miRNA in blood-brain barrier repair: role of extracellular vesicles in stroke recovery

. 2025 ; 19 () : 1503193. [epub] 20250207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39990970

Ischemic stroke is a leading cause of mortality and long-term disability globally. One of its aspects is the breakdown of the blood-brain barrier (BBB). The disruption of BBB's integrity during stroke exacerbates neurological damage and hampers therapeutic intervention. Recent advances in regenerative medicine suggest that mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) show promise for restoring BBB integrity. This review explores the potential of MSC-derived EVs in mediating neuroprotective and reparative effects on the BBB after ischemic stroke. We highlight the molecular cargo of MSC-derived EVs, including miRNAs, and their role in enhancing angiogenesis, promoting the BBB and neural repair, and mitigating apoptosis. Furthermore, we discuss the challenges associated with the clinical translation of MSC-derived EV therapies and the possibilities of further enhancing EVs' innate protective qualities. Our findings underscore the need for further research to optimize the therapeutic potential of EVs and establish their efficacy and safety in clinical settings.

Zobrazit více v PubMed

Arif S., Moulin V. J. (2023). Extracellular vesicles on the move: traversing the complex matrix of tissues. Eur. J. Cell Biol. 102:151372. doi: 10.1016/j.ejcb.2023.151372, PMID: PubMed DOI

Armulik A., Genové G., Mäe M., Nisancioglu M. H., Wallgard E., Niaudet C., et al. . (2010). Pericytes regulate the blood-brain barrier. Nature 468, 557–561. doi: 10.1038/nature09522, PMID: PubMed DOI

Bang O. Y., Kim E. H. (2019). Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and Progress. Front. Neurol. 10:211. doi: 10.3389/fneur.2019.00211, PMID: PubMed DOI PMC

Bao H., Mao S., Xiaowei H., Li L., Tao H., Zhou J., et al. . (2024). Exosomal MiR – 486 derived from bone marrow mesenchymal stem cells promotes angiogenesis following cerebral ischemic injury by regulating the PTEN/AKT pathway. Sci. Rep. 14:18086. doi: 10.1038/s41598-024-69172-2, PMID: PubMed DOI PMC

Bartel D. P. (2018). Metazoan MicroRNAs. Cell 173, 20–51. doi: 10.1016/j.cell.2018.03.006, PMID: PubMed DOI PMC

Bell R. D., Winkler E. A., Sagare A. P., Singh I., LaRue B., Deane R., et al. . (2010). Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427. doi: 10.1016/j.neuron.2010.09.043, PMID: PubMed DOI PMC

Boon R. A., Vickers K. C. (2013). Intercellular transport of MicroRNAs. Arterioscler. Thromb. Vasc. Biol. 33, 186–192. doi: 10.1161/ATVBAHA.112.300139, PMID: PubMed DOI PMC

Bosch S., De Beaurepaire L., Allard M., Mosser M., Heichette C., Chrétien D., et al. . (2016). Trehalose prevents aggregation of exosomes and Cryodamage. Sci. Rep. 6:36162. doi: 10.1038/srep36162, PMID: PubMed DOI PMC

Budgude P., Kale V., Vaidya A. (2021). Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using Trehalose maintains their ability to expand hematopoietic stem cells in vitro. Cryobiology 98, 152–163. doi: 10.1016/j.cryobiol.2020.11.009, PMID: PubMed DOI

Burki T. (2024). 2024 Nobel Prize awarded for work on microRNAs. The Lancet, 404, 1507–1508. doi: 10.1016/S0140-6736(24)02303-1 PubMed DOI

Carden D. L., Granger D. N. (2000). Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 190, 255–266. doi: 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6 PubMed DOI

Cepparulo P., Brancaccio P., Sirabella R., Anzilotti S., Guida N., Laudati G., et al. . (2024). MiR135a administration ameliorates brain ischemic damage by preventing TRPM7 activation during brain ischemia. CNS Neurosci. Ther. 30, e14448–e14449. doi: 10.1111/cns.14448, PMID: PubMed DOI PMC

Chang L. H., Wu S. C., Chen C. H., Chen J. W., Huang W. C., Wu C. W., et al. . (2023). Exosomes derived from hypoxia-cultured human adipose stem cells alleviate articular chondrocyte inflammaging and post-traumatic osteoarthritis progression. Int. J. Mol. Sci. 24:13414. doi: 10.3390/ijms241713414, PMID: PubMed DOI PMC

Charoenviriyakul C., Takahashi Y., Nishikawa M., Takakura Y. (2018). Preservation of exosomes at room temperature using Lyophilization. Int. J. Pharm. 553, 1–7. doi: 10.1016/j.ijpharm.2018.10.032, PMID: PubMed DOI

Chen Z., Fan T., Zhao X., Zhang Z. (2021). Depleting SOX2 improves ischemic stroke via lncRNA PVT1/microRNA-24-3p/STAT3 axis. Mol. Med. 27:107. doi: 10.1186/s10020-021-00346-8, PMID: PubMed DOI PMC

Chen M., Li X., Zhang X., He X., Lai L., Liu Y., et al. . (2015). The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. J. Neuroinflammation 12:61. doi: 10.1186/s12974-015-0284-x, PMID: PubMed DOI PMC

Chen S., Shao L., Ma L. (2021). Cerebral edema formation after stroke: emphasis on blood–brain barrier and the lymphatic drainage system of the brain. Front. Cell. Neurosci. 15:716825. doi: 10.3389/fncel.2021.716825, PMID: PubMed DOI PMC

Chung A. G., Frye J. B., Zbesko J. C., Constantopoulos E., Hayes M., Figueroa A. G., et al. . (2018). Liquefaction of the brain following stroke shares a similar molecular and morphological profile with atherosclerosis and mediates secondary neurodegeneration in an Osteopontin-dependent mechanism. ENeuro 5, ENEURO.0076–ENEU18.2018. doi: 10.1523/ENEURO.0076-18.2018, PMID: PubMed DOI PMC

Danielson K. M., Estanislau J., Tigges J., Toxavidis V., Camacho V., Felton E. J., et al. . (2016). Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One 11:e0144678. doi: 10.1371/journal.pone.0144678, PMID: PubMed DOI PMC

de Almeida Moraes M., de Jesus P. A. P., Muniz L. S., Costa G. A., Pereira L. V., Nascimento L. M., et al. . (2023). Ischemic stroke mortality and time for hospital arrival: analysis of the first 90 days. Revista Da Escola de Enfermagem 57:e20220309. doi: 10.1590/1980-220X-REEUSP-2022-0309en PubMed DOI PMC

Deb P., Sharma S., Hassan K. M. (2010). Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 17, 197–218. doi: 10.1016/j.pathophys.2009.12.001 PubMed DOI

Ding D. C., Shyu W. C., Lin S. Z. (2011). Mesenchymal stem cells. Cell Transplant. 20, 5–14. doi: 10.3727/096368910X PubMed DOI

Do P. T., Chung Che W., Chiang Y. H., Chaur Jong H., Chen K. Y. (2021). Mesenchymal stem/stromal cell therapy in blood-brain barrier preservation following ischemia: molecular mechanisms and prospects. Int. J. Mol. Sci. 22:10045. doi: 10.3390/ijms221810045, PMID: PubMed DOI PMC

Doeppner T. R., Herz J., Görgens A., Schlechter J., Ludwig A.-K., Radtke S., et al. . (2015). Extracellular vesicles improve post-stroke Neuroregeneration and prevent Postischemic immunosuppression. Stem Cells Transl. Med. 4, 1131–1143. doi: 10.5966/sctm.2015-0078, PMID: PubMed DOI PMC

Dong C., Chen M., Cai B., Zhang C., Xiao G., Luo W. (2022). Mesenchymal stem cell-derived exosomes improved cerebral infarction via transferring miR-23a-3p to activate microglia. NeuroMolecular Med. 24, 290–298. doi: 10.1007/s12017-021-08686-8, PMID: PubMed DOI

Donnan G. A., Fisher M., Macleod M., Davis S. M. (2008). Stroke. The Lancet 371, 1612–1623. doi: 10.1016/S0140-6736(08)60694-7 PubMed DOI

Eigenmann D. E., Xue G., Kim K. S., Moses A. V., Hamburger M., Oufir M.. (2013). “Comparative study of four immortalized human brain capillary endothelial cell lines, HCMEC/D3, HBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies FLUIDS AND BARRIERS OF TH.” Fluids and Barriers of the CNS. Available online at: http://www.fluidsbarrierscns.com/content/10/1/33 PubMed PMC

Eirin A., Zhu X.-y., Puranik A. S., Woollard J. R., Tang H., Dasari S., et al. . (2017). Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One 12:e0174303. doi: 10.1371/journal.pone.0174303 PubMed DOI PMC

Eulalio A., Huntzinger E., Nishihara T., Rehwinkel J., Fauser M., Izaurralde E. (2009). Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32. doi: 10.1261/rna.1399509, PMID: PubMed DOI PMC

Fennema E. M., Renard A. J. S., Leusink A., van Blitterswijk C. A., de Boer J. (2009). The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Acta Orthopaedica, 80, 618–621. doi: 10.3109/17453670903278241 PubMed DOI PMC

Gao L., Sun Y., Zhang X., Ma D., Xie A., Wang E., et al. . (2023). Wnt3a-loaded extracellular vesicles promote alveolar epithelial regeneration after lung injury. Adv. Sci. 10:e2206606. doi: 10.1002/advs.202206606, PMID: PubMed DOI PMC

Gregorius J., Wang C., Stambouli O., Hussner T., Qi Y., Tertel T., et al. . (2021). Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res. Cardiol. 116:40. doi: 10.1007/s00395-021-00881-9, PMID: PubMed DOI PMC

Groot M., Lee H. (2020). Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells 9:1044. doi: 10.3390/cells9041044, PMID: PubMed DOI PMC

Guan X., Zhang Y., Gareev I., Beylerli O., Li X., Guitian L., et al. . (2021). MiR-499a prevents astrocytes mediated inflammation in ischemic stroke by targeting PTEN. Non-Coding RNA Res. 6, 146–152. doi: 10.1016/j.ncrna.2021.09.002, PMID: PubMed DOI PMC

Han D., Dong X., Zheng D., Nao J. (2020). MiR-124 and the underlying therapeutic promise of neurodegenerative disorders. Front. Pharmacol. 10:1555. doi: 10.3389/fphar.2019.01555, PMID: PubMed DOI PMC

Han Q. F., Li W. J., Kai Shun H., Gao J., Zhai W. L., Yang J. H., et al. . (2022). Exosome biogenesis: Machinery, regulation, and therapeutic implications in Cancer. Mol. Cancer 21:207. doi: 10.1186/s12943-022-01671-0, PMID: PubMed DOI PMC

Harati R., Hammad S., Tlili A., Mahfood M., Mabondzo A., Hamoudi R. (2022). miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability. PLoS One 17:262152. doi: 10.1371/journal.pone.0262152, PMID: PubMed DOI PMC

Harvey B. K., Airavaara M., Hinzman J., Wires E. M., Chiocco M. J., Howard D. B., et al. . (2011). Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6:e22135. doi: 10.1371/journal.pone.0022135, PMID: PubMed DOI PMC

He W., Meng D. L., Yang D., Chen Q. Y., Li L., Wang L. H. (2024). MiRNA-192-5p targets Dyrk1a to attenuate cerebral injury in MCAO mice by suppressing neuronal apoptosis and Neuroinflammation. Folia Histochem. Cytobiol. 61, 217–230. doi: 10.5603/fhc.96703, PMID: PubMed DOI

Heit B. S., Chu A., Sane A., Featherstone D. E., Park T. J., Larson J. (2023). Tonic extracellular glutamate and Ischaemia: glutamate antiporter system x c − regulates anoxic depolarization in Hippocampus. J. Physiol. 601, 607–629. doi: 10.1113/JP283880, PMID: PubMed DOI PMC

Hessvik N. P., Llorente A. (2018). Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75, 193–208. doi: 10.1007/s00018-017-2595-9, PMID: PubMed DOI PMC

Hou Y., Xie Y., Liu X., Chen Y., Zhou F., Yang B. (2024). Oxygen glucose deprivation-pretreated astrocyte-derived exosomes attenuates intracerebral hemorrhage (ICH)-induced BBB disruption through miR-27a-3p /ARHGAP25/Wnt/β-catenin axis. Fluids Barriers CNS 21:8. doi: 10.1186/s12987-024-00510-2, PMID: PubMed DOI PMC

Hsieh W. J., Lin F. M., Da Huang H., Wang H. (2014). Investigating microRNA-target interaction-supported tissues in human cancer tissues based on miRNA and target gene expression profiling. PLoS One 9:e95697. doi: 10.1371/journal.pone.0095697, PMID: PubMed DOI PMC

Hu H., Hu X., Li L., Fang Y., Yang Y., Gu J., et al. . (2022). Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of MiR-21-5p. Biomol. Ther. 12:883. doi: 10.3390/biom12070883, PMID: PubMed DOI PMC

Hu Y., Zheng Y., Wang T., Jiao L., Luo Y. (2022). VEGF, a key factor for blood brain barrier injury after cerebral ischemic stroke. Aging Dis. 13, 647–654. doi: 10.14336/AD.2021.1121, PMID: PubMed DOI PMC

Huang W., Fan Y., Jiang C., Jiao J., Ji W., Huang H., et al. . (2023). Marrow mesenchymal stem cell-derived exosomes upregulate astrocytic glutamate Transporter-1 expression via miR-124/mTOR pathway against oxygen-glucose deprivation/reperfusion injury. J. Integr. Neurosci. 22:144. doi: 10.31083/j.jin2206144, PMID: PubMed DOI

Ichimura A., Ruike Y., Terasawa K., Tsujimoto G. (2011). MiRNAs and regulation of cell signaling. FEBS J. 278, 1610–1618. doi: 10.1111/j.1742-4658.2011.08087.x PubMed DOI

Iqbal K., Muhammad B. K., Hifsa N., YuXuan G., Mujahid M., Kiyani M. M., et al. . (2024). The impact of the blood-brain barrier and its dysfunction in Parkinson’s disease: Contributions to pathogenesis and progression. ACS Omega 9, 45663–45672. doi: 10.1021/acsomega.4c06546, PMID: PubMed DOI PMC

Jiang X., Andjelkovic A. V., Zhu L., Yang T., Bennett M. V. L., Chen J., et al. . (2018). Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress Neurobiol. 163-164, 144–171. doi: 10.1016/j.pneurobio.2017.10.001, PMID: PubMed DOI PMC

Kang T., Atukorala I., Mathivanan S. (2021). Biogenesis of extracellular vesicles. Subcell. Biochem. 97, 19–43. doi: 10.1007/978-3-030-67171-6_2, PMID: PubMed DOI

Kehl T., Backes C., Kern F., Fehlmann T., Ludwig N., Meese E., et al. . (2017). About miRNAs, miRNA seeds, target genes and target pathways. Available online at: www.impactjournals.com/oncotarget PubMed PMC

Kodam S. P., Ullah M. (2021). “Diagnostic and therapeutic potential of extracellular vesicles” in Technology in Cancer Research and Treatment, vol. 20 (Thousand Oaks, CA: SAGE Publications Inc.). PubMed PMC

Krawczenko A., Klimczak A. (2022). Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to Angiogenic processes in tissue regeneration. Int. J. Mol. Sci. 23:2425. doi: 10.3390/ijms23052425, PMID: PubMed DOI PMC

Kristián T., Siesjö B. K. (1996). Calcium-related damage in ischemia. Life Sci. 59, 357–367. doi: 10.1016/0024-3205(96)00314-1, PMID: PubMed DOI

Kurozumi K., Nakamura K., Tamiya T., Kawano Y., Ishii K., Kobune M., et al. . (2005). Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther. 11, 96–104. doi: 10.1016/j.ymthe.2004.09.020, PMID: PubMed DOI

Kurz C., Walker L., Rauchmann B. S., Perneczky R. (2022). Dysfunction of the blood–brain barrier in Alzheimer’s disease: evidence from human studies. Neuropathol. Appl. Neurobiol. 48:12782. doi: 10.1111/nan.12782, PMID: PubMed DOI

Lee D. H., Ng J., Kim S. B., Sonn C. H., Lee K. M., Han S. B. (2015). Effect of donor age on the proportion of mesenchymal stem cells derived from anterior cruciate ligaments. PLoS ONE, 10. doi: 10.1371/journal.pone.0117224 PubMed DOI PMC

Lewis B. P., Shih I., Jones-Rhoades M. W., Bartel D. P., Burge C. B. (2003). Prediction of mammalian MicroRNA targets. Cell 115, 787–798. doi: 10.1016/s0092-8674(03)01018-3, PMID: PubMed DOI

Li X., Bi T., Yang S. (2022). Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered 13, 3029–3042. doi: 10.1080/21655979.2021.2012402, PMID: PubMed DOI PMC

Li W., Chen Z., Chin I., Chen Z., Dai H. (2018). The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions. Curr. Neuropharmacol. 16, 1375–1384. doi: 10.2174/1570159x16666180222164809, PMID: PubMed DOI PMC

Li Y., Chen J., Quan X., Chen Y., Han Y., Chen J., et al. . (2024). Extracellular vesicles maintain blood-brain barrier integrity by the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after ischemic stroke. Int J Nanomedicine 19, 1451–1467. doi: 10.2147/IJN.S444009 PubMed DOI PMC

Li C., Fei K., Tian F., Gao C., Song Y. (2019). Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction. Croat. Med. J. 60, 439–448. doi: 10.3325/cmj.2019.60.439, PMID: PubMed DOI PMC

Li Y., Liu B., Zhao T., Quan X., Han Y., Cheng Y., et al. . (2023). Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J. Nanobiotechnol. 21:70. doi: 10.1186/s12951-023-01828-z, PMID: PubMed DOI PMC

Liang Z., Lou Y., Hao Y., Li H., Feng J., Liu S. (2023). The relationship of astrocytes and microglia with different stages of ischemic stroke. Curr. Neuropharmacol. 21, 2465–2480. doi: 10.2174/1570159x21666230718104634, PMID: PubMed DOI PMC

Liang X., Zhang L., Wang S., Han Q., Zhao R. C. (2016). Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring MiR-125a. J Cell Sci 129, 2182–2189. doi: 10.1242/jcs.170373 PubMed DOI

Liu C., Chen X., Liu Y., Sun L., Yu Z., Ren Y., et al. . (2023). Engineering extracellular matrix-bound Nanovesicles secreted by three-dimensional human mesenchymal stem cells. Adv. Healthc. Mater. 12:e2301112. doi: 10.1002/adhm.202301112, PMID: PubMed DOI PMC

Liu D., Ye Y., Xu L., Yuan W., Zhang Q. (2018). Icariin and mesenchymal stem cells synergistically promote angiogenesis and neurogenesis after cerebral ischemia via PI3K and ERK1/2 pathways. Biomed. Pharmacother. 108, 663–669. doi: 10.1016/j.biopha.2018.09.071, PMID: PubMed DOI

Liu Y., Zhao Y., Min Y., Guo K., Chen Y., Huang Z., et al. . (2022). Effects and mechanisms of bone marrow mesenchymal stem cell transplantation for treatment of ischemic stroke in hypertensive rats. Int. J. Stem Cells 15, 217–226. doi: 10.15283/ijsc21136, PMID: PubMed DOI PMC

Mu J., Bakreen A., Juntunen M., Korhonen P., Oinonen E., Cui L., et al. . (2019). Combined adipose tissue-derived mesenchymal stem cell therapy and rehabilitation in experimental stroke. Front. Neurol. 10:235. doi: 10.3389/fneur.2019.00235, PMID: PubMed DOI PMC

Murphy S. J. X., Werring D. J. (2020). Stroke: causes and clinical features. Medicine, 48, 561–566. doi: 10.1016/j.mpmed.2020.06.002 PubMed DOI PMC

Mo Z., Zeng Z., Liu Y., Zeng L., Fang J., Ma Y. (2022). Activation of Wnt/Beta-catenin signaling pathway as a promising therapeutic candidate for cerebral ischemia/reperfusion injury. Front. Pharmacol. 13:914537. doi: 10.3389/fphar.2022.914537, PMID: PubMed DOI PMC

Moñivas Gallego E., Zurita Castillo M. (2024). Mesenchymal stem cell therapy in ischemic stroke trials. A systematic review. Regenerat. Ther. 27, 301, 26–306. doi: 10.1016/j.reth.2024.03.026, PMID: PubMed DOI PMC

Morales D. X., Grineski S. E., Collins T. W. (2016). Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Physiol. Behav. 176, 139–148. doi: 10.1007/s10571-016-0366-z.Introduction PubMed DOI PMC

Naeli P., Winter T., Hackett A. P., Alboushi L., Jafarnejad S. M. (2023). The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J. 290, 2508–2524. doi: 10.1111/febs.16422, PMID: PubMed DOI

Nawashiro H., Brenner M., Fukui S., Shima K. (2000). High susceptibility to cerebral ischemia in GFAP-null mice. J. Cerebral Blood Flow Alld Metabol. 20, 1040–1044. doi: 10.1097/00004647-200007000-00003, PMID: PubMed DOI

Nian K., Harding I. C., Herman I. M., Ebong E. E. (2020). Blood-brain barrier damage in ischemic stroke and its regulation by endothelial Mechanotransduction. Front. Physiol. 11:605398. doi: 10.3389/fphys.2020.605398, PMID: PubMed DOI PMC

Nitta T., Hata M., Gotoh S., Seo Y., Sasaki H., Hashimoto N., et al. . (2003). Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660. doi: 10.1083/jcb.200302070, PMID: PubMed DOI PMC

Obermeier B., Daneman R., Ransohoff R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596. doi: 10.1038/nm.3407, PMID: PubMed DOI PMC

Phelps J., Hart D. A., Mitha A. P., Duncan N. A., Sen A. (2023). Physiological oxygen conditions enhance the Angiogenic properties of extracellular vesicles from human mesenchymal stem cells. Stem Cell Research and Therapy 14:218. doi: 10.1186/s13287-023-03439-9, PMID: PubMed DOI PMC

Phelps J., Hart D. A., Mitha A. P., Duncan N. A., Sen A. (2024). Extracellular vesicles generated by mesenchymal stem cells in stirred suspension bioreactors promote angiogenesis in human-brain-derived endothelial cells. Int. J. Mol. Sci. 25:5219. doi: 10.3390/ijms25105219, PMID: PubMed DOI PMC

Profaci C. P., Munji R. N., Pulido R. S., Daneman R. (2020). The blood–brain barrier in health and disease: important unanswered questions. J. Exp. Med. 217:e20190062. doi: 10.1084/jem.20190062, PMID: PubMed DOI PMC

Qi D., Lin H., Bingying H., Wei Y. (2023). A review on in vitro model of the blood-brain barrier (BBB) based on HCMEC/D3 cells. J. Control. Release 358, 78–97. doi: 10.1016/j.jconrel.2023.04.020, PMID: PubMed DOI

Qi L., Wang F., Sun X., Li H., Zhang K., Li J. (2024). Recent advances in tissue repair of the blood-brain barrier after stroke. J. Tissue Eng. 15:551. doi: 10.1177/20417314241226551, PMID: PubMed DOI PMC

Qin C., Yang S., Chu Y. H., Zhang H., Pang X. W., Chen L., et al. . (2022). Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Targeted Ther. 7:215. doi: 10.1038/s41392-022-01064-1, PMID: PubMed DOI PMC

Qin B., Zhang Q., Hu X. M., Mi T. Y., Yu H. Y., Liu S. S., et al. . (2020). How does temperature play a role in the storage of extracellular vesicles? J. Cell. Physiol. 235, 7663–7680. doi: 10.1002/jcp.29700, PMID: PubMed DOI

Qiu L., Cai Y., Geng Y., Yao X., Wang L., Cao H., et al. . (2022). Mesenchymal stem cell-derived extracellular vesicles attenuate tPA-induced blood–brain barrier disruption in murine ischemic stroke models. Acta Biomater. 154, 424–442. doi: 10.1016/j.actbio.2022.10.022, PMID: PubMed DOI

Rädler J., Gupta D., Zickler A., Andaloussi S. E. L. (2023). Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Molecular Therapy 31, 1231–1250. doi: 10.1016/j.ymthe.2023.02.013, PMID: PubMed DOI PMC

Rahi V., Kaundal R. K. (2024). Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci. doi: 10.1016/j.lfs.2024.122651 PubMed DOI

Rautiainen S., Laaksonen T., Koivuniemi R. (2021). Angiogenic effects and crosstalk of adipose-derived mesenchymal stem/stromal cells and their extracellular vesicles with endothelial cells. Int. J. Mol. Sci. 22:890. doi: 10.3390/ijms221910890, PMID: PubMed DOI PMC

Rohden F., Teixeira L. V., Bernardi L. P., Ferreira P. C. L., Colombo M., Teixeira G. R., et al. . (2021). Functional recovery caused by human adipose tissue mesenchymal stem cell-derived extracellular vesicles administered 24 h after stroke in rats. Int. J. Mol. Sci. 22:12860. doi: 10.3390/ijms222312860, PMID: PubMed DOI PMC

Rong Y., Wang Z., Tang P., Wang J., Ji C., Chang J., et al. . (2023). Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials 23, 328–342. doi: 10.1016/j.bioactmat.2022.11.011, PMID: PubMed DOI PMC

Rosenberg G. A. (2012). Neurological diseases in relation to the blood-brain barrier. J. Cereb. Blood Flow Metab. 32, 1139–1151. doi: 10.1038/jcbfm.2011.197, PMID: PubMed DOI PMC

