Robust Compositional Analysis of Physical Activity and Sedentary Behaviour Data
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30322203
PubMed Central
PMC6210094
DOI
10.3390/ijerph15102248
PII: ijerph15102248
Knihovny.cz E-zdroje
- Klíčová slova
- compositional data, compositional linear regression, log-ratio methodology, physical activity, pivot coordinates,
- MeSH
- chování mladistvých * MeSH
- cvičení * MeSH
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obezita dětí a dospívajících etiologie MeSH
- regresní analýza * MeSH
- sedavý životní styl * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although there is an increasing awareness of the suitability of using compositional data methodology in public health research, classical methods of statistical analysis have been primarily used so far. The present study aims to illustrate the potential of robust statistics to model movement behaviour using Czech adolescent data. We investigated: (1) the inter-relationship between various physical activity (PA) intensities, extended to model relationships by age; and (2) the associations between adolescents' PA and sedentary behavior (SB) structure and obesity. These research questions were addressed using three different types of compositional regression analysis-compositional covariates, compositional response, and regression between compositional parts. Robust counterparts of classical regression methods were used to lessen the influence of possible outliers. We outlined the differences in both classical and robust methods of compositional data analysis. There was a pattern in Czech adolescents' movement/non-movement behavior-extensive SB was related to higher amounts of light-intensity PA, and vigorous PA ratios formed the main source of potential aberrant observations; aging is associated with more SB and vigorous PA at the expense of light-intensity PA and moderate-intensity PA. The robust counterparts indicated that they might provide more stable estimates in the presence of outlying observations. The findings suggested that replacing time spent in SB with vigorous PA may be a powerful tool against adolescents' obesity.
Biomathematics and Statistics Scotland JCMB The King's Buildings Edinburgh EH9 3FD UK
Faculty of Physical Culture Palacký University Olomouc 771 11 Olomouc Czech Republic
Faculty of Science Palacký University Olomouc 771 11 Olomouc Czech Republic
Zobrazit více v PubMed
Janssen I., LeBlanc A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010;7:40. doi: 10.1186/1479-5868-7-40. PubMed DOI PMC
World Health Organization (WHO) Physical Activity and Young People. WHO; Geneva, Switzerland: 2015. [(accessed on 19 August 2018)]. Available online: http://www.who.int/dietphysicalactivity/factsheet_young_people/en.
McMahon E.M., Corcoran P., O’Regan G., Keeley H., Cannon M., Carli V., Wasserman C., Hadlaczky G., Sarchiapone M., Apter A., et al. Physical activity in European adolescents and associations with anxiety, depression and well-being. Eur. Child Adolesc. Psychiatry. 2017;26:111–122. doi: 10.1007/s00787-016-0875-9. PubMed DOI
Gába A., Dygrýn J., Mitáš J., Jakubec L., Frömel K. Effect of accelerometer cut-off points on the recommended level of physical activity for obesity prevention in children. PLoS ONE. 2016;11:e0164282. doi: 10.1371/journal.pone.0164282. PubMed DOI PMC
Malina R.M. Physical activity and fitness: Pathways from childhood to adulthood. Am. J. Hum. Biol. 2001;13:162–172. doi: 10.1002/1520-6300(200102/03)13:2<162::AID-AJHB1025>3.0.CO;2-T. PubMed DOI
Telama R., Yang X., Viikari J., Välimäki I., Wanne O., Raitakari O. Physical activity from childhood to adulthood: A 21-year tracking study. Am. J. Prev. Med. 2005;28:267–273. doi: 10.1016/j.amepre.2004.12.003. PubMed DOI
Gába A., Mitáš J., Jakubec L. Associations between accelerometer-measured physical activity and body fatness in school-aged children. Environ. Health Prev. Med. 2017;22:43. doi: 10.1186/s12199-017-0629-4. PubMed DOI PMC
Carson V., Ridgers N.D., Howard B.J., Winkler E.A.H., Healy G.N., Owen N., Dunstan D.W., Salmon J. Light-intensity physical activity and cardiometabolic biomarkers in us adolescents. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0071417. PubMed DOI PMC
Chaput J.P., Saunders T.J., Carson V. Interactions between sleep, movement and other non-movement behaviours in the pathogenesis of childhood obesity. Obes. Rev. 2017;18:7–14. doi: 10.1111/obr.12508. PubMed DOI
Tremblay M., LeBlanc A., Kho M., Saunders T., Larouche R., Colley R., Goldfield G., Connor Gorber S. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011;8:98–119. doi: 10.1186/1479-5868-8-98. PubMed DOI PMC
Biddle S.J.H., Asare M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011;45:86–95. doi: 10.1136/bjsports-2011-090185. PubMed DOI
Chastin S.F.M., Palarea-Albaladejo J., Dontje M.L., Skelton D.A. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0139984. PubMed DOI PMC
Aitchison J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B. 1982;44:139–177. doi: 10.2307/2345821. DOI
Zhu W., Ainsworth B., Liu Y.L. A Comparison of Urban Black and White Women’s Physical Activity Patterns. Res. Q. Exerc. Sport. 2002;73:A36.
Williams S.M., Farmer V.L., Taylor B.J., Taylor R.W. Do more active children sleep more? A repeated cross-sectional analysis using accelerometry. PLoS ONE. 2014 doi: 10.1371/journal.pone.0093117. PubMed DOI PMC
Carson V., Tremblay M.S., Chaput J.-P., Chastin S.F.M. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses. Appl. Physiol. Nutr. Metab. 2016;41:S294–S302. doi: 10.1139/apnm-2016-0026. PubMed DOI
Fairclough S.J., Dumuid D., Taylor S., Curry W., McGrane B., Stratton G., Maher C., Olds T. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. Int. J. Behav. Nutr. Phys. Act. 2017;14:64. doi: 10.1186/s12966-017-0521-z. PubMed DOI PMC
Dumuid D., Olds T., Lewis L.K., Martin-Fernández J.A., Katzmarzyk P.T., Barreira T., Broyles S.T., Chaput J.P., Fogelholm M., Hu G., et al. Health-related quality of life and lifestyle behavior clusters in school-aged children from 12 countries. J. Pediatr. 2017 doi: 10.1016/j.jpeds.2016.12.048. PubMed DOI
Dumuid D., Maher C., Lewis L.K., Stanford T.E., Martín Fernández J.A., Ratcliffe J., Katzmarzyk P.T., Barreira T.V., Chaput J.P., Fogelholm M., et al. Human development index, children’s health-related quality of life and movement behaviors: A compositional data analysis. Qual. Life Res. 2018;27:1473–1482. doi: 10.1007/s11136-018-1791-x. PubMed DOI PMC
Dumuid D., Stanford T.E., Pedišić Ž., Maher C., Lewis L.K., Martín-Fernández J.A., Katzmarzyk P.T., Chaput J.P., Fogelholm M., Standage M., et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: A compositional data analysis approach. BMC Public Health. 2018;18:311. doi: 10.1186/s12889-018-5207-1. PubMed DOI PMC
Fairclough S.J., Dumuid D., Mackintosh K.A., Stone G., Dagger R., Stratton G., Davies I., Boddy L.M. Adiposity, fitness, health-related quality of life and the reallocation of time between children’s school day activity behaviours: A compositional data analysis. Prev. Med. Rep. 2018;11:254–261. doi: 10.1016/j.pmedr.2018.07.011. PubMed DOI PMC
Pedišić Ž., Dumuid D., Olds T.S. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:252–269.
Mitáš J., Dygrýn J., Rubín L., Křen F., Vorlíček M., Nykodým J., Řepka E., Bláha L., Suchomel A., Feltlová D., et al. Multifaktoriální výzkum zastavěného prostředí, aktivního životního stylu a tělesné kondice české mládeže: Design a metodika projektu. Tělesná Kult. 2018 doi: 10.5507/tk.2018.002. DOI
Cain K.L., Sallis J.F., Conway T.L., Van Dyck D., Calhoon L. Using accelerometers in youth physical activity studies: A review of methods. Phys. Act. Heal. 2013;10:437–450. doi: 10.1123/jpah.10.3.437. PubMed DOI PMC
Evenson K.R., Catellier D.J., Gill K., Ondrak K.S., McMurray R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008;26:1557–1565. doi: 10.1080/02640410802334196. PubMed DOI
Trost S.G., Loprinzi P.D., Moore R., Pfeiffer K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011 doi: 10.1249/MSS.0b013e318206476e. PubMed DOI
De Onis M., Onyango A.W., Borghi E., Siyam A., Nishida C., Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Heal. Organ. 2007;85:812–819. doi: 10.2471/BLT.07.043497. PubMed DOI PMC
Pawlowsky-Glahn V., Egozcue J.J., Tolosana-Delgado R. Modeling and Analysis of Compositional Data. Wiley; Hoboken, NJ, USA: 2015.
