Robust Compositional Analysis of Physical Activity and Sedentary Behaviour Data

. 2018 Oct 14 ; 15 (10) : . [epub] 20181014

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30322203

Although there is an increasing awareness of the suitability of using compositional data methodology in public health research, classical methods of statistical analysis have been primarily used so far. The present study aims to illustrate the potential of robust statistics to model movement behaviour using Czech adolescent data. We investigated: (1) the inter-relationship between various physical activity (PA) intensities, extended to model relationships by age; and (2) the associations between adolescents' PA and sedentary behavior (SB) structure and obesity. These research questions were addressed using three different types of compositional regression analysis-compositional covariates, compositional response, and regression between compositional parts. Robust counterparts of classical regression methods were used to lessen the influence of possible outliers. We outlined the differences in both classical and robust methods of compositional data analysis. There was a pattern in Czech adolescents' movement/non-movement behavior-extensive SB was related to higher amounts of light-intensity PA, and vigorous PA ratios formed the main source of potential aberrant observations; aging is associated with more SB and vigorous PA at the expense of light-intensity PA and moderate-intensity PA. The robust counterparts indicated that they might provide more stable estimates in the presence of outlying observations. The findings suggested that replacing time spent in SB with vigorous PA may be a powerful tool against adolescents' obesity.

Zobrazit více v PubMed

Janssen I., LeBlanc A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010;7:40. doi: 10.1186/1479-5868-7-40. PubMed DOI PMC

World Health Organization (WHO) Physical Activity and Young People. WHO; Geneva, Switzerland: 2015. [(accessed on 19 August 2018)]. Available online: http://www.who.int/dietphysicalactivity/factsheet_young_people/en.

McMahon E.M., Corcoran P., O’Regan G., Keeley H., Cannon M., Carli V., Wasserman C., Hadlaczky G., Sarchiapone M., Apter A., et al. Physical activity in European adolescents and associations with anxiety, depression and well-being. Eur. Child Adolesc. Psychiatry. 2017;26:111–122. doi: 10.1007/s00787-016-0875-9. PubMed DOI

Gába A., Dygrýn J., Mitáš J., Jakubec L., Frömel K. Effect of accelerometer cut-off points on the recommended level of physical activity for obesity prevention in children. PLoS ONE. 2016;11:e0164282. doi: 10.1371/journal.pone.0164282. PubMed DOI PMC

Malina R.M. Physical activity and fitness: Pathways from childhood to adulthood. Am. J. Hum. Biol. 2001;13:162–172. doi: 10.1002/1520-6300(200102/03)13:2<162::AID-AJHB1025>3.0.CO;2-T. PubMed DOI

Telama R., Yang X., Viikari J., Välimäki I., Wanne O., Raitakari O. Physical activity from childhood to adulthood: A 21-year tracking study. Am. J. Prev. Med. 2005;28:267–273. doi: 10.1016/j.amepre.2004.12.003. PubMed DOI

Gába A., Mitáš J., Jakubec L. Associations between accelerometer-measured physical activity and body fatness in school-aged children. Environ. Health Prev. Med. 2017;22:43. doi: 10.1186/s12199-017-0629-4. PubMed DOI PMC

Carson V., Ridgers N.D., Howard B.J., Winkler E.A.H., Healy G.N., Owen N., Dunstan D.W., Salmon J. Light-intensity physical activity and cardiometabolic biomarkers in us adolescents. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0071417. PubMed DOI PMC

Chaput J.P., Saunders T.J., Carson V. Interactions between sleep, movement and other non-movement behaviours in the pathogenesis of childhood obesity. Obes. Rev. 2017;18:7–14. doi: 10.1111/obr.12508. PubMed DOI

Tremblay M., LeBlanc A., Kho M., Saunders T., Larouche R., Colley R., Goldfield G., Connor Gorber S. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011;8:98–119. doi: 10.1186/1479-5868-8-98. PubMed DOI PMC

Biddle S.J.H., Asare M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011;45:86–95. doi: 10.1136/bjsports-2011-090185. PubMed DOI

Chastin S.F.M., Palarea-Albaladejo J., Dontje M.L., Skelton D.A. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0139984. PubMed DOI PMC

Aitchison J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B. 1982;44:139–177. doi: 10.2307/2345821. DOI

Zhu W., Ainsworth B., Liu Y.L. A Comparison of Urban Black and White Women’s Physical Activity Patterns. Res. Q. Exerc. Sport. 2002;73:A36.

Williams S.M., Farmer V.L., Taylor B.J., Taylor R.W. Do more active children sleep more? A repeated cross-sectional analysis using accelerometry. PLoS ONE. 2014 doi: 10.1371/journal.pone.0093117. PubMed DOI PMC

Carson V., Tremblay M.S., Chaput J.-P., Chastin S.F.M. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses. Appl. Physiol. Nutr. Metab. 2016;41:S294–S302. doi: 10.1139/apnm-2016-0026. PubMed DOI

Fairclough S.J., Dumuid D., Taylor S., Curry W., McGrane B., Stratton G., Maher C., Olds T. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. Int. J. Behav. Nutr. Phys. Act. 2017;14:64. doi: 10.1186/s12966-017-0521-z. PubMed DOI PMC

Dumuid D., Olds T., Lewis L.K., Martin-Fernández J.A., Katzmarzyk P.T., Barreira T., Broyles S.T., Chaput J.P., Fogelholm M., Hu G., et al. Health-related quality of life and lifestyle behavior clusters in school-aged children from 12 countries. J. Pediatr. 2017 doi: 10.1016/j.jpeds.2016.12.048. PubMed DOI

Dumuid D., Maher C., Lewis L.K., Stanford T.E., Martín Fernández J.A., Ratcliffe J., Katzmarzyk P.T., Barreira T.V., Chaput J.P., Fogelholm M., et al. Human development index, children’s health-related quality of life and movement behaviors: A compositional data analysis. Qual. Life Res. 2018;27:1473–1482. doi: 10.1007/s11136-018-1791-x. PubMed DOI PMC

Dumuid D., Stanford T.E., Pedišić Ž., Maher C., Lewis L.K., Martín-Fernández J.A., Katzmarzyk P.T., Chaput J.P., Fogelholm M., Standage M., et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: A compositional data analysis approach. BMC Public Health. 2018;18:311. doi: 10.1186/s12889-018-5207-1. PubMed DOI PMC

Fairclough S.J., Dumuid D., Mackintosh K.A., Stone G., Dagger R., Stratton G., Davies I., Boddy L.M. Adiposity, fitness, health-related quality of life and the reallocation of time between children’s school day activity behaviours: A compositional data analysis. Prev. Med. Rep. 2018;11:254–261. doi: 10.1016/j.pmedr.2018.07.011. PubMed DOI PMC

Pedišić Ž., Dumuid D., Olds T.S. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:252–269.

Mitáš J., Dygrýn J., Rubín L., Křen F., Vorlíček M., Nykodým J., Řepka E., Bláha L., Suchomel A., Feltlová D., et al. Multifaktoriální výzkum zastavěného prostředí, aktivního životního stylu a tělesné kondice české mládeže: Design a metodika projektu. Tělesná Kult. 2018 doi: 10.5507/tk.2018.002. DOI

Cain K.L., Sallis J.F., Conway T.L., Van Dyck D., Calhoon L. Using accelerometers in youth physical activity studies: A review of methods. Phys. Act. Heal. 2013;10:437–450. doi: 10.1123/jpah.10.3.437. PubMed DOI PMC

Evenson K.R., Catellier D.J., Gill K., Ondrak K.S., McMurray R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008;26:1557–1565. doi: 10.1080/02640410802334196. PubMed DOI

Trost S.G., Loprinzi P.D., Moore R., Pfeiffer K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011 doi: 10.1249/MSS.0b013e318206476e. PubMed DOI

De Onis M., Onyango A.W., Borghi E., Siyam A., Nishida C., Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Heal. Organ. 2007;85:812–819. doi: 10.2471/BLT.07.043497. PubMed DOI PMC

Pawlowsky-Glahn V., Egozcue J.J., Tolosana-Delgado R. Modeling and Analysis of Compositional Data. Wiley; Hoboken, NJ, USA: 2015.

Fišerová E., Hron K. On the interpretation of orthonormal coordinates for compositional data. Math. Geosci. 2011;43:455–468. doi: 10.1007/s11004-011-9333-x. DOI

Hron K., Filzmoser P., de Caritat P., Fišerová E., Gardlo A. Weighted pivot coordinates for compositional data and their application to geochemical mapping. Math. Geosci. 2017;49:797–814. doi: 10.1007/s11004-017-9684-z. DOI

Rousseeuw P.J., van Zomeren B.C. Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 1990;85:633–639. doi: 10.1080/01621459.1990.10474920. DOI

Buccianti A., Grunsky E. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? J. Geochem. Explor. 2014;141:1–5. doi: 10.1016/j.gexplo.2014.03.022. DOI

Muller I., Hron K., Fiserova E., Smahaj J., Cakirpaloglu P., Vancakova J. Interpretation of compositional regression with application to time budget analysis. Austrian J. Stat. 2018;47:3–19. doi: 10.17713/ajs.v47i2.652. DOI

Hrůzová K., Todorov V., Hron K., Filzmoser P. Classical and robust orthogonal regression between parts of compositional data. Statistics (Ber.) 2016;50:1261–1275. doi: 10.1080/02331888.2016.1162164. DOI

Abelson R.P. A variance explanation paradox: When a little is a lot. Psychol. Bull. 1985;97:129–133. doi: 10.1037/0033-2909.97.1.129. DOI

Maronna R.A., Martin R.D., Yohai V.J. Robust Statistics: Theory and Methods. Wiley; Hoboken, NJ, USA: 2006.

Yohai V.J. High breakdown-point and high efficiency robust estimates for regression. Ann. Stat. 1987;15:642–656. doi: 10.1214/aos/1176350366. DOI

Hron K., Filzmoser P. Exploring compositional data with the robust compositional biplot. In: Carpita M., Brentari E., Qannari E.M., editors. Advances in Latent Variables: Methods, Models and Applications. Springer International Publishing; Cham, Switzerland: 2015. pp. 219–226.

Von Eynatten H., Pawlowsky-Glahn V., Egozcue J.J. Understanding perturbation on the simplex: A simple method to better visualize and interpret compositional data in ternary diagrams. Math. Geol. 2002;34:249–257. doi: 10.1023/A:1014826205533. DOI

Dumuid D., Stanford T.E., Martin-Fernández J.-A., Pedišić Ž., Maher C.A., Lewis L.K., Hron K., Katzmarzyk P.T., Chaput J.-P., Fogelholm M., et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2017 doi: 10.1177/0962280217710835. PubMed DOI

Pesenson M.Z., Suram S.K., Gregoire J.M. Statistical analysis and interpolation of compositional data in materials science. ACS Comb. Sci. 2015;17:130–136. doi: 10.1021/co5001458. PubMed DOI

Filzmoser P., Hron K., Reimann C. Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Sci. Total Environ. 2009;407:6100–6108. doi: 10.1016/j.scitotenv.2009.08.008. PubMed DOI

Palarea-Albaladejo J., Martín-Fernández J.A., Olea R.A. A bootstrap estimation scheme for chemical compositional data with nondetects. J. Chemom. 2014;28:585–599. doi: 10.1002/cem.2621. DOI

Agerbo E., Sterne J.A.C., Gunnell D.J. Combining individual and ecological data to determine compositional and contextual socio-economic risk factors for suicide. Soc. Sci. Med. 2007;64:451–461. doi: 10.1016/j.socscimed.2006.08.043. PubMed DOI

Campbell G.P., Curran J.M., Miskelly G.M., Coulson S., Yaxley G.M., Grunsky E.C., Cox S.C. Compositional data analysis for elemental data in forensic science. Forensic Sci. Int. 2009;188:81–90. doi: 10.1016/j.forsciint.2009.03.018. PubMed DOI

Leite M.L.C. Applying compositional data methodology to nutritional epidemiology. Stat. Methods Med. Res. 2016;25:3057–3065. doi: 10.1177/0962280214560047. PubMed DOI

Mert M.C., Filzmoser P., Endel G., Wilbacher I. Compositional data analysis in epidemiology. Stat. Methods Med. Res. 2016:1–14. doi: 10.1177/0962280216671536. PubMed DOI

Filzmoser P., Hron K., Reimann C., Garrett R. Robust factor analysis for compositional data. Comput. Geosci. 2009;35:1854–1861. doi: 10.1016/j.cageo.2008.12.005. DOI

Filzmoser P., Hron K. Robust statistical analysis of compositional data. In: Pawlowsky-Glahn V., Buccianti A., editors. Compositional Data Analysis: Theory and Applications. John Wiley & Sons, Ltd.; Chichester, UK: 2011. pp. 59–72.

Filzmoser P., Hron K. Robust statistical analysis. In: Becker C., Fried R., Kuhnt S., editors. Robustness and Complex Data Structures. Springer; Heidelberg, Germany: 2013. pp. 117–131.

Tanaka C., Reilly J.J., Huang W.Y. Longitudinal changes in objectively measured sedentary behaviour and their relationship with adiposity in children and adolescents: Systematic review and evidence appraisal. Obes. Rev. 2014;15:791–803. doi: 10.1111/obr.12195. PubMed DOI

Orme M., Wijndaele K., Sharp S.J., Westgate K., Ekelund U., Brage S. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. Int. J. Behav. Nutr. Phys. Act. 2014;11:34. doi: 10.1186/1479-5868-11-34. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Physical Behaviour Intensity Spectrum and Body Mass Index in School-Aged Youth: A Compositional Analysis of Pooled Individual Participant Data

. 2022 Jul 19 ; 19 (14) : . [epub] 20220719

Changes in sedentary behavior patterns during the transition from childhood to adolescence and their association with adiposity: a prospective study based on compositional data analysis

. 2022 Jan 04 ; 80 (1) : 1. [epub] 20220104

Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis

. 2021 Jan 27 ; 26 (1) : 16. [epub] 20210127

How do short sleepers use extra waking hours? A compositional analysis of 24-h time-use patterns among children and adolescents

. 2020 Aug 14 ; 17 (1) : 104. [epub] 20200814

Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis

. 2020 Apr 02 ; 20 (1) : 147. [epub] 20200402

Are longitudinal reallocations of time between movement behaviours associated with adiposity among elderly women? A compositional isotemporal substitution analysis

. 2020 Apr ; 44 (4) : 857-864. [epub] 20200107

Adiposity and changes in movement-related behaviors in older adult women in the context of the built environment: a protocol for a prospective cohort study

. 2019 Nov 14 ; 19 (1) : 1522. [epub] 20191114

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...