Spectroscopic Understanding of SnO2 and WO3 Metal Oxide Surfaces with Advanced Synchrotron Based; XPS-UPS and Near Ambient Pressure (NAP) XPS Surface Sensitive Techniques for Gas Sensor Applications under Operational Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31683653
PubMed Central
PMC6864773
DOI
10.3390/s19214737
PII: s19214737
Knihovny.cz E-zdroje
- Klíčová slova
- NAP-XPS, XPS, characterization techniques, gas sensors, metal oxides, spectroscopy, synchrotron,
- Publikační typ
- časopisecké články MeSH
The most promising and utilized chemical sensing materials, WO3 and SnO2 were characterized by means advanced synchrotron based XPS, UPS, NAP-XPS techniques. The complementary electrical resistance and sensor testing experiments were also completed. A comparison and evaluation of some of the prominent and newly employed spectroscopic characterization techniques for chemical sensors were provided. The chemical nature and oxidation state of the WO3 and SnO2 thin films were explored at different depths from imminent surface to a maximum of 1.5 nm depth from the surface with non-destructive depth profiling. The adsorption and amount of chemisorbed oxygen species were precisely analyzed and quantified as a function of temperature between 25-400 °C under realistic operating conditions for chemical sensors employing 1-5 mbar pressures of oxygen (O2) and carbon monoxide (CO). The effect of realistic CO and O2 gas pressures on adsorbed water (H2O), OH- groups and chemisorbed oxygen species ( O 2 ( a d s ) - , O ( a d s ) , - O 2 ( a d s ) 2 - ) and chemical stability of metal oxide surfaces were evaluated and quantified.
Zobrazit více v PubMed
Wildfire C., Çiftyürek E., Sabolsky K., Sabolsky E.M. Fabrication and Testing of High-Temperature Nano-Derived Resistive-Type Microsensors for Hydrogen Sensing. J. Electrochem. Soc. 2014;161:B3094–B3102. doi: 10.1149/2.014402jes. DOI
Ciftyurek E., Sabolsky K., Edward S.M. Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species. Sens. Actuators B Chem. 2016;237:262–274. doi: 10.1016/j.snb.2016.06.071. DOI
Ciftyurek E., Katarzyna S., Edward S.M. High temperature selective sensing of hydrogen with MgO-modified SrMoO4 micro-fibers. Sens. Actuators B Chem. 2017;249:296–310. doi: 10.1016/j.snb.2017.04.034. DOI
Sabolsky E., Ciftyurek E., Wildfire C., Katarzyna S., Jonathan T., Kostas S., Evans T. Nano-Derived Microsensors for Monitoring Gas Species in Harsh-Environments. ECS Trans. 2014;61:375–385. doi: 10.1149/06102.0375ecst. DOI
Barsan N., Klaus S. Basiscs of Semiconducting Metal Oxide-Based Gas Sensors, Metal Oxides Series: Gas Sensors Based on Conducting Metal Oxides. Elseiver; Amsterdam, The Netherlands: 2018. p. 292.
Brundle C.R., Evans C.A., Wilson S., Jr. Encyclopedia of Materials Characterization. Gulf Professional Publishing; Houston, TX, USA: 1992.
NIST Standard Reference Database 71. [(accessed on 29 October 2019)]; Available online: https://www.nist.gov/srd/nist-standard-reference-database-71.
Hübner M., Koziej D., Bauer M., Barsan N., Kvashnina K., Rossell M.D., Weimar U., Grunwaldt J.D. The Structure and Behavior of Platinum in SnO2-Based Sensors under Working Conditions. Angew. Chem. Int. Ed. 2011;50:2841–2844. doi: 10.1002/anie.201004499. PubMed DOI
Hirsch O., Kvashnina K.O., Luo L., Süess M.J., Glatzel P., Koziej D. High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO2. Proc. Natl. Acad. Sci. USA. 2015;112:15803–15808. doi: 10.1073/pnas.1516192113. PubMed DOI PMC
Bare S.R., Griffiths K., Lennard W.N., Tang H.T. Generation of atomic oxygen on Ag(lll) and Ag(ll0) using NO22 a TPD, LEED, HREELS, XPS and NRA study. Surf. Sci. 1995;342:185–198. doi: 10.1016/0039-6028(95)00670-2. DOI
Barteau M.A., Madix R.J. A Photelectron Spectroscopic Investigation of The Interaction Between H2O and Oxygen on Ag(110) Surf. Sci. 1984;140:108–122. doi: 10.1016/0039-6028(84)90385-6. DOI
Barteau M., Ko E., Madix R. The Adsoprtion of CO, O2 and H2 on Pt(100)-(5×20) Surf. Sci. 1981;102:99–117. doi: 10.1016/0039-6028(81)90310-1. DOI
Barteau M.A. Organic Reactions at Well-Defined Oxide Surfaces. Chem. Rev. 1996;96:1413–1430. doi: 10.1021/cr950222t. PubMed DOI
Ciftyurek E., Wilken M., Zanders D., Mai L., Devi A., Schierbaum K. Monitoring Surface Stoichiometry, Work Function and Valance Band of Tungsten Oxide (WO3), Molybdenum Oxide (MoO3) and Tin Oxide (SnO2) Thin Films as a Function of Temperature and Oxygen Partial Pressure with Advanced Surface Sensitive Techniques for Chemical Sensing Applications. MDPI Proc. 2019;14:27. doi: 10.3390/proceedings2019014027. DOI
Ciftyurek E. Characterization of Atomic Layer Deposited (ALD) Novel Ultra-Thin Films for Ultra-Sensitive Chemical Sensors. 2018. 20177074, CERIC Proposal.
5th Annual APXPS Workshop 2018. [(accessed on 29 October 2019)]; Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwj398XZy8XlAhXbyYsBHV5kCscQFjAAegQIABAC&url=http%3A%2F%2Fwww.fhi-berlin.mpg.de%2Facnew%2Fapxps-2018%2F5th_APXPS_Workshop_Book_of_abstracts.pdf&usg=AOvVaw00Qsqb3xcjyuqDXtl9znNr.
Tissot H. Ph.D. Thesis. Université Pierre et Marie Curie; Paris, France: 2014. Beyond the Gap of Pressure: XPS Studies of Interfaces at Near Ambient Pressures.
Azad M., Akbar S.A., Mhaisalkar S.G., Birkefeld L.D., Goto K.S. Solid State Gas Sensors A review. J. Electrochem. Soc. 1992;139:3690–3701. doi: 10.1149/1.2069145. DOI
Kawabe T., Tabata K., Suzuki E., Yamaguchi Y., Nagasawa Y. Electronic States of Chemisorbed Oxygen Species and Their Mutually Related Studies on SnO2 Thin Film. J. Phys. Chem. B. 2001;105:4239–4244. doi: 10.1021/jp003234d. DOI
Wildfire C., Çiftyürek E., Sabolsky K., Sabolsky E.M. Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications. J. Mater. Sci. 2014;49:4735–4750. doi: 10.1007/s10853-014-8173-8. DOI
Eranna G., Joshi B.C., Runthala D.P., Gupta R.P. Oxide Materials for Development of Integrated Gas Sensors-A Comprehensive Review. Crit. Rev. Solid State Mater. Sci. 2010;29:111–188. doi: 10.1080/10408430490888977. DOI
Choi U.S., Sakai G., Shimanoe K., Yamazoe N. Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2. Sens. Actuators B Chem. 2005;107:397–401. doi: 10.1016/j.snb.2004.10.033. DOI
Egashira M., Shimizu Y., Takao Y. Trimethylamine Sensor based on Semiconductive Metal Oxides for Detection of Fish Freshness. Sens. Actuators B Chem. 1990;1:108–112. doi: 10.1016/0925-4005(90)80182-Y. DOI
Yamazoe N., Kurokawa Y., Seiyama T. Effects of additives on semiconductor gas sensors. Sens. Actuators. 1983;174:283–289. doi: 10.1016/0250-6874(83)85034-3. DOI
Matusko P., Yatsimirskii V.K., Maksimovich N.P., Nikitina N.V., Silenko P.M., Ruchko V.P., Ishchenko V.B. Sensitivity to hydrogen of sensor materials based on SnO2 promoted with 3d metals. Theor. Exp. Chem. 2008;442:128–133. doi: 10.1007/s11237-008-9008-y. DOI
Software for Spectroscopy Data Measurement and Processing. [(accessed on 30 September 2019)];2019 Available online: https://www.kolibrik.net/kolxpd/
McCafferty E., Wightman J. Determination of the Concentration of SurfaceHydroxyl Groups on Metal Oxide Films by aQuantitative XPS Method. Surf. Interface Anal. 1998;26:549–564. doi: 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q. DOI
Gaggiotti G., Galdikas A., Kaciulis S., Mattogno G., Setkus A. Surface chemistry of tin oxide based gas sensors. J. Appl. Phys. 1994;76:4467. doi: 10.1063/1.357277. DOI
Shimizu Y., Matsunaga N., Hyodo T., Egashira M. Improvement of SO2 sensing properties of WO3 by noble metal loading. Sens. Actuators B Chem. 2016;77:35. doi: 10.1016/S0925-4005(01)00669-4. DOI
Heo J., Hock A.S., Gordon R.G. Low Temperature Atomic Layer Deposition of Tin Oxide. Chem. Mater. 2010;22:4964–4973. doi: 10.1021/cm1011108. DOI
Shanthi E., Dutta V., Banerjee A., Chopra K.L. Electrical and optical properties of undoped and antimony-doped tin oxide films. J. Appl. Phys. 1980;51:6243. doi: 10.1063/1.327610. DOI
Senthilkumar V., Vickraman P. Structural, optical and electrical studies on nanocrystalline tin oxide (SnO2) thin films by electron beam evaporation technique. J. Mater. Sci. Mater. Electron. 2010;21:578–583. doi: 10.1007/s10854-009-9960-x. DOI
Kojima M., Kato H., Imai A., Yoshida A. Electronic conduction of tin oxide thin films prepared by chemical vapor deposition. J. Appl. Phys. 1988;64:1902. doi: 10.1063/1.341741. DOI
Banarjee R., Das D. Propoerties of Tin Oxide Films Prepared by Reactive Electron Beam Evaporation. Thin Solid Film. 1987;149:291–301. doi: 10.1016/0040-6090(87)90392-0. DOI
Bruno L., Pijolat C., Lalauze R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: Influence of grain size and thickness on the electrical properties. Sens. Actuators B Chem. 1994;18:195–199. doi: 10.1016/0925-4005(94)87083-7. DOI
Marom H., Eizenberg M. The effect of surface roughness on the resistivity increase in nanometric dimensions. J. Appl. Phys. 2006;99:123705. doi: 10.1063/1.2204349. DOI