Santos Samary C., Pelosi P., Leme Silva P., Rieken Macedo Rocco P. (2016). Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Critical Care 20:391: 391. doi: 10.1186/s13054-016-1573-1, PMID: PubMed DOI PMC

Saunders N. R., Dziegielewska K. M., Møllgård K., Habgood M. D. (2015). Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front. Neurosci. 9:385. doi: 10.3389/fnins.2015.00385, PMID: PubMed DOI PMC

Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63. doi: 10.1038/nature07228, PMID: PubMed DOI

Shen X. Y., Gao Z. K., Han Y., Yuan M., Guo Y. S., Bi X. (2021). Activation and role of astrocytes in ischemic stroke. Front. Cellular Neurosci. 15:755955. doi: 10.3389/fncel.2021.755955 PubMed DOI PMC

Shen Y., Gu J., Liu Z., Xu C., Qian S., Zhang X., et al. . (2018). Inhibition of HIF-1α reduced blood brain barrier damage by regulating MMP-2 and VEGF during acute cerebral ischemia. Front. Cell. Neurosci. 12:288. doi: 10.3389/fncel.2018.00288, PMID: PubMed DOI PMC

Stamatovic S. M., Johnson A. M., Keep R. F., Andjelkovic A. V. (2016). Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641. doi: 10.1080/21688370.2016.1154641, PMID: PubMed DOI PMC

Sweeney M. D., Zhao Z., Montagne A., Nelson A. R., Zlokovic B. V. (2019). From physiology to disease and Back. Physiol. Rev. 99, 21–78. doi: 10.1152/physrev.00050.2017, PMID: PubMed DOI PMC

Tanaka E., Ogawa Y., Mukai T., Sato Y., Hamazaki T., Nagamura-Inoue T., et al. . (2018). Dose-dependent effect of intravenous administration of human umbilical cord-derived mesenchymal stem cells in neonatal stroke mice. Front. Neurol. 9:133. doi: 10.3389/fneur.2018.00133, PMID: PubMed DOI PMC

Tang G., Liu Y., Zhang Z., Lu Y., Wang Y., Huang J., et al. . (2014). Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 32, 3150–3162. doi: 10.1002/stem.1808, PMID: PubMed DOI

Théry C., Witwer K. W., Aikawa E., Alcaraz M. J., Anderson J. D., Andriantsitohaina R., et al. . (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracellular Vesicles 7:1535750. doi: 10.1080/20013078.2018.1535750, PMID: PubMed DOI PMC

Tian J., Yao H., Liu Y., Wang X., Wu J., Wang J., et al. . (2022). Extracellular vesicles from bone marrow stromal cells reduce the impact of stroke on glial cell activation and blood brain-barrier permeability via a putative miR-124/PRX1 signalling pathway. Eur. J. Neurosci. 56, 3786–3805. doi: 10.1111/ejn.15669, PMID: PubMed DOI

Tsao C. C., Baumann J., Huang S. F., Kindler D., Schroeter A., Kachappilly N., et al. . (2021). Pericyte hypoxia-inducible Factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 24, 823–842. doi: 10.1007/s10456-021-09796-4, PMID: PubMed DOI PMC

Wang W., Ji Z., Yuan C., Yang Y. (2021). Mechanism of human umbilical cord mesenchymal stem cells derived-extracellular vesicle in cerebral ischemia-reperfusion injury. Neurochem. Res. 46, 455–467. doi: 10.1007/S11064-020-03179-9, PMID: PubMed DOI

Wang H., Naghavi M., Allen C., Barber R. M., Bhutta Z. A., Carter A., et al. . (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388, 1459–1544. doi: 10.1016/S0140-6736(16)31012-1, PMID: PubMed DOI PMC

Waseem A., Saudamini R. H., Janowski M., Raza S. S. (2023). Mesenchymal stem cell-derived exosomes: shaping the next era of stroke treatment. Neuroprotection 1, 99–116. doi: 10.1002/nep3.30, PMID: PubMed DOI PMC

Wei W., Li H., Deng Y., Zheng X., Zhou Y., Xue X. (2023). The combination of Alisma and Atractylodes ameliorates cerebral ischaemia/reperfusion injury by negatively regulating astrocyte-derived exosomal miR-200a-3p/141-3p by targeting SIRT1. J. Ethnopharmacol. 313:116597. doi: 10.1016/j.jep.2023.116597, PMID: PubMed DOI

Weinl C., Vega S. C., Riehle H., Stritt C., Calaminus C., Wolburg H., et al. . (2015). Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc. Natl. Acad. Sci. USA 112, 9914–9919. doi: 10.1073/pnas.1509047112, PMID: PubMed DOI PMC

Welsh J. A., Goberdhan D. C. I., O’Driscoll L., Buzas E. I., Blenkiron C., Bussolati B., et al. . (2024). Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracellular Vesicles 13:e12404. doi: 10.1002/jev2.12404, PMID: PubMed DOI PMC

WHO . (n.d.) Stroke, Cerebrovascular accident. Available online at: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html [Epub ahead of print].

Winkler E. A., Bell R. D., Zlokovic B. V. (2011). Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405. doi: 10.1038/nn.2946, PMID: PubMed DOI PMC

Wu D., Chen Q., Chen X., Han F., Chen Z., Wang Y. (2023). The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Targeted Ther. 8:217: 217. doi: 10.1038/s41392-023-01481-w, PMID: PubMed DOI PMC

Xin H., Katakowski M., Wang F., Qian J. Y., Liu X. S., Ali M. M., et al. . (2017a). MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48, 747–753. doi: 10.1161/STROKEAHA.116.015204, PMID: PubMed DOI PMC

Xin H., Wang F., Li Y., Lu Q. E., Cheung W. L., Zhang Y., et al. . (2017b). Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 26, 243–257. doi: 10.3727/096368916X693031, PMID: PubMed DOI PMC

Xing C., Arai K., Lo E. H., Hommel M. (2012). Pathophysiologic cascades in ischemic stroke. In. Int. J. Stroke 7, 378–385. doi: 10.1111/j.1747-4949.2012.00839.x, PMID: PubMed DOI PMC

Xu R., Bai Y., Min S., Xu X., Tang T., Ju S. (2020). In vivo monitoring and assessment of exogenous mesenchymal stem cell-derived exosomes in mice with ischemic stroke by molecular imaging. Int. J. Nanomedicine 15, 9011–9023. doi: 10.2147/IJN.S271519, PMID: PubMed DOI PMC

Xue L. X., Shu L. Y., Wang H. M., Kai Li L., Huang L. G., Xiang J. Y., et al. . (2023). MiR-181b promotes angiogenesis and neurological function recovery after ischemic stroke. Neural Regen. Res. 18, 1983–1989. doi: 10.4103/1673-5374.367957, PMID: PubMed DOI PMC

Yang Y., Cai Y., Zhang Y., Liu J., Xu Z. (2018). Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen–glucose deprivation in vitro through MicroRNA-181b/TRPM7 Axis. J. Mol. Neurosci. 65, 74–83. doi: 10.1007/s12031-018-1071-9 PubMed DOI

Yang Y., Li C., Yang S., Zhang Z., Bai X., Tang H., et al. . (2024). Cepharanthine maintains integrity of the blood-brain barrier (BBB) in stroke via the VEGF/VEGFR2/ZO-1 signaling pathway. Aging 16, 5905–5915. doi: 10.18632/aging.205678, PMID: PubMed DOI PMC

Yang J., Zhang X., Chen X., Wang L., Yang G. (2017). Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 7, 278–287. doi: 10.1016/j.omtn.2017.04.010, PMID: PubMed DOI PMC

Ye Y. C., Chang Z. H., Wang P., Wang Y. W., Liang J., Chen C., et al. . (2022). Infarct-preconditioning exosomes of umbilical cord mesenchymal stem cells promoted vascular remodeling and neurological recovery after stroke in rats. Stem Cell Res. Ther. 13:378. doi: 10.1186/s13287-022-03083-9, PMID: PubMed DOI PMC

Zhang L., Pei C., Hou D., Yang G., Dan Y. (2022). Inhibition of cerebral ischemia/reperfusion injury by MSCs-derived small extracellular vesicles in rodent models: A systematic review and meta-analysis. Neural Plasticity 2022. doi: 10.1155/2022/3933252, PMID: PubMed DOI PMC

Zhang H., Wu J., Wu J., Fan Q., Zhou J., Wu J., et al. . (2019). Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J. Nanobiotechnol. 17:29. doi: 10.1186/s12951-019-0461-7, PMID: PubMed DOI PMC

Zierfuss B., Prat A., Zierfuss B., Larochelle C. (2024). Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol. 23, 95–109. doi: 10.1016/S1474-4422(23)00377-0, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...