The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29157152
DOI
10.1177/0962280217737805
Knihovny.cz E-zdroje
- Klíčová slova
- Isotemporal substitution, compositional data, physical activity, sedentary behaviour, sleep, time use,
- MeSH
- algoritmy MeSH
- cvičení * MeSH
- lidé MeSH
- obezita dětí a dospívajících MeSH
- organizace času * MeSH
- sedavý životní styl * MeSH
- spánek * MeSH
- statistické modely * MeSH
- zdravotní stav MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
How people use their time has been linked with their health. For example, spending more time being physically active is known to be beneficial for health, whereas long durations of sitting have been associated with unfavourable health outcomes. Accordingly, public health messages have advocated swapping strategies to promote the reallocation of time between parts of the time-use composition, such as "Move More, Sit Less", with the aim of achieving optimal distribution of time for health. However, the majority of research underpinning these public health messages has not considered daily time use as a composition, and has ignored the relative nature of time-use data. We present a way of applying compositional data analysis to estimate change in a health outcome when fixed durations of time are reallocated from one part of a particular time-use composition to another, while the remaining parts are kept constant, based on a multiple linear regression model on isometric log ratio coordinates. In an example, we examine the expected differences in Body Mass Index z-scores for reallocations of time between sleep, physical activity and sedentary behaviour.
College of Nursing and Health Sciences Flinders University Adelaide Australia
Dept Informàtica Matemàtica Aplicada i Estadística Universitat de Girona Girona Spain
Institute of Sport Exercise and Active Living Victoria University Melbourne Australia
LBT Innovations Adelaide Australia
School of Health Sciences University of South Australia Adelaide Australia
School of Mathematical Sciences University of Adelaide Adelaide Australia
Citace poskytuje Crossref.org
Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis
Compositional Data Analysis in Time-Use Epidemiology: What, Why, How