Fišerová E., Hron K. On the interpretation of orthonormal coordinates for compositional data. Math. Geosci. 2011;43:455–468. doi: 10.1007/s11004-011-9333-x. DOI
Hron K., Filzmoser P., de Caritat P., Fišerová E., Gardlo A. Weighted pivot coordinates for compositional data and their application to geochemical mapping. Math. Geosci. 2017;49:797–814. doi: 10.1007/s11004-017-9684-z. DOI
Rousseeuw P.J., van Zomeren B.C. Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 1990;85:633–639. doi: 10.1080/01621459.1990.10474920. DOI
Buccianti A., Grunsky E. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? J. Geochem. Explor. 2014;141:1–5. doi: 10.1016/j.gexplo.2014.03.022. DOI
Muller I., Hron K., Fiserova E., Smahaj J., Cakirpaloglu P., Vancakova J. Interpretation of compositional regression with application to time budget analysis. Austrian J. Stat. 2018;47:3–19. doi: 10.17713/ajs.v47i2.652. DOI
Hrůzová K., Todorov V., Hron K., Filzmoser P. Classical and robust orthogonal regression between parts of compositional data. Statistics (Ber.) 2016;50:1261–1275. doi: 10.1080/02331888.2016.1162164. DOI
Abelson R.P. A variance explanation paradox: When a little is a lot. Psychol. Bull. 1985;97:129–133. doi: 10.1037/0033-2909.97.1.129. DOI
Maronna R.A., Martin R.D., Yohai V.J. Robust Statistics: Theory and Methods. Wiley; Hoboken, NJ, USA: 2006.
Yohai V.J. High breakdown-point and high efficiency robust estimates for regression. Ann. Stat. 1987;15:642–656. doi: 10.1214/aos/1176350366. DOI
Hron K., Filzmoser P. Exploring compositional data with the robust compositional biplot. In: Carpita M., Brentari E., Qannari E.M., editors. Advances in Latent Variables: Methods, Models and Applications. Springer International Publishing; Cham, Switzerland: 2015. pp. 219–226.
Von Eynatten H., Pawlowsky-Glahn V., Egozcue J.J. Understanding perturbation on the simplex: A simple method to better visualize and interpret compositional data in ternary diagrams. Math. Geol. 2002;34:249–257. doi: 10.1023/A:1014826205533. DOI
Dumuid D., Stanford T.E., Martin-Fernández J.-A., Pedišić Ž., Maher C.A., Lewis L.K., Hron K., Katzmarzyk P.T., Chaput J.-P., Fogelholm M., et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2017 doi: 10.1177/0962280217710835. PubMed DOI
Pesenson M.Z., Suram S.K., Gregoire J.M. Statistical analysis and interpolation of compositional data in materials science. ACS Comb. Sci. 2015;17:130–136. doi: 10.1021/co5001458. PubMed DOI
Filzmoser P., Hron K., Reimann C. Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Sci. Total Environ. 2009;407:6100–6108. doi: 10.1016/j.scitotenv.2009.08.008. PubMed DOI
Palarea-Albaladejo J., Martín-Fernández J.A., Olea R.A. A bootstrap estimation scheme for chemical compositional data with nondetects. J. Chemom. 2014;28:585–599. doi: 10.1002/cem.2621. DOI
Agerbo E., Sterne J.A.C., Gunnell D.J. Combining individual and ecological data to determine compositional and contextual socio-economic risk factors for suicide. Soc. Sci. Med. 2007;64:451–461. doi: 10.1016/j.socscimed.2006.08.043. PubMed DOI
Campbell G.P., Curran J.M., Miskelly G.M., Coulson S., Yaxley G.M., Grunsky E.C., Cox S.C. Compositional data analysis for elemental data in forensic science. Forensic Sci. Int. 2009;188:81–90. doi: 10.1016/j.forsciint.2009.03.018. PubMed DOI
Leite M.L.C. Applying compositional data methodology to nutritional epidemiology. Stat. Methods Med. Res. 2016;25:3057–3065. doi: 10.1177/0962280214560047. PubMed DOI
Mert M.C., Filzmoser P., Endel G., Wilbacher I. Compositional data analysis in epidemiology. Stat. Methods Med. Res. 2016:1–14. doi: 10.1177/0962280216671536. PubMed DOI
Filzmoser P., Hron K., Reimann C., Garrett R. Robust factor analysis for compositional data. Comput. Geosci. 2009;35:1854–1861. doi: 10.1016/j.cageo.2008.12.005. DOI
Filzmoser P., Hron K. Robust statistical analysis of compositional data. In: Pawlowsky-Glahn V., Buccianti A., editors. Compositional Data Analysis: Theory and Applications. John Wiley & Sons, Ltd.; Chichester, UK: 2011. pp. 59–72.
Filzmoser P., Hron K. Robust statistical analysis. In: Becker C., Fried R., Kuhnt S., editors. Robustness and Complex Data Structures. Springer; Heidelberg, Germany: 2013. pp. 117–131.
Tanaka C., Reilly J.J., Huang W.Y. Longitudinal changes in objectively measured sedentary behaviour and their relationship with adiposity in children and adolescents: Systematic review and evidence appraisal. Obes. Rev. 2014;15:791–803. doi: 10.1111/obr.12195. PubMed DOI
Orme M., Wijndaele K., Sharp S.J., Westgate K., Ekelund U., Brage S. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. Int. J. Behav. Nutr. Phys. Act. 2014;11:34. doi: 10.1186/1479-5868-11-34. PubMed DOI PMC
Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis