Spectroscopic Understanding of SnO2 and WO3 Metal Oxide Surfaces with Advanced Synchrotron Based; XPS-UPS and Near Ambient Pressure (NAP) XPS Surface Sensitive Techniques for Gas Sensor Applications under Operational Conditions

. 2019 Oct 31 ; 19 (21) : . [epub] 20191031

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31683653

The most promising and utilized chemical sensing materials, WO3 and SnO2 were characterized by means advanced synchrotron based XPS, UPS, NAP-XPS techniques. The complementary electrical resistance and sensor testing experiments were also completed. A comparison and evaluation of some of the prominent and newly employed spectroscopic characterization techniques for chemical sensors were provided. The chemical nature and oxidation state of the WO3 and SnO2 thin films were explored at different depths from imminent surface to a maximum of 1.5 nm depth from the surface with non-destructive depth profiling. The adsorption and amount of chemisorbed oxygen species were precisely analyzed and quantified as a function of temperature between 25-400 °C under realistic operating conditions for chemical sensors employing 1-5 mbar pressures of oxygen (O2) and carbon monoxide (CO). The effect of realistic CO and O2 gas pressures on adsorbed water (H2O), OH- groups and chemisorbed oxygen species ( O 2 ( a d s ) - ,   O ( a d s ) ,   - O 2 ( a d s ) 2 - ) and chemical stability of metal oxide surfaces were evaluated and quantified.

Zobrazit více v PubMed

Wildfire C., Çiftyürek E., Sabolsky K., Sabolsky E.M. Fabrication and Testing of High-Temperature Nano-Derived Resistive-Type Microsensors for Hydrogen Sensing. J. Electrochem. Soc. 2014;161:B3094–B3102. doi: 10.1149/2.014402jes. DOI

Ciftyurek E., Sabolsky K., Edward S.M. Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species. Sens. Actuators B Chem. 2016;237:262–274. doi: 10.1016/j.snb.2016.06.071. DOI

Ciftyurek E., Katarzyna S., Edward S.M. High temperature selective sensing of hydrogen with MgO-modified SrMoO4 micro-fibers. Sens. Actuators B Chem. 2017;249:296–310. doi: 10.1016/j.snb.2017.04.034. DOI

Sabolsky E., Ciftyurek E., Wildfire C., Katarzyna S., Jonathan T., Kostas S., Evans T. Nano-Derived Microsensors for Monitoring Gas Species in Harsh-Environments. ECS Trans. 2014;61:375–385. doi: 10.1149/06102.0375ecst. DOI

Barsan N., Klaus S. Basiscs of Semiconducting Metal Oxide-Based Gas Sensors, Metal Oxides Series: Gas Sensors Based on Conducting Metal Oxides. Elseiver; Amsterdam, The Netherlands: 2018. p. 292.

Brundle C.R., Evans C.A., Wilson S., Jr. Encyclopedia of Materials Characterization. Gulf Professional Publishing; Houston, TX, USA: 1992.

NIST Standard Reference Database 71. [(accessed on 29 October 2019)]; Available online: https://www.nist.gov/srd/nist-standard-reference-database-71.

Hübner M., Koziej D., Bauer M., Barsan N., Kvashnina K., Rossell M.D., Weimar U., Grunwaldt J.D. The Structure and Behavior of Platinum in SnO2-Based Sensors under Working Conditions. Angew. Chem. Int. Ed. 2011;50:2841–2844. doi: 10.1002/anie.201004499. PubMed DOI

Hirsch O., Kvashnina K.O., Luo L., Süess M.J., Glatzel P., Koziej D. High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO2. Proc. Natl. Acad. Sci. USA. 2015;112:15803–15808. doi: 10.1073/pnas.1516192113. PubMed DOI PMC

Bare S.R., Griffiths K., Lennard W.N., Tang H.T. Generation of atomic oxygen on Ag(lll) and Ag(ll0) using NO22 a TPD, LEED, HREELS, XPS and NRA study. Surf. Sci. 1995;342:185–198. doi: 10.1016/0039-6028(95)00670-2. DOI

Barteau M.A., Madix R.J. A Photelectron Spectroscopic Investigation of The Interaction Between H2O and Oxygen on Ag(110) Surf. Sci. 1984;140:108–122. doi: 10.1016/0039-6028(84)90385-6. DOI

Barteau M., Ko E., Madix R. The Adsoprtion of CO, O2 and H2 on Pt(100)-(5×20) Surf. Sci. 1981;102:99–117. doi: 10.1016/0039-6028(81)90310-1. DOI

Barteau M.A. Organic Reactions at Well-Defined Oxide Surfaces. Chem. Rev. 1996;96:1413–1430. doi: 10.1021/cr950222t. PubMed DOI

Ciftyurek E., Wilken M., Zanders D., Mai L., Devi A., Schierbaum K. Monitoring Surface Stoichiometry, Work Function and Valance Band of Tungsten Oxide (WO3), Molybdenum Oxide (MoO3) and Tin Oxide (SnO2) Thin Films as a Function of Temperature and Oxygen Partial Pressure with Advanced Surface Sensitive Techniques for Chemical Sensing Applications. MDPI Proc. 2019;14:27. doi: 10.3390/proceedings2019014027. DOI

Ciftyurek E. Characterization of Atomic Layer Deposited (ALD) Novel Ultra-Thin Films for Ultra-Sensitive Chemical Sensors. 2018. 20177074, CERIC Proposal.

5th Annual APXPS Workshop 2018. [(accessed on 29 October 2019)]; Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwj398XZy8XlAhXbyYsBHV5kCscQFjAAegQIABAC&url=http%3A%2F%2Fwww.fhi-berlin.mpg.de%2Facnew%2Fapxps-2018%2F5th_APXPS_Workshop_Book_of_abstracts.pdf&usg=AOvVaw00Qsqb3xcjyuqDXtl9znNr.

Tissot H. Ph.D. Thesis. Université Pierre et Marie Curie; Paris, France: 2014. Beyond the Gap of Pressure: XPS Studies of Interfaces at Near Ambient Pressures.

Azad M., Akbar S.A., Mhaisalkar S.G., Birkefeld L.D., Goto K.S. Solid State Gas Sensors A review. J. Electrochem. Soc. 1992;139:3690–3701. doi: 10.1149/1.2069145. DOI

Kawabe T., Tabata K., Suzuki E., Yamaguchi Y., Nagasawa Y. Electronic States of Chemisorbed Oxygen Species and Their Mutually Related Studies on SnO2 Thin Film. J. Phys. Chem. B. 2001;105:4239–4244. doi: 10.1021/jp003234d. DOI

Wildfire C., Çiftyürek E., Sabolsky K., Sabolsky E.M. Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications. J. Mater. Sci. 2014;49:4735–4750. doi: 10.1007/s10853-014-8173-8. DOI

Eranna G., Joshi B.C., Runthala D.P., Gupta R.P. Oxide Materials for Development of Integrated Gas Sensors-A Comprehensive Review. Crit. Rev. Solid State Mater. Sci. 2010;29:111–188. doi: 10.1080/10408430490888977. DOI

Choi U.S., Sakai G., Shimanoe K., Yamazoe N. Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2. Sens. Actuators B Chem. 2005;107:397–401. doi: 10.1016/j.snb.2004.10.033. DOI

Egashira M., Shimizu Y., Takao Y. Trimethylamine Sensor based on Semiconductive Metal Oxides for Detection of Fish Freshness. Sens. Actuators B Chem. 1990;1:108–112. doi: 10.1016/0925-4005(90)80182-Y. DOI

Yamazoe N., Kurokawa Y., Seiyama T. Effects of additives on semiconductor gas sensors. Sens. Actuators. 1983;174:283–289. doi: 10.1016/0250-6874(83)85034-3. DOI

Matusko P., Yatsimirskii V.K., Maksimovich N.P., Nikitina N.V., Silenko P.M., Ruchko V.P., Ishchenko V.B. Sensitivity to hydrogen of sensor materials based on SnO2 promoted with 3d metals. Theor. Exp. Chem. 2008;442:128–133. doi: 10.1007/s11237-008-9008-y. DOI

Software for Spectroscopy Data Measurement and Processing. [(accessed on 30 September 2019)];2019 Available online: https://www.kolibrik.net/kolxpd/

McCafferty E., Wightman J. Determination of the Concentration of SurfaceHydroxyl Groups on Metal Oxide Films by aQuantitative XPS Method. Surf. Interface Anal. 1998;26:549–564. doi: 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q. DOI

Gaggiotti G., Galdikas A., Kaciulis S., Mattogno G., Setkus A. Surface chemistry of tin oxide based gas sensors. J. Appl. Phys. 1994;76:4467. doi: 10.1063/1.357277. DOI

Shimizu Y., Matsunaga N., Hyodo T., Egashira M. Improvement of SO2 sensing properties of WO3 by noble metal loading. Sens. Actuators B Chem. 2016;77:35. doi: 10.1016/S0925-4005(01)00669-4. DOI

Heo J., Hock A.S., Gordon R.G. Low Temperature Atomic Layer Deposition of Tin Oxide. Chem. Mater. 2010;22:4964–4973. doi: 10.1021/cm1011108. DOI

Shanthi E., Dutta V., Banerjee A., Chopra K.L. Electrical and optical properties of undoped and antimony-doped tin oxide films. J. Appl. Phys. 1980;51:6243. doi: 10.1063/1.327610. DOI

Senthilkumar V., Vickraman P. Structural, optical and electrical studies on nanocrystalline tin oxide (SnO2) thin films by electron beam evaporation technique. J. Mater. Sci. Mater. Electron. 2010;21:578–583. doi: 10.1007/s10854-009-9960-x. DOI

Kojima M., Kato H., Imai A., Yoshida A. Electronic conduction of tin oxide thin films prepared by chemical vapor deposition. J. Appl. Phys. 1988;64:1902. doi: 10.1063/1.341741. DOI

Banarjee R., Das D. Propoerties of Tin Oxide Films Prepared by Reactive Electron Beam Evaporation. Thin Solid Film. 1987;149:291–301. doi: 10.1016/0040-6090(87)90392-0. DOI

Bruno L., Pijolat C., Lalauze R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: Influence of grain size and thickness on the electrical properties. Sens. Actuators B Chem. 1994;18:195–199. doi: 10.1016/0925-4005(94)87083-7. DOI

Marom H., Eizenberg M. The effect of surface roughness on the resistivity increase in nanometric dimensions. J. Appl. Phys. 2006;99:123705. doi: 10.1063/1.2204349. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...