The blood–brain barrier in health and disease: important unanswered questions. J. Exp. Med. 217:e20190062. doi: 10.1084/jem.20190062, PMID: PubMed DOI PMC
Qi D., Lin H., Bingying H., Wei Y. (2023). A review on in vitro model of the blood-brain barrier (BBB) based on HCMEC/D3 cells. J. Control. Release 358, 78–97. doi: 10.1016/j.jconrel.2023.04.020, PMID: PubMed DOI
Qi L., Wang F., Sun X., Li H., Zhang K., Li J. (2024). Recent advances in tissue repair of the blood-brain barrier after stroke. J. Tissue Eng. 15:551. doi: 10.1177/20417314241226551, PMID: PubMed DOI PMC
Qin C., Yang S., Chu Y. H., Zhang H., Pang X. W., Chen L., et al. . (2022). Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Targeted Ther. 7:215. doi: 10.1038/s41392-022-01064-1, PMID: PubMed DOI PMC
Qin B., Zhang Q., Hu X. M., Mi T. Y., Yu H. Y., Liu S. S., et al. . (2020). How does temperature play a role in the storage of extracellular vesicles? J. Cell. Physiol. 235, 7663–7680. doi: 10.1002/jcp.29700, PMID: PubMed DOI
Qiu L., Cai Y., Geng Y., Yao X., Wang L., Cao H., et al. . (2022). Mesenchymal stem cell-derived extracellular vesicles attenuate tPA-induced blood–brain barrier disruption in murine ischemic stroke models. Acta Biomater. 154, 424–442. doi: 10.1016/j.actbio.2022.10.022, PMID: PubMed DOI
Rädler J., Gupta D., Zickler A., Andaloussi S. E. L. (2023). Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Molecular Therapy 31, 1231–1250. doi: 10.1016/j.ymthe.2023.02.013, PMID: PubMed DOI PMC
Rahi V., Kaundal R. K. (2024). Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci. doi: 10.1016/j.lfs.2024.122651 PubMed DOI
Rautiainen S., Laaksonen T., Koivuniemi R. (2021). Angiogenic effects and crosstalk of adipose-derived mesenchymal stem/stromal cells and their extracellular vesicles with endothelial cells. Int. J. Mol. Sci. 22:890. doi: 10.3390/ijms221910890, PMID: PubMed DOI PMC
Rohden F., Teixeira L. V., Bernardi L. P., Ferreira P. C. L., Colombo M., Teixeira G. R., et al. . (2021). Functional recovery caused by human adipose tissue mesenchymal stem cell-derived extracellular vesicles administered 24 h after stroke in rats. Int. J. Mol. Sci. 22:12860. doi: 10.3390/ijms222312860, PMID: PubMed DOI PMC
Rong Y., Wang Z., Tang P., Wang J., Ji C., Chang J., et al. . (2023). Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials 23, 328–342. doi: 10.1016/j.bioactmat.2022.11.011, PMID: PubMed DOI PMC
Rosenberg G. A. (2012). Neurological diseases in relation to the blood-brain barrier. J. Cereb. Blood Flow Metab. 32, 1139–1151. doi: 10.1038/jcbfm.2011.197, PMID: PubMed DOI PMC
Santos Samary C., Pelosi P., Leme Silva P., Rieken Macedo Rocco P. (2016). Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Critical Care 20:391: 391. doi: 10.1186/s13054-016-1573-1, PMID: PubMed DOI PMC
Saunders N. R., Dziegielewska K. M., Møllgård K., Habgood M. D. (2015). Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front. Neurosci. 9:385. doi: 10.3389/fnins.2015.00385, PMID: PubMed DOI PMC
Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63. doi: 10.1038/nature07228, PMID: PubMed DOI
Shen X. Y., Gao Z. K., Han Y., Yuan M., Guo Y. S., Bi X. (2021). Activation and role of astrocytes in ischemic stroke. Front. Cellular Neurosci. 15:755955. doi: 10.3389/fncel.2021.755955 PubMed DOI PMC
Shen Y., Gu J., Liu Z., Xu C., Qian S., Zhang X., et al. . (2018). Inhibition of HIF-1α reduced blood brain barrier damage by regulating MMP-2 and VEGF during acute cerebral ischemia. Front. Cell. Neurosci. 12:288. doi: 10.3389/fncel.2018.00288, PMID: PubMed DOI PMC
Stamatovic S. M., Johnson A. M., Keep R. F., Andjelkovic A. V. (2016). Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641. doi: 10.1080/21688370.2016.1154641, PMID: PubMed DOI PMC
Sweeney M. D., Zhao Z., Montagne A., Nelson A. R., Zlokovic B. V. (2019). From physiology to disease and Back. Physiol. Rev. 99, 21–78. doi: 10.1152/physrev.00050.2017, PMID: PubMed DOI PMC
Tanaka E., Ogawa Y., Mukai T., Sato Y., Hamazaki T., Nagamura-Inoue T., et al. . (2018). Dose-dependent effect of intravenous administration of human umbilical cord-derived mesenchymal stem cells in neonatal stroke mice. Front. Neurol. 9:133. doi: 10.3389/fneur.2018.00133, PMID: PubMed DOI PMC
Tang G., Liu Y., Zhang Z., Lu Y., Wang Y., Huang J., et al. . (2014). Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 32, 3150–3162. doi: 10.1002/stem.1808, PMID: PubMed DOI
Théry C., Witwer K. W., Aikawa E., Alcaraz M. J., Anderson J. D., Andriantsitohaina R., et al. . (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracellular Vesicles 7:1535750. doi: 10.1080/20013078.2018.1535750, PMID: PubMed DOI PMC
Tian J., Yao H., Liu Y., Wang X., Wu J., Wang J., et al. . (2022). Extracellular vesicles from bone marrow stromal cells reduce the impact of stroke on glial cell activation and blood brain-barrier permeability via a putative miR-124/PRX1 signalling pathway. Eur. J. Neurosci. 56, 3786–3805. doi: 10.1111/ejn.15669, PMID: PubMed DOI
Tsao C. C., Baumann J., Huang S. F., Kindler D., Schroeter A., Kachappilly N., et al. . (2021). Pericyte hypoxia-inducible Factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 24, 823–842. doi: 10.1007/s10456-021-09796-4, PMID: PubMed DOI PMC
Wang W., Ji Z., Yuan C., Yang Y. (2021). Mechanism of human umbilical cord mesenchymal stem cells derived-extracellular vesicle in cerebral ischemia-reperfusion injury. Neurochem. Res. 46, 455–467. doi: 10.1007/S11064-020-03179-9, PMID: PubMed DOI
Wang H., Naghavi M., Allen C., Barber R. M., Bhutta Z. A., Carter A., et al. . (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388, 1459–1544. doi: 10.1016/S0140-6736(16)31012-1, PMID: PubMed DOI PMC
Waseem A., Saudamini R. H., Janowski M., Raza S. S. (2023). Mesenchymal stem cell-derived exosomes: shaping the next era of stroke treatment. Neuroprotection 1, 99–116. doi: 10.1002/nep3.30, PMID: PubMed DOI PMC
Wei W., Li H., Deng Y., Zheng X., Zhou Y., Xue X. (2023). The combination of Alisma and Atractylodes ameliorates cerebral ischaemia/reperfusion injury by negatively regulating astrocyte-derived exosomal miR-200a-3p/141-3p by targeting SIRT1. J. Ethnopharmacol. 313:116597. doi: 10.1016/j.jep.2023.116597, PMID: PubMed DOI
Weinl C., Vega S. C., Riehle H., Stritt C., Calaminus C., Wolburg H., et al. . (2015). Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc. Natl. Acad. Sci. USA 112, 9914–9919. doi: 10.1073/pnas.1509047112, PMID: PubMed DOI PMC
Welsh J. A., Goberdhan D. C. I., O’Driscoll L., Buzas E. I., Blenkiron C., Bussolati B., et al. . (2024). Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracellular Vesicles 13:e12404. doi: 10.1002/jev2.12404, PMID: PubMed DOI PMC
WHO . (n.d.) Stroke, Cerebrovascular accident. Available online at: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html [Epub ahead of print].
Winkler E. A., Bell R. D., Zlokovic B. V. (2011). Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405. doi: 10.1038/nn.2946, PMID: PubMed DOI PMC
Wu D., Chen Q., Chen X., Han F., Chen Z., Wang Y. (2023). The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Targeted Ther. 8:217: 217. doi: 10.1038/s41392-023-01481-w, PMID: PubMed DOI PMC
Xin H., Katakowski M., Wang F., Qian J. Y., Liu X. S., Ali M. M., et al. . (2017a). MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48, 747–753. doi: 10.1161/STROKEAHA.116.015204, PMID: PubMed DOI PMC
Xin H., Wang F., Li Y., Lu Q. E., Cheung W. L., Zhang Y., et al. . (2017b). Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 26, 243–257. doi: 10.3727/096368916X693031, PMID: PubMed DOI PMC
Xing C., Arai K., Lo E. H., Hommel M. (2012). Pathophysiologic cascades in ischemic stroke. In. Int. J. Stroke 7, 378–385. doi: 10.1111/j.1747-4949.2012.00839.x, PMID: PubMed DOI PMC
Xu R., Bai Y., Min S., Xu X., Tang T., Ju S. (2020). In vivo monitoring and assessment of exogenous mesenchymal stem cell-derived exosomes in mice with ischemic stroke by molecular imaging. Int. J. Nanomedicine 15, 9011–9023. doi: 10.2147/IJN.S271519, PMID: PubMed DOI PMC
Xue L. X., Shu L. Y., Wang H. M., Kai Li L., Huang L. G., Xiang J. Y., et al. . (2023). MiR-181b promotes angiogenesis and neurological function recovery after ischemic stroke. Neural Regen. Res. 18, 1983–1989. doi: 10.4103/1673-5374.367957, PMID: PubMed DOI PMC
Yang Y., Cai Y., Zhang Y., Liu J., Xu Z. (2018). Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen–glucose deprivation in vitro through MicroRNA-181b/TRPM7 Axis. J. Mol. Neurosci. 65, 74–83. doi: 10.1007/s12031-018-1071-9 PubMed DOI
Yang Y., Li C., Yang S., Zhang Z., Bai X., Tang H., et al. . (2024). Cepharanthine maintains integrity of the blood-brain barrier (BBB) in stroke via the VEGF/VEGFR2/ZO-1 signaling pathway. Aging 16, 5905–5915. doi: 10.18632/aging.205678, PMID: PubMed DOI PMC
Yang J., Zhang X., Chen X., Wang L., Yang G. (2017). Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 7, 278–287. doi: 10.1016/j.omtn.2017.04.010, PMID: PubMed DOI PMC
Ye Y. C., Chang Z. H., Wang P., Wang Y. W., Liang J., Chen C., et al. . (2022). Infarct-preconditioning exosomes of umbilical cord mesenchymal stem cells promoted vascular remodeling and neurological recovery after stroke in rats. Stem Cell Res. Ther. 13:378. doi: 10.1186/s13287-022-03083-9, PMID: PubMed DOI PMC
Zhang L., Pei C., Hou D., Yang G., Dan Y. (2022). Inhibition of cerebral ischemia/reperfusion injury by MSCs-derived small extracellular vesicles in rodent models: A systematic review and meta-analysis. Neural Plasticity 2022. doi: 10.1155/2022/3933252, PMID: PubMed DOI PMC
Zhang H., Wu J., Wu J., Fan Q., Zhou J., Wu J., et al. . (2019). Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J. Nanobiotechnol. 17:29. doi: 10.1186/s12951-019-0461-7, PMID: PubMed DOI PMC
Zierfuss B., Prat A., Zierfuss B., Larochelle C. (2024). Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol. 23, 95–109. doi: 10.1016/S1474-4422(23)00377-0, PMID: PubMed DOI