Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis

. 2020 Apr 02 ; 20 (1) : 147. [epub] 20200402

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32241269
Odkazy

PubMed 32241269
PubMed Central PMC7114780
DOI 10.1186/s12887-020-02036-6
PII: 10.1186/s12887-020-02036-6
Knihovny.cz E-zdroje

BACKGROUND: Between-person differences in sedentary patterns should be considered to understand the role of sedentary behavior (SB) in the development of childhood obesity. This study took a novel approach based on compositional data analysis to examine associations between SB patterns and adiposity and investigate differences in adiposity associated with time reallocation between time spent in sedentary bouts of different duration and physical activity. METHODS: An analysis of cross-sectional data was performed in 425 children aged 7-12 years (58% girls). Waking behaviors were assessed using ActiGraph GT3X accelerometer for seven consecutive days. Multi-frequency bioimpedance measurement was used to determine adiposity. Compositional regression models with robust estimators were used to analyze associations between sedentary patterns and adiposity markers. To examine differences in adiposity associated with time reallocation, we used the compositional isotemporal substitution model. RESULTS: Significantly higher fat mass percentage (FM%; βilr1 = 0.18; 95% CI: 0.01, 0.34; p = 0.040) and visceral adipose tissue (VAT; βilr1 = 0.37; 95% CI: 0.03, 0.71; p = 0.034) were associated with time spent in middle sedentary bouts in duration of 10-29 min (relative to remaining behaviors). No significant associations were found for short (< 10 min) and long sedentary bouts (≥30 min). Substituting the time spent in total SB with moderate-to-vigorous physical activity (MVPA) was associated with a decrease in VAT. Substituting 1 h/week of the time spent in middle sedentary bouts with MVPA was associated with 2.9% (95% CI: 1.2, 4.6), 3.4% (95% CI: 1.2, 5.5), and 6.1% (95% CI: 2.9, 9.2) lower FM%, fat mass index, and VAT, respectively. Moreover, substituting 2 h/week of time spent in middle sedentary bouts with short sedentary bouts was associated with 3.5% (95% CI: 0.02, 6.9) lower FM%. CONCLUSIONS: Our findings suggest that adiposity status could be improved by increasing MVPA at the expense of time spent in middle sedentary bouts. Some benefits to adiposity may also be expected from replacing middle sedentary bouts with short sedentary bouts, that is, by taking standing or activity breaks more often. These findings may help design more effective interventions to prevent and control childhood obesity.

Zobrazit více v PubMed

NCD Risk Factor Collaboration Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):16–22. PubMed PMC

Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251–265. PubMed

Sharma V, Coleman S, Nixon J, Sharples L, Hamilton-Shield J, Rutter H, et al. A systematic review and meta-analysis estimating the population prevalence of comorbidities in children and adolescents aged 5 to 18 years. Obes Rev. 2019;20(10):1341. PubMed PMC

Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc Health. 2020;4(1):23–35. PubMed PMC

Tremblay M, LeBlanc A, Kho M, Saunders T, Larouche R, Colley R, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98. PubMed PMC

Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. PubMed PMC

Rey-López JP, Vicente-Rodríguez G, Biosca M, Moreno LA. Sedentary behaviour and obesity development in children and adolescents. Nutr Metab Cardiovasc Dis. 2008;18(3):242–251. PubMed

de Rezende LFM, Lopes MR, Rey-Lopez JP, Matsudo VKR, Luiz OD. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):7. PubMed PMC

Aubert S, Barnes JD, Abdeta C, Abi Nader P, Adeniyi AF, Aguilar-Farias N, et al. Global matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(S2):S251–S273. PubMed

Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, et al. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41(5):1460–1471. PubMed PMC

Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–344. PubMed

Broadney MM, Belcher BR, Berrigan DA, Brychta RJ, Tigner IL, Jr, Shareef F, et al. Effects of interrupting sedentary behavior with short bouts of moderate physical activity on glucose tolerance in children with overweight and obesity: a randomized crossover trial. Diabetes Care. 2018;41(10):2220–2228. PubMed PMC

Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead millennium study. Int J Behav Nutr Phys Act. 2016;13(1):88. PubMed PMC

Saunders TJ, Tremblay MS, Mathieu M-È, Henderson M, O’Loughlin J, Tremblay A, et al. Associations of sedentary behavior, sedentary bouts and breaks in sedentary time with Cardiometabolic risk in children with a family history of obesity. PLoS One. 2013;8(11):e79143. PubMed PMC

Carson V, Cliff DP, Janssen X, Okely A. Longitudinal levels and bouts of sedentary time among adolescent girls. BMC Pediatr. 2013;13(1):173. PubMed PMC

Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian health measures survey. BMC Public Health. 2013;13(1):200. PubMed PMC

Carson V, Stone M, Faulkner G. Patterns of sedentary behavior and weight status among children. Pediatr Exerc Sci. 2014;26(1):95–102. PubMed

Chastin SFM, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984. PubMed PMC

Štefelová N, Dygrýn J, Hron K, Gába A, Rubín L, Palarea-Albaladejo J. Robust compositional analysis of physical activity and sedentary behaviour data. Int J Environ Res Public Health. 2018;15(10):2248. PubMed PMC

Pedisic Z, Dumuid D, Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:2.

Pedisic Z. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research – the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46(1):135–146.

Dumuid D, Stanford TE, Martin-Fernández J-A, Pedišić Ž, Maher CA, Lewis LK, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2017;27(12):3726–3738. PubMed

Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519–527. PubMed PMC

Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2018;28(3):846–857. PubMed

Gába A, Mitáš J, Jakubec L. Associations between accelerometer-measured physical activity and body fatness in school-aged children. Environ Health Prev Med. 2017;22:1–8. PubMed PMC

Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. PubMed

Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–1565. PubMed

Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr Int. 2009;51(2):263–268. PubMed

Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and analysis of compositional data. Chichester: Wiley; 2015.

Filzmoser P, Hron K, Templ M. Applied compositional data analysis. 1. Cham: Springer International Publishing; 2018.

Martín-Fernández JA, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol. 2003;35(3):253–278.

Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics. 2011;127(2):e345–e352. PubMed PMC

Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Blair SN, et al. Patterns of sedentary behavior in US middle-age and older adults: the REGARDS study. Med Sci Sports Exerc. 2016;48(3):430–438. PubMed PMC

Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. PubMed

Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, et al. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school- and out-of-school time. Int J Behav Nutr Phys Act. 2016;13(1):39. PubMed PMC

Olds TS, Maher CA, Ridley K, Kittel DM. Descriptive epidemiology of screen and non-screen sedentary time in adolescents: a cross sectional study. Int J Behav Nutr Phys Act. 2010;7(1):92. PubMed PMC

Fletcher EA, Salmon J, McNaughton SA, Orellana L, Wadley GD, Bruce C, et al. Effects of breaking up sitting on adolescents’ postprandial glucose after consuming meals varying in energy: a cross-over randomised trial. J Sci Med Sport. 2018;21(3):280–285. PubMed

Betts JA, Smith HA, Johnson-Bonson DA, Ellis TI, Dagnall J, Hengist A, et al. The energy cost of sitting versus standing naturally in man. Med Sci Sports Exerc. 2019;51(4):726–733. PubMed

Basterfield L, Adamson AJ, Frary JK, Parkinson KN, Pearce MS, Reilly JJ. Longitudinal study of physical activity and sedentary behavior in children. Pediatrics. 2010;127(1):e24–e30. PubMed

Fairclough SJ, Dumuid D, Mackintosh KA, Stone G, Dagger R, Stratton G, et al. Adiposity, fitness, health-related quality of life and the reallocation of time between children's school day activity behaviours: a compositional data analysis. Prev Med Rep. 2018;11:254–261. PubMed PMC

Dumuid D, Stanford TE, Pedišić Ž, Maher C, Lewis LK, Martín-Fernández J-A, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18(1):311. PubMed PMC

Dumuid D, Wake M, Clifford S, Burgner D, Carlin JB, Mensah FK, et al. The Association of the Body Composition of children with 24-hour activity composition. J Pediatr. 2019;208:43. PubMed

Fairclough SJ, Dumuid D, Taylor S, Curry W, McGrane B, Stratton G, et al. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: an analysis of compositional data. Int J Behav Nutr Phys Act. 2017;14(1):64. PubMed PMC

Talarico R, Janssen I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. Int J Obes. 2018;42:1508–1514. PubMed

Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–626. PubMed PMC

Tremblay M, Carson V, Chaput J-P, Connor Gorber S, Dinh T, Duggan M, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S311–S327. PubMed

Australian Government, Department of Health . Australian 24-hour movement guidelines for children and young people (5–17 years) – an integration of physical activity, sedentary behaviour and sleep. 2019.

Ministry of Health . Sit less, move more, sleep well: physical activity guidelines for children and young people. New Zeland: Ministry of Health; 2017.

World Health Organization. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age, vol. 33. Geneva: World Health Organization; 2019. PubMed

Yang WY, Williams LT, Collins C, Siew Swee CW. The relationship between dietary patterns and overweight and obesity in children of Asian developing countries: a systematic review. JBI Libr Syst Rev. 2012;10(58):4568–4599. PubMed

Emmett PM, Jones LR. Diet, growth, and obesity development throughout childhood in the Avon longitudinal study of parents and children. Nutr Rev. 2015;73(Suppl 3):175–206. PubMed PMC

Leech RM, McNaughton SA, Timperio A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act. 2014;11(1):4. PubMed PMC

Pedišić Ž, Bauman A. Accelerometer-based measures in physical activity surveillance: current practices and issues. Br J Sports Med. 2015;49(4):219. PubMed

van der Berg JD, Stehouwer CDA, Bosma H, Caserotti P, Eiriksdottir G, Arnardottir NY, et al. Dynamic sitting: measurement and associations with metabolic health. J Sports Sci. 2019;37:1–9. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Goldilocks Day for healthy adiposity measures among children and adolescents

. 2023 ; 11 () : 1158634. [epub] 20230928

A 24-h activity profile and adiposity among children and adolescents: Does the difference between school and weekend days matter?

. 2023 ; 18 (5) : e0285952. [epub] 20230518

Surveillance of physical activity and sedentary behaviour in czech children and adolescents: a scoping review of the literature from the past two decades

. 2022 Feb 21 ; 22 (1) : 363. [epub] 20220221

Changes in sedentary behavior patterns during the transition from childhood to adolescence and their association with adiposity: a prospective study based on compositional data analysis

. 2022 Jan 04 ; 80 (1) : 1. [epub] 20220104

Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis

. 2021 Jan 27 ; 26 (1) : 16. [epub] 20210127

How do short sleepers use extra waking hours? A compositional analysis of 24-h time-use patterns among children and adolescents

. 2020 Aug 14 ; 17 (1) : 104. [epub] 20200814

Is adherence to the 24-hour movement guidelines associated with a reduced risk of adiposity among children and adolescents?

. 2020 Jul 16 ; 20 (1) : 1119. [epub] 20200716

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.11980068

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...