gas sensors Dotaz Zobrazit nápovědu
- MeSH
- hem chemie metabolismus MeSH
- kyslík chemie metabolismus MeSH
- lidé MeSH
- oxid dusnatý chemie metabolismus MeSH
- oxid uhelnatý chemie metabolismus MeSH
- oxidace-redukce MeSH
- proteiny chemie metabolismus MeSH
- signální transdukce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Widely used classical angiography with the use of iodine contrast agents is highly problematic, particularly in patients with diabetes mellitus, cardiac and pulmonary diseases, or degree III or IV renal insufficiency. Some patients may be susceptible to allergic reaction to the iodine contrast substance. The intravenous injection of a bolus of CO2 (negative contrast) is an alternative method, which is, however, currently only used for imaging blood vessels of the lower limbs. The aim of our project was to design and test on an animal model a methodology for injecting the CO2 foam which would minimize the possibility of embolization of the brain tissue and heart infarction, leading to their damage. This is important research for the further promotion of the use of CO2, which is increasingly important for endovascular diagnosis and treatment, because carbon-dioxide-related complications are extremely rare. CO2 foam was prepared by the rapid mixing in a 2:1 ratio of CO2 and fetal bovine serum (FBS)-enriched Dulbecco's Modified Eagle Medium (DMEM). Freshly prepared CO2 foam was administered into the catheterized rat tail vein or cannulated rat abdominal aorta and inferior vena cava (IVC). CO2 foam was compared with commercially available microbubbles (lipid shell/gas core). The rat heart in its parasternal long axis was imaged in B-Mode and Non-linear Contrast Mode before/during and after the contrast administration. Samples of the brain, heart and lungs were collected and subjected to histological examination. The non-linear contrast imaging method enables the imaging of micron-sized gas microbubbles inside a rat heart. The significantly shorter lifetime of the prepared CO2 foam is a benefit for avoiding the local ischemia of tissues.
- MeSH
- angiografie MeSH
- jod * MeSH
- kontrastní látky MeSH
- krysa rodu rattus MeSH
- mikrobubliny MeSH
- oxid uhličitý * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Magnetic particles (MPs) have been widely used in biological applications in recent years as a carrier for various molecules. Their big advantage is in repeated use of immobilized molecules including enzymes. Acetylcholinesterase (AChE) is an enzyme playing crucial role in neurotransmission and the enzyme is targeted by various molecules like Alzheimer's drugs, pesticides and warfare agents. In this work, an electrochemical biosensor having AChE immobilized onto MPs and stabilized through glutaraldehyde (GA) molecule was proposed for assay of the neurotoxic compounds. The prepared nanoparticles were modified by pure AChE and they were used for the measurement anti-Alzheimer's drug galantamine and carbamate pesticide carbofuran with limit of detection 1.5 µM and 20 nM, respectively. All measurements were carried out using screen-printed sensor with carbon working, silver reference, and carbon auxiliary electrode. Standard Ellman's assay was used for validation measurement of both inhibitors. Part of this work was the elimination of reversible inhibitors represented by galantamine from the active site of AChE. For this purpose, we used a lower pH to get the original activity of AChE after inhibition by galantamine. We also observed decarbamylation of the AChE-carbofuran adduct. Influence of organic solvents to AChE as well as repeatability of measurement with MPs with AChE was also established.
The iron atom possesses unique properties, being manifested in the heme molecule. In addition to the involvement of heme in many processes (such as oxygen or electron transport and catalysis of enzyme reaction), it can also regulate key pathways critical for health. Heme-containing sensor proteins mediate the heme regulation role. The review aims to underline the main characteristics of the heme-containing sensor proteins group, either sensing heme or sensing a gas molecule through a heme-binding site, on the example of specific representatives from each sensor subgroup.
- MeSH
- hem * chemie fyziologie MeSH
- hemoproteiny * chemie fyziologie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
BACKGROUND: There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking Po2 changes dynamically when it varies rapidly. For example, arterial Po2 ([Formula: see text]) can vary within the respiratory cycle in cyclical atelectasis (CA), where [Formula: see text] is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these [Formula: see text] oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS). METHODS: We developed a fibreoptic Po2 sensor (<200 µm diameter), suitable for human use, that has a fast response time, and can measure Po2 continuously in blood. By altering the inspired fraction of oxygen ([Formula: see text]) from 21 to 100% in four healthy animal models, we determined the linearity of the sensor's signal over a wide range of [Formula: see text] values in vivo. We also hypothesized that the sensor could measure rapid intra-breath [Formula: see text] oscillations in a large animal model of ARDS. RESULTS: In the healthy animal models, [Formula: see text] responses to changes in [Formula: see text] were in agreement with conventional intermittent blood-gas analysis (n=39) for a wide range of [Formula: see text] values, from 10 to 73 kPa. In the animal lavage model of CA, the sensor detected [Formula: see text] oscillations, also at clinically relevant [Formula: see text] levels close to 9 kPa. CONCLUSIONS: We conclude that these fibreoptic [Formula: see text] sensors have the potential to become a diagnostic tool for CA in ARDS.
Although smartwatches are not considered medical devices, experimental validation of their accuracy in detecting hypoxemia is necessary due to their potential use in monitoring conditions manifested by a prolonged decrease in peripheral blood oxygen saturation (SpO2), such as chronic obstructive pulmonary disease, sleep apnea syndrome, and COVID-19, or at high altitudes, e.g., during sport climbing, where the use of finger-sensor-based pulse oximeters may be limited. The aim of this study was to experimentally compare the accuracy of SpO2 measurement of popular smartwatches with a clinically used pulse oximeter according to the requirements of ISO 80601-2-61. Each of the 18 young and healthy participants underwent the experimental assessment three times in randomized order-wearing Apple Watch 8, Samsung Galaxy Watch 5, or Withings ScanWatch-resulting in 54 individual experimental assessments and complete datasets. The accuracy of the SpO2 measurements was compared to that of the Radical-7 (Masimo Corporation, Irvine, CA, USA) during short-term hypoxemia induced by consecutive inhalation of three prepared gas mixtures with reduced oxygen concentrations (14%, 12%, and 10%). All three smartwatch models met the maximum acceptable root-mean-square deviation (≤4%) from the reference measurement at both normal oxygen levels and induced desaturation with SpO2 less than 90%. Apple Watch 8 reached the highest reliability due to its lowest mean bias and root-mean-square deviation, highest Pearson correlation coefficient, and accuracy in detecting hypoxemia. Our findings support the use of smartwatches to reliably detect hypoxemia in situations where the use of standard finger pulse oximeters may be limited.
- MeSH
- chronická obstrukční plicní nemoc * MeSH
- hypoxie diagnóza MeSH
- kyslík MeSH
- lidé MeSH
- oxymetrie * metody MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Our study demonstrates that nanoplasmonic sensing (NPS) can be utilized for the determination of the phase transition temperature (Tm) of phospholipids. During the phase transition, the lipid bilayer undergoes a conformational change. Therefore, it is presumed that the Tm of phospholipids can be determined by detecting conformational changes in liposomes. The studied lipids included 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Liposomes in gel phase are immobilized onto silicon dioxide sensors and the sensor cell temperature is increased until passing the Tm of the lipid. The results show that, when the system temperature approaches the Tm, a drop of the NPS signal is observed. The breakpoints in the temperatures are 22.5 °C, 41.0 °C, and 55.5 °C for DMPC, DPPC, and DSPC, respectively. These values are very close to the theoretical Tm values, i.e., 24 °C, 41.4 °C, and 55 °C for DMPC, DPPC, and DSPC, respectively. Our studies prove that the NPS methodology is a simple and valuable tool for the determination of the Tm of phospholipids.
During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites.
The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants.
- MeSH
- hem chemie MeSH
- hemová oxygenasa (decyklizující) metabolismus MeSH
- kyslík metabolismus MeSH
- leucin genetika MeSH
- lyasy štěpící vazby P-O genetika metabolismus MeSH
- mutace * MeSH
- oxid uhelnatý metabolismus MeSH
- proteiny z Escherichia coli genetika metabolismus MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Carbon and its analogous nanomaterials are beneficial for toxic gas sensors since they are used to increase the electrochemically active surface region and improve the transmission of electrons. The present article addresses a detailed investigation on the potential of the monolayer PC3 compound as a possible sensor material for environmentally toxic nitrogen-containing gases (NCGs), namely NH3, NO, and NO2. The entire work is carried out under the frameworks of density functional theory, ab-initio molecular dynamics simulations, and non-equilibrium Green's function approaches. The monolayer-gas interactions are studied with the van der Waals dispersion correction. The stability of pristine monolayer PC3 is confirmed through dynamical, mechanical, and thermal analyses. The mobility and relaxation time of 2D PC3 sensor material with NCGs are obtained in the range of 101-104 cm2 V-1 s-1 and 101-103 fs for armchair and zigzag directions, respectively. Out of six possible adsorption sites for toxic gases on the PC3 surface, the most prominent site is identified with the highest adsorption energy for all the NCGs. Considering the most stable configuration site of the NCGs, we have obtained relevant electronic properties by utilizing the band unfolding technique. The considerable adsorption energies are obtained for NO and NO2 compared to NH3. Although physisorption is observed for all the NCGs on the PC3 surface, NO2 is found to convert into NO and O at 5.05 ps (at 300 K) under molecular dynamics simulation. The maximum charge transfer (0.31e) and work function (5.17 eV) are observed for the NO2 gas molecule in the series. Along with the considerable adsorption energies for NO and NO2 gas molecules, their shorter recovery time (0.071 s and 0.037 s, respectively) from the PC3 surface also identifies 2D PC3 as a promising sensor material for those environmentally toxic gases. The experimental viability and actual implications for PC3 monolayer as NCGs sensor material are also confirmed by examining the humidity effect and transport properties with modeled sensor devices. The transport properties (I-V characteristics) reflect the significant sensitivity of PC3 monolayer toward NO and NO2 molecules. These results certainly confirm PC3 monolayer as a promising sensor material for NO and NO2 NCG molecules.
- MeSH
- adsorpce MeSH
- dusík MeSH
- elektrony MeSH
- nanostruktury * MeSH
- plyny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH