The Goldilocks Day for healthy adiposity measures among children and adolescents
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37841713
PubMed Central
PMC10569221
DOI
10.3389/fpubh.2023.1158634
Knihovny.cz E-zdroje
- Klíčová slova
- adiposity prevention, physical activity, sedentary behavior, sleep, time-use,
- MeSH
- adipozita * MeSH
- cvičení MeSH
- dítě MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- mladiství MeSH
- obezita dětí a dospívajících * epidemiologie prevence a kontrola MeSH
- spánek MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The optimal balance of time spent on daily movement behaviors ("The Goldilocks Day") associated with childhood obesity remains unknown. OBJECTIVE: To estimate the optimal durations of sleep, sedentary behavior (SB), light physical activity (LPA), and moderate-to-vigorous physical activity (MPVA) associated with excess adiposity in a paediatric population. METHODS: Accelerometer-measured 24-h movement behaviors were obtained from 659 Czech children and adolescents (8-18-year-olds). Adiposity indicators were body mass index z-score, fat mass percentage, fat-free mass index, and visceral adipose tissue. Excess adiposity was defined as exceeding the 85th percentile for an adiposity indicator. Compositional regression analyses were used investigate the associations between movement behaviors and adiposity indicators and estimating "The Goldilocks Day." RESULTS: The movement behavior composition was associated with visceral adipose tissue (Fdf1 = 3,df2 = 317 = 3.672, p = 0.013) and fat mass percentage (Fdf1 = 3,df2 = 289 = 2.733, p = 0.044) among children and adolescents. The Goldilocks Day consisted of 8.5 h of sleep, 10.8 h of SB, 3.9 h of LPA, and 0.8 h of MVPA among children and 7.5 h of sleep, 12.4 h of SB, 3.6 h of LPA, and 0.5 h of MVPA among adolescents. CONCLUSION: Optimizing the time spent sleeping, and in sedentary and physical activities appears to be important in the prevention of excess adiposity.
Faculty of Physical Culture Palacký University Olomouc Olomouc Czechia
School of Allied Health Curtin University Perth WA Australia
Zobrazit více v PubMed
Rollo S, Antsygina O, Tremblay MS. The whole day matters: understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J Sport Health Sci. (2020) 9:493–510. doi: 10.1016/j.jshs.2020.07.004, PMID: PubMed DOI PMC
Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, et al. . Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. (2016) 41:S240–65. doi: 10.1139/apnm-2015-0630, PMID: PubMed DOI
Saunders TJ, Gray CE, Poitras VJ, Chaput JP, Janssen I, Katzmarzyk PT, et al. . Combinations of physical activity, sedentary behaviour and sleep: relationships with health indicators in school-aged children and youth. Appl Physiol Nutr Metab. (2016):S283–93. doi: 10.1139/apnm-2015-0626, PMID: PubMed DOI
Chaput JP, Gray CE, Poitras VJ, Carson V, Gruber R, Olds T, et al. . Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. (2016) 41:S266–82. doi: 10.1139/apnm-2015-0627, PMID: PubMed DOI
Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, et al. . Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. (2016) 41:S197–239. doi: 10.1139/apnm-2015-0663, PMID: PubMed DOI
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. . World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Brit J Sport Med. (2020) 54:1451–62. doi: 10.1136/bjsports-2020-102955, PMID: PubMed DOI PMC
Tremblay MS, Carson V, Chaput JP. Introduction to the Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. (2016):III–V. doi: 10.1139/apnm-2016-0203 PubMed DOI
Grgic J, Dumuid D, Bengoechea EG, Shrestha N, Bauman A, Olds T, et al. . Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. Int J Behav Nutr Phy. (2018) 15:69. doi: 10.1186/s12966-018-0691-3, PMID: PubMed DOI PMC
Okely AD, Ghersi D, Loughran SP, Cliff DP, Shilton T, Jones RA, et al. . A collaborative approach to adopting/adapting guidelines. The Australian 24-hour movement guidelines for children (5–12 years) and young people (13–17 years): an integration of physical activity, sedentary behaviour, and sleep. Int J Behav Nutr Phy. (2022) 19:2. doi: 10.1186/s12966-021-01236-2, PMID: PubMed DOI PMC
Gaba A, Dygryn J, Stefelova N, Rubin L, Hron K, Jakubec L. Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis. Environ Health Prev. (2021) 26:16: 16. doi: 10.1186/s12199-021-00932-6, PMID: PubMed DOI PMC
Gaba A, Pedisic Z, Stefelova N, Dygryn J, Hron K, Dumuid D, et al. . Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis. BMC Pediatr. (2020) 20:147. doi: 10.1186/s12887-020-02036-6, PMID: PubMed DOI PMC
Dumuid D, Olds T, Lange K, Edwards B, Lycett K, Burgner DP, et al. . Goldilocks days: optimising children's time use for health and well-being. J Epidemiol Commun Health. (2022) 76:301–8. doi: 10.1136/jech-2021-216686, PMID: PubMed DOI
Dumuid D, Wake M, Burgner D, Tremblay MS, Okely AD, Edwards B, et al. . Balancing time use for children's fitness and adiposity: evidence to inform 24-hour guidelines for sleep, sedentary time and physical activity. PLoS One. (2021) 16:e0245501. doi: 10.1371/journal.pone.0245501, PMID: PubMed DOI PMC
Scott JJ, Rowlands AV, Cliff DP, Morgan PJ, Plotnikoff RC, Lubans DR. Comparability and feasibility of wrist-and hip-worn accelerometers in free-living adolescents. J Sci Med Sport. (2017) 20:1101–6. doi: 10.1016/j.jsams.2017.04.017, PMID: PubMed DOI
Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. . Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. (2017) 47:1821–45. doi: 10.1007/s40279-017-0716-0, PMID: PubMed DOI PMC
Jakubec L, Gaba A, Dygryn J, Rubin L, Simunek A, Sigmund E. Is adherence to the 24-hour movement guidelines associated with a reduced risk of adiposity among children and adolescents? Bmc. Public Health. (2020) 20:1119. doi: 10.1186/s12889-020-09213-3, PMID: PubMed DOI PMC
Gaba A, Dygryn J, Stefelova N, Rubin L, Hron K, Jakubec L, et al. . How do short sleepers use extra waking hours? A compositional analysis of 24-h time-use patterns among children and adolescents. Int J Behav Nutr Phy. (2020) 17:104. doi: 10.1186/s12966-020-01004-8, PMID: PubMed DOI PMC
Migueles JH, Rowlands AV, Huber F, Sabia S, van Hees VT. GGIR: a research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. J Meas Phy Behav. (2019) 2:188–96. doi: 10.1123/jmpb.2018-0063 DOI
Hildebrand M, Van Hees VT, Hansen BH, Ekelund U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sport Exer. (2014) 46:1816–24. doi: 10.1249/MSS.0000000000000289, PMID: PubMed DOI
Hildebrand M, Hansen BH, van Hees VT, Ekelund U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand J Med Sci Spor. (2017) 27:1814–23. doi: 10.1111/sms.12795, PMID: PubMed DOI
van Hees VT, Sabia S, Anderson KN, Denton SJ, Oliver J, Catt M, et al. . A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS One. (2015) 10:e0142533. doi: 10.1371/journal.pone.0142533, PMID: PubMed DOI PMC
de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. B World Health Org. (2007) 85:660–7. doi: 10.2471/BLT.07.043497, PMID: PubMed DOI PMC
Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. . Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr Int. (2009) 51:263–8. doi: 10.1111/j.1442-200X.2008.02698.x, PMID: PubMed DOI
Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, Eriksson JG, et al. . Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. (2017) 5:53–64. doi: 10.1016/S2213-8587(16)30107-3, PMID: PubMed DOI PMC
Han JC, Lawlor DA, Kimm SYS. Childhood obesity. Lancet. (2010) 375:1737–48. doi: 10.1016/S0140-6736(10)60171-7, PMID: PubMed DOI PMC
Ruiz M, Goldblatt P, Morrison J, Porta D, Forastiere F, Hryhorczuk D, et al. . Impact of low maternal education on early childhood overweight and obesity in Europe. Paediatr Perinat Epidemiol. (2016) 30:274–84. doi: 10.1111/ppe.12285, PMID: PubMed DOI
Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C. Isometric Logratio transformations for compositional data analysis. Math Geol. (2003) 35:279–300. doi: 10.1023/A:1023818214614, PMID: PubMed DOI
Lee KJ, Tilling KM, Cornish RP, Little RJA, Bell ML, Goetghebeur E, et al. . Framework for the treatment and reporting of missing data in observational studies: the treatment and reporting of missing data in observational studies framework. J Clin Epidemiol. (2021) 134:79–88. doi: 10.1016/j.jclinepi.2021.01.008, PMID: PubMed DOI PMC
Fox J, Weisberg S. An R companion to applied regression, vol. xxx. 3rd ed. Los Angeles: SAGE; (2019). 577 p.
Javed A, Jumean M, Murad MH, Okorodudu D, Kumar S, Somers VK, et al. . Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis. Pediatr Obes. (2015) 10:234–44. doi: 10.1111/ijpo.242, PMID: PubMed DOI
Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (2017).
van den Boogaart KG, Tolosana-Delgado R. “Compositions”: a unified R package to analyze compositional data. Comput Geosci. (2008) 34:320–38. doi: 10.1016/j.cageo.2006.11.017, PMID: PubMed DOI
Katzmarzyk PT, Shen W, Baxter-Jones A, Bell JD, Butte NF, Demerath EW, et al. . Adiposity in children and adolescents: correlates and clinical consequences of fat stored in specific body depots. Pediatr Obes. (2012) 7:e42–61. doi: 10.1111/j.2047-6310.2012.00073.x, PMID: PubMed DOI
Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. . National Sleep Foundation's sleep time duration recommendations: methodology and results summary. Sleep Health. (2015) 1:40–3. doi: 10.1016/j.sleh.2014.12.010, PMID: PubMed DOI
Contardo Ayala AM, Salmon J, Dunstan DW, Arundell L, Timperio A. Does light-intensity physical activity moderate the relationship between sitting time and adiposity markers in adolescents? J Sport Health Sci. (2020) 11:61–9. doi: 10.1016/j.jshs.2020.04.002 PubMed DOI PMC
Carson V, Ridgers ND, Howard BJ, Winkler EA, Healy GN, Owen N, et al. . Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS One. (2013) 8:e71417. doi: 10.1371/journal.pone.0071417, PMID: PubMed DOI PMC
Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. (2011) 23:218–29. doi: 10.1123/pes.23.2.218, PMID: PubMed DOI PMC
Kuzik N, Carson V, Andersen LB, Sardinha LB, Grøntved A, Hansen BH, et al. . Physical activity and sedentary time associations with metabolic health across weight statuses in children and adolescents. Obesity. (2017) 25:1762–9. doi: 10.1002/oby.21952, PMID: PubMed DOI PMC
Aadland E, Kvalheim OM, Anderssen SA, Resaland GK, Andersen LB. The multivariate physical activity signature associated with metabolic health in children. Int J Behav Nutr Phys Act. (2018) 15:77. doi: 10.1186/s12966-018-0707-z, PMID: PubMed DOI PMC
Garcia-Hermoso A, Saavedra JM, Ramirez-Velez R, Ekelund U, del Pozo-Cruz B. Reallocating sedentary time to moderate-to-vigorous physical activity but not to light-intensity physical activity is effective to reduce adiposity among youths: a systematic review and meta-analysis. Obes Rev. (2017) 18:1088–95. doi: 10.1111/obr.12552 PubMed DOI
Tremblay MS, Carson V, Chaput JP, Gorber SC, Dinh T, Duggan M, et al. . Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Medlab. (2016) 41:S311–27. doi: 10.1139/apnm-2016-0151, PMID: PubMed DOI
Chaput JP, Willumsen J, Bull F, Chou R, Ekelund U, Firth J, et al. . WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5-17years: summary of the evidence. Int J Behav Nutr Phy. (2020) 17:141. doi: 10.1186/s12966-020-01037-z, PMID: PubMed DOI PMC
Dumuid D, Simm P, Wake M, Burgner D, Juonala M, Wu FT, et al. . The "goldilocks day" for Children's skeletal health: compositional data analysis of 24-hour activity Behaviors. J Bone Miner Res. (2020) 35:2393–403. doi: 10.1002/jbmr.4143, PMID: PubMed DOI
Suorsa K, Pulakka A, Leskinen T, Pentti J, Holtermann A, Heinonen OJ, et al. . Comparison of sedentary time between thigh-worn and wrist-worn accelerometers. J Meas Phys Behav. (2020) 3:234–43. doi: 10.1123/jmpb.2019-0052, PMID: PubMed DOI
figshare
10.6084/m9.figshare.20553108.v1