Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
702296
Canadian Cancer Society Research Institute (Société Canadienne du Cancer) - International
159805
Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada) - International
PubMed
31554817
PubMed Central
PMC6761184
DOI
10.1038/s41467-019-12187-5
PII: 10.1038/s41467-019-12187-5
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- anaplastická lymfomová kináza genetika metabolismus MeSH
- epigenomika metody MeSH
- gliom klasifikace genetika metabolismus MeSH
- kojenec MeSH
- lidé MeSH
- metylace DNA * MeSH
- nádory mozku klasifikace genetika metabolismus MeSH
- novorozenec MeSH
- protoonkogenní proteiny c-met genetika metabolismus MeSH
- protoonkogenní proteiny genetika metabolismus MeSH
- receptor trkA genetika metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- sekvenování exomu metody MeSH
- tyrosinkinasové receptory genetika metabolismus MeSH
- tyrosinkinasy genetika metabolismus MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anaplastická lymfomová kináza MeSH
- MET protein, human MeSH Prohlížeč
- protoonkogenní proteiny c-met MeSH
- protoonkogenní proteiny MeSH
- receptor trkA MeSH
- ROS1 protein, human MeSH Prohlížeč
- tyrosinkinasové receptory MeSH
- tyrosinkinasy MeSH
Infant gliomas have paradoxical clinical behavior compared to those in children and adults: low-grade tumors have a higher mortality rate, while high-grade tumors have a better outcome. However, we have little understanding of their biology and therefore cannot explain this behavior nor what constitutes optimal clinical management. Here we report a comprehensive genetic analysis of an international cohort of clinically annotated infant gliomas, revealing 3 clinical subgroups. Group 1 tumors arise in the cerebral hemispheres and harbor alterations in the receptor tyrosine kinases ALK, ROS1, NTRK and MET. These are typically single-events and confer an intermediate outcome. Groups 2 and 3 gliomas harbor RAS/MAPK pathway mutations and arise in the hemispheres and midline, respectively. Group 2 tumors have excellent long-term survival, while group 3 tumors progress rapidly and do not respond well to chemoradiation. We conclude that infant gliomas comprise 3 subgroups, justifying the need for specialized therapeutic strategies.
2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
Centre for Computational Medicine The Hospital for Sick Children Toronto ON Canada
Children's Cancer Center National Center for Child Health and Development Tokyo Japan
Children's Cancer Centre Royal Children's Hospital Melbourne Australia
Department of Anatomic Pathology Dalhousie University Halifax NS Canada
Department of Hematology and Oncology The Hospital for Sick Children Toronto ON Canada
Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON Canada
Department of Laboratory Medicine and Pathology University of Alberta Edmonton AB Canada
Department of Medical Biophysics University of Toronto Toronto ON Canada
Department of Medicine McGill University Montreal QC Canada
Department of Neurosurgery Kyorin University Faculty of Medicine Tokyo Japan
Department of Neurosurgery The Hospital for Sick Children Toronto ON Canada
Department of Pathology and Laboratory Medicine Nationwide Children's Hospital Columbus OH USA
Department of Pathology and Laboratory Medicine University of Ottawa Ottawa ON Canada
Department of Pathology Hospital Universitario Niño Jesús Madrid Spain
Department of Pathology Laboratory Medicine IWK Health Centre Halifax NS Canada
Department of Pathology The Ohio State University College of Medicine Columbus OH USA
Department of Pathology University Hospital de São João Porto Portugal
Department of Pediatric Hematology and Oncology Hospital Universitario Niño Jesús Madrid Spain
Department of Pediatric Laboratory Medicine The Hospital for Sick Children Toronto ON Canada
Department of Pediatric Neurosurgery Osaka City General Hospital Osaka Japan
Department of Pediatric Oncology Hospital Cruces Bilbao Spain
Department of Pediatric Oncology Hospital Infantil Virgen del Rocio Sevilla Spain
Department of Pediatric Oncology Hospital Sant Joan de Déu Barcelona Spain
Department of Pediatrics The University of British Columbia Vancouver BC Canada
Department of Pediatrics University of Alberta Edmonton AB Canada
Developmental and Stem Cell Biology Program The Hospital for Sick Children Toronto ON Canada
Division of Anatomic Pathology British Columbia Children's Hospital Vancouver BC Canada
Division of Brain Tumor Translational Research National Cancer Center Research Institute Tokyo Japan
Division of Hematology Oncology BMT British Columbia Children's Hospital Vancouver BC Canada
Division of Hematology Oncology Children's Hospital of Eastern Ontario Ottawa ON Canada
Division of Hematology Oncology IWK Health Centre Halifax NS Canada
Division of Neurosurgery Centro Hospitalar Lisboa Norte Hospital de Santa Maria Lisbon Portugal
Division of Neurosurgery IWK Health Centre Halifax NS Canada
Division of Pediatric Hematology Oncology Mayo Clinic Rochester MN USA
Division of Pediatric Hematoncology University Hospital de São João Porto Portugal
Institute of Neuropathology University Hospital Zurich Zurich Switzerland
The Department of Pediatric Hematology Oncology Hadassah Medical Center Jerusalem Israel
Zobrazit více v PubMed
Ostrom QT, et al. Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-Oncology. 2015;16:x1–x36. doi: 10.1093/neuonc/nou327. PubMed DOI PMC
Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncology. 2016;18:v1–v75. doi: 10.1093/neuonc/now207. PubMed DOI PMC
Louis DN, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Eckel-Passow JE, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. New Engl. J. Med. 2015;372:2499–2508. doi: 10.1056/NEJMoa1407279. PubMed DOI PMC
Lassaletta A, et al. Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J. Clin. Oncol. 2017;35:2934–2941. doi: 10.1200/JCO.2016.71.8726. PubMed DOI PMC
Mistry M, et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J. Clin. Oncol. 2015;33:1015–1022. doi: 10.1200/JCO.2014.58.3922. PubMed DOI PMC
Jones DT, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68:8673–8677. doi: 10.1158/0008-5472.CAN-08-2097. PubMed DOI PMC
Jones C, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology. 2017;19:153–161. PubMed PMC
Wessels PH, et al. Supratentorial grade II astrocytoma: biological features and clinical course. Lancet Neurol. 2003;2:395–403. doi: 10.1016/S1474-4422(03)00434-4. PubMed DOI
Schwartzentruber J, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–231. doi: 10.1038/nature10833. PubMed DOI
Wu G, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 2012;44:251–253. doi: 10.1038/ng.1102. PubMed DOI PMC
Green AL, Furutani E, Ribeiro KB, Rodriguez Galindo C. Death within 1 month of diagnosis in childhood cancer: an analysis of risk factors and scope of the problem. J. Clin. Oncol. 2017;35:1320–1327. doi: 10.1200/JCO.2016.70.3249. PubMed DOI PMC
Ater JL, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J. Clin. Oncol. 2012;30:2641–2647. doi: 10.1200/JCO.2011.36.6054. PubMed DOI PMC
Mirow C, et al. Children <1 year show an inferior outcome when treated according to the traditional LGG treatment strategy: a report from the German multicenter trial HIT-LGG 1996 for children with low grade glioma (LGG) Pediatr. Blood Cancer. 2014;61:457–463. doi: 10.1002/pbc.24729. PubMed DOI
Gnekow AK, et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (</=16 years) low grade glioma - a final report. Eur. J. Cancer. 2017;81:206–225. doi: 10.1016/j.ejca.2017.04.019. PubMed DOI PMC
Mackay A, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32:520–537 e525. doi: 10.1016/j.ccell.2017.08.017. PubMed DOI PMC
Duffner PK, et al. Treatment of infants with malignant gliomas: the Pediatric Oncology Group experience. J. Neuro-Oncol. 1996;28:245–256. doi: 10.1007/BF00250203. PubMed DOI
Krishnatry R, et al. Clinical and treatment factors determining long-term outcomes for adult survivors of childhood low-grade glioma: a population-based study. Cancer. 2016;122:1261–1269. doi: 10.1002/cncr.29907. PubMed DOI
Bandopadhayay Pratiti, Bergthold Guillaume, London Wendy B., Goumnerova Liliana C., Morales La Madrid Andres, Marcus Karen J., Guo Dongjing, Ullrich Nicole J., Robison Nathan J., Chi Susan N., Beroukhim Rameen, Kieran Mark W., Manley Peter E. Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: An analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatric Blood & Cancer. 2014;61(7):1173–1179. doi: 10.1002/pbc.24958. PubMed DOI PMC
Takeuchi K, et al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 2012;18:378–381. doi: 10.1038/nm.2658. PubMed DOI
Vaishnavi A, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 2013;19:1469–1472. doi: 10.1038/nm.3352. PubMed DOI PMC
Pietrantonio, F. et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J. Natl Cancer Inst.109, 10.1093/jnci/djx089 (2017). PubMed
Wu G, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 2014;46:444–450. doi: 10.1038/ng.2938. PubMed DOI PMC
Olsen TK, et al. Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity? Neuro-Oncology. 2015;17:1365–1373. doi: 10.1093/neuonc/nov039. PubMed DOI PMC
Aghajan, Y., Levy, M. L., Malicki, D. M. & Crawford, J. R. Novel PPP1CB-ALK fusion protein in a high-grade glioma of infancy. BMJ Case Rep.2016, 10.1136/bcr-2016-217189 (2016). PubMed PMC
Kiehna EN, et al. Novel GOPC(FIG)-ROS1 fusion in a pediatric high-grade glioma survivor. J. Neurosurg. Pediatr. 2017;20:51–55. doi: 10.3171/2017.2.PEDS16679. PubMed DOI
Courtois-Cox S, et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 2006;10:459–472. doi: 10.1016/j.ccr.2006.10.003. PubMed DOI PMC
Dankort D, et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 2007;21:379–384. doi: 10.1101/gad.1516407. PubMed DOI PMC
Michaloglou C, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–724. doi: 10.1038/nature03890. PubMed DOI
Sarkisian CJ, et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 2007;9:493–505. doi: 10.1038/ncb1567. PubMed DOI
Cozzi DA, et al. Long-term follow-up of the “wait and see” approach to localized perinatal adrenal neuroblastoma. World J. Surg. 2013;37:459–465. doi: 10.1007/s00268-012-1837-0. PubMed DOI
Tanaka M, et al. A prospective study of a long-term follow-up of an observation program for neuroblastoma detected by mass screening. Pediatr. Blood Cancer. 2010;54:573–578. PubMed
Ambros IM, et al. Role of ploidy, chromosome 1p, and Schwann cells in the maturation of neuroblastoma. New Engl. J. Med. 1996;334:1505–1511. doi: 10.1056/NEJM199606063342304. PubMed DOI
Mosse YP, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–480. doi: 10.1016/S1470-2045(13)70095-0. PubMed DOI PMC
Laetsch TW, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19:705–714. doi: 10.1016/S1470-2045(18)30119-0. PubMed DOI PMC
Drilon A, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. New Engl. J. Med. 2018;378:731–739. doi: 10.1056/NEJMoa1714448. PubMed DOI PMC
Ziegler DS, et al. Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br. J. Cancer. 2018;119:693–696. doi: 10.1038/s41416-018-0251-2. PubMed DOI PMC
Schram A. M. et al. AACR Annual Meeting 2017 Online Proceedings and 605 Itinerary Planner Home Section 34. 2017. LB-302/10 — potential role of 606 larotrectinib (LOXO-101), a selective pan-TRK inhibitor, in NTRK fusion-607 positive recurrent glioblastoma. 10.1158/1538-7445.AM2017-LB-302.
Drilon A, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1) Cancer Discov. 2017;7:400–409. doi: 10.1158/2159-8290.CD-16-1237. PubMed DOI PMC
Desai AmiVijay, et al. Phase 1 study of entrectinib (RXDX-101), a TRK, ROS1, 612 and ALK inhibitor, in children, adolescents, and young adults with recurrent or 613 refractory solid tumors. J. Clin. Oncol. 2018;36:15 10536–614 10536.
Hawkins C, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin. Cancer Res. 2011;17:4790–4798. doi: 10.1158/1078-0432.CCR-11-0034. PubMed DOI
Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF. Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro-Oncology. 2012;14:777–789. doi: 10.1093/neuonc/nos077. PubMed DOI PMC
Lassaletta A, et al. Profound clinical and radiological response to BRAF inhibition in a 2-month-old diencephalic child with hypothalamic/chiasmatic glioma. Pediatr. Blood Cancer. 2016;63:2038–2041. doi: 10.1002/pbc.26086. PubMed DOI
Banerjee A, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro-Oncology. 2017;19:1135–1144. doi: 10.1093/neuonc/now282. PubMed DOI PMC
Greenberg ML, Barr RD, DiMonte B, McLaughlin E, Greenberg C. Childhood cancer registries in Ontario, Canada: lessons learned from a comparison of two registries. Int. J. Cancer. 2003;105:88–91. doi: 10.1002/ijc.11004. PubMed DOI
Fina F, et al. Droplet digital PCR is a powerful technique to demonstrate frequent FGFR1 duplication in dysembryoplastic neuroepithelial tumors. Oncotarget. 2017;8:2104–2113. doi: 10.18632/oncotarget.12881. PubMed DOI PMC
Ryall S, et al. Multiplex detection of pediatric low-grade glioma signature fusion transcripts and duplications using the NanoString nCounter System. J. Neuropathol. Exp. Neurol. 2017;76:562–570. doi: 10.1093/jnen/nlx042. PubMed DOI
Raczy C, et al. Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013;29:2041–2043. doi: 10.1093/bioinformatics/btt314. PubMed DOI
Chen X, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–1222. doi: 10.1093/bioinformatics/btv710. PubMed DOI
Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12:R72. doi: 10.1186/gb-2011-12-8-r72. PubMed DOI PMC
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
McPherson A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput. Biol. 2011;7:e1001138. doi: 10.1371/journal.pcbi.1001138. PubMed DOI PMC
Kumar S, Vo AD, Qin F, Li H. Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci. Rep. 2016;6:21597. doi: 10.1038/srep21597. PubMed DOI PMC
Ge H, et al. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics. 2011;27:1922–1928. doi: 10.1093/bioinformatics/btr310. PubMed DOI
Aryee MJ, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–1369. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC
Triche TJ, Jr., Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013;41:e90. doi: 10.1093/nar/gkt090. PubMed DOI PMC
Krijthe, J. H. Rtsne: T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut Implementation https://github.com/jkrijthe/Rtsne. (2015).
Sonoda Y, et al. Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res. 2001;61:4956–4960. PubMed
Clinical Characteristics and Outcomes of Central Nervous System Tumors Harboring NTRK Gene Fusions
Integrated genomic analysis reveals actionable targets in pediatric spinal cord low-grade gliomas
Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas