Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38498986
PubMed Central
PMC11301665
DOI
10.1021/acs.jproteome.3c00641
Knihovny.cz E-zdroje
- Klíčová slova
- ABHD2, Caspase 9, diaPASEF, migration, osteoblasts, proteomics,
- MeSH
- buněčné linie MeSH
- genový knockout MeSH
- kaspasa 9 * metabolismus genetika MeSH
- myši MeSH
- osteoblasty * metabolismus cytologie MeSH
- pohyb buněk * MeSH
- proteomika * metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Casp9 protein, mouse MeSH Prohlížeč
- kaspasa 9 * MeSH
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Department of Biochemistry Faculty of Science Masaryk University Brno 625 00 Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno 625 00 Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 602 00 Czech Republic
Zobrazit více v PubMed
Van Opdenbosch N.; Lamkanfi M. Caspases in Cell Death, Inflammation, and Disease. Immunity 2019, 50 (6), 1352–1364. 10.1016/j.immuni.2019.05.020. PubMed DOI PMC
Shalini S.; Dorstyn L.; Dawar S.; Kumar S. Old, New and Emerging Functions of Caspases. Cell Death Differ. 2015, 22 (4), 526–539. 10.1038/cdd.2014.216. PubMed DOI PMC
Li Z.; Jo J.; Jia J.-M.; Lo S.-C.; Whitcomb D. J.; Jiao S.; Cho K.; Sheng M. Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization. Cell 2010, 141 (5), 859–871. 10.1016/j.cell.2010.03.053. PubMed DOI PMC
Kuo C. T.; Zhu S.; Younger S.; Jan L. Y.; Jan Y. N. Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning. Neuron 2006, 51 (3), 283–290. 10.1016/j.neuron.2006.07.014. PubMed DOI
Williams D. W.; Kondo S.; Krzyzanowska A.; Hiromi Y.; Truman J. W. Local Caspase Activity Directs Engulfment of Dendrites during Pruning. Nat. Neurosci. 2006, 9 (10), 1234–1236. 10.1038/nn1774. PubMed DOI
Puhl J. G.; Masino M. A.; Mesce K. A. Necessary, Sufficient and Permissive: A Single Locomotor Command Neuron Important for Intersegmental Coordination. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32 (49), 17646–17657. 10.1523/JNEUROSCI.2249-12.2012. PubMed DOI PMC
Westphal D.; Sytnyk V.; Schachner M.; Leshchyns’ka I. Clustering of the Neural Cell Adhesion Molecule (NCAM) at the Neuronal Cell Surface Induces Caspase-8- and −3-Dependent Changes of the Spectrin Meshwork Required for NCAM-Mediated Neurite Outgrowth. J. Biol. Chem. 2010, 285 (53), 42046–42057. 10.1074/jbc.M110.177147. PubMed DOI PMC
Campbell D. S.; Okamoto H. Local Caspase Activation Interacts with Slit-Robo Signaling to Restrict Axonal Arborization. J. Cell Biol. 2013, 203 (4), 657–672. 10.1083/jcb.201303072. PubMed DOI PMC
Bulatovic I.; Ibarra C.; Österholm C.; Wang H.; Beltrán-Rodríguez A.; Varas-Godoy M.; Månsson-Broberg A.; Uhlén P.; Simon A.; Grinnemo K.-H. Sublethal Caspase Activation Promotes Generation of Cardiomyocytes from Embryonic Stem Cells. PloS One 2015, 10 (3), e012017610.1371/journal.pone.0120176. PubMed DOI PMC
Janzen V.; Fleming H. E.; Riedt T.; Karlsson G.; Riese M. J.; Lo Celso C.; Reynolds G.; Milne C. D.; Paige C. J.; Karlsson S.; Woo M.; Scadden D. T. Hematopoietic Stem Cell Responsiveness to Exogenous Signals Is Limited by Caspase-3. Cell Stem Cell 2008, 2 (6), 584–594. 10.1016/j.stem.2008.03.012. PubMed DOI PMC
Dawar S.; Shahrin N. H.; Sladojevic N.; D’Andrea R. J.; Dorstyn L.; Hiwase D. K.; Kumar S. Impaired Haematopoietic Stem Cell Differentiation and Enhanced Skewing towards Myeloid Progenitors in Aged Caspase-2-Deficient Mice. Cell Death Dis. 2016, 7 (12), e250910.1038/cddis.2016.406. PubMed DOI PMC
Oomman S.; Strahlendorf H.; Dertien J.; Strahlendorf J. Bergmann Glia Utilize Active Caspase-3 for Differentiation. Brain Res. 2006, 1078 (1), 19–34. 10.1016/j.brainres.2006.01.041. PubMed DOI
Freimuth J.; Bangen J.-M.; Lambertz D.; Hu W.; Nevzorova Y. A.; Sonntag R.; Gassler N.; Riethmacher D.; Trautwein C.; Liedtke C. Loss of Caspase-8 in Hepatocytes Accelerates the Onset of Liver Regeneration in Mice through Premature Nuclear Factor Kappa B Activation. Hepatol. Baltim. Md 2013, 58 (5), 1779–1789. 10.1002/hep.26538. PubMed DOI
Zhang Y.; Padalecki S. S.; Chaudhuri A. R.; De Waal E.; Goins B. A.; Grubbs B.; Ikeno Y.; Richardson A.; Mundy G. R.; Herman B. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice. Mech. Ageing Dev. 2007, 128 (2), 213–221. 10.1016/j.mad.2006.11.030. PubMed DOI PMC
Lopez-Cruzan M.; Herman B. Loss of Caspase-2 Accelerates Age-Dependent Alterations in Mitochondrial Production of Reactive Oxygen Species. Biogerontology 2013, 14 (2), 121–130. 10.1007/s10522-013-9415-x. PubMed DOI PMC
Shalini S.; Dorstyn L.; Wilson C.; Puccini J.; Ho L.; Kumar S. Impaired Antioxidant Defence and Accumulation of Oxidative Stress in Caspase-2-Deficient Mice. Cell Death Differ. 2012, 19 (8), 1370–1380. 10.1038/cdd.2012.13. PubMed DOI PMC
Hu B.; Elinav E.; Huber S.; Booth C. J.; Strowig T.; Jin C.; Eisenbarth S. C.; Flavell R. A. Inflammation-Induced Tumorigenesis in the Colon Is Regulated by Caspase-1 and NLRC4. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (50), 21635–21640. 10.1073/pnas.1016814108. PubMed DOI PMC
Lamy L.; Ngo V. N.; Emre N. C. T.; Shaffer A. L.; Yang Y.; Tian E.; Nair V.; Kruhlak M. J.; Zingone A.; Landgren O.; Staudt L. M. Control of Autophagic Cell Death by Caspase-10 in Multiple Myeloma. Cancer Cell 2013, 23 (4), 435–449. 10.1016/j.ccr.2013.02.017. PubMed DOI PMC
Krajewska M.; Kim H.; Shin E.; Kennedy S.; Duffy M. J.; Wong Y. F.; Marr D.; Mikolajczyk J.; Shabaik A.; Meinhold-Heerlein I.; Huang X.; Banares S.; Hedayat H.; Reed J. C.; Krajewski S. Tumor-Associated Alterations in Caspase-14 Expression in Epithelial Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005, 11 (15), 5462–5471. 10.1158/1078-0432.CCR-04-2527. PubMed DOI
Miura M.; Chen X.-D.; Allen M. R.; Bi Y.; Gronthos S.; Seo B.-M.; Lakhani S.; Flavell R. A.; Feng X.-H.; Robey P. G.; Young M.; Shi S. A Crucial Role of Caspase-3 in Osteogenic Differentiation of Bone Marrow Stromal Stem Cells. J. Clin. Invest. 2004, 114 (12), 1704–1713. 10.1172/JCI20427. PubMed DOI PMC
Mogi M.; Togari A. Activation of Caspases Is Required for Osteoblastic Differentiation. J. Biol. Chem. 2003, 278 (48), 47477–47482. 10.1074/jbc.M307055200. PubMed DOI
Kratochvílová A.; Veselá B.; Ledvina V.; Švandová E.; Klepárník K.; Dadáková K.; Beneš P.; Matalová E. Osteogenic Impact of Pro-Apoptotic Caspase Inhibitors in MC3T3-E1 Cells. Sci. Rep. 2020, 10 (1), 7489.10.1038/s41598-020-64294-9. PubMed DOI PMC
Vesela B.; Killinger M.; Rihova K.; Benes P.; Svandová E.; Kratochvilová A.; Trcka F.; Kleparnik K.; Matalova E. Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways. Front. Cell Dev. Biol. 2022, 10, 79440710.3389/fcell.2022.794407. PubMed DOI PMC
Vesela B.; Kratochvilova A.; Svandova E.; Benes P.; Rihova K.; Poliard A.; Matalova E. Caspase-12 Is Present During Craniofacial Development and Participates in Regulation of Osteogenic Markers. Front. Cell Dev. Biol. 2020, 8, 58913610.3389/fcell.2020.589136. PubMed DOI PMC
Ramesova A.; Vesela B.; Svandova E.; Lesot H.; Matalova E. Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism. Int. J. Mol. Sci. 2021, 22 (17), 9576.10.3390/ijms22179576. PubMed DOI PMC
Svandova E.; Lesot H.; Vanden Berghe T.; Tucker A. S.; Sharpe P. T.; Vandenabeele P.; Matalova E. Non-Apoptotic Functions of Caspase-7 during Osteogenesis. Cell Death Dis. 2014, 5 (8), e136610.1038/cddis.2014.330. PubMed DOI PMC
Matalova E.; Lesot H.; Svandova E.; Vanden Berghe T.; Sharpe P. T.; Healy C.; Vandenabeele P.; Tucker A. S. Caspase-7 Participates in Differentiation of Cells Forming Dental Hard Tissues. Dev. Growth Differ. 2013, 55 (5), 615–621. 10.1111/dgd.12066. PubMed DOI
Bratton S. B.; Salvesen G. S. Regulation of the Apaf-1-Caspase-9 Apoptosome. J. Cell Sci. 2010, 123 (19), 3209–3214. 10.1242/jcs.073643. PubMed DOI PMC
Li P.; Zhou L.; Zhao T.; Liu X.; Zhang P.; Liu Y.; Zheng X.; Li Q. Caspase-9: Structure, Mechanisms and Clinical Application. Oncotarget 2017, 8 (14), 23996–24008. 10.18632/oncotarget.15098. PubMed DOI PMC
An H.-K.; Chung K. M.; Park H.; Hong J.; Gim J.-E.; Choi H.; Lee Y. W.; Choi J.; Mun J. Y.; Yu S.-W. CASP9 (Caspase 9) Is Essential for Autophagosome Maturation through Regulation of Mitochondrial Homeostasis. Autophagy 2020, 16 (9), 1598–1617. 10.1080/15548627.2019.1695398. PubMed DOI PMC
Murray T. V. A.; McMahon J. M.; Howley B. A.; Stanley A.; Ritter T.; Mohr A.; Zwacka R.; Fearnhead H. O. A Non-Apoptotic Role for Caspase-9 in Muscle Differentiation. J. Cell Sci. 2008, 121 (22), 3786–3793. 10.1242/jcs.024547. PubMed DOI
Ohsawa S.; Hamada S.; Kuida K.; Yoshida H.; Igaki T.; Miura M. Maturation of the Olfactory Sensory Neurons by Apaf-1/Caspase-9-Mediated Caspase Activity. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (30), 13366–13371. 10.1073/pnas.0910488107. PubMed DOI PMC
Han J.; Goldstein L. A.; Hou W.; Watkins S. C.; Rabinowich H. Involvement of CASP9 (Caspase 9) in IGF2R/CI-MPR Endosomal Transport. Autophagy 2021, 17 (6), 1393–1409. 10.1080/15548627.2020.1761742. PubMed DOI PMC
Miyata K.; Oike Y.; Hoshii T.; Maekawa H.; Ogawa H.; Suda T.; Araki K.; Yamamura K. Increase of Smooth Muscle Cell Migration and of Intimal Hyperplasia in Mice Lacking the Alpha/Beta Hydrolase Domain Containing 2 Gene. Biochem. Biophys. Res. Commun. 2005, 329 (1), 296–304. 10.1016/j.bbrc.2005.01.127. PubMed DOI
Concordet J.-P.; Haeussler M. CRISPOR: Intuitive Guide Selection for CRISPR/Cas9 Genome Editing Experiments and Screens. Nucleic Acids Res. 2018, 46 (W1), W242–W245. 10.1093/nar/gky354. PubMed DOI PMC
Říhová K.; Dúcka M.; Zambo I. S.; Vymětalová L.; Šrámek M.; Trčka F.; Verner J.; Drápela S.; Fedr R.; Suchánková T.; Pavlatovská B.; Ondroušková E.; Kubelková I.; Zapletalová D.; Tuček Š.; Múdry P.; Krákorová D. A.; Knopfová L.; Šmarda J.; Souček K.; Borsig L.; Beneš P. Transcription Factor C-Myb: Novel Prognostic Factor in Osteosarcoma. Clin. Exp. Metastasis 2022, 39 (2), 375–390. 10.1007/s10585-021-10145-4. PubMed DOI
Knopfová L.; Biglieri E.; Volodko N.; Masařík M.; Hermanová M.; Glaus Garzón J. F.; Dúcka M.; Kučírková T.; Souček K.; Šmarda J.; Beneš P.; Borsig L. Transcription Factor C-Myb Inhibits Breast Cancer Lung Metastasis by Suppression of Tumor Cell Seeding. Oncogene 2018, 37 (8), 1020–1030. 10.1038/onc.2017.392. PubMed DOI PMC
Tyanova S.; Temu T.; Sinitcyn P.; Carlson A.; Hein M. Y.; Geiger T.; Mann M.; Cox J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods 2016, 13 (9), 731–740. 10.1038/nmeth.3901. PubMed DOI
Liao Y.; Wang J.; Jaehnig E. J.; Shi Z.; Zhang B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47 (W1), W199–W205. 10.1093/nar/gkz401. PubMed DOI PMC
WebGestalt. https://www.webgestalt.org/ (accessed 2024-02-14).
Wickham H.Ggplot2: : Elegant Graphics for Data Analysis; Springer-Verlag: New York, 2016. 10.1007/978-3-319-24277-4. DOI
Oliveros J. C.Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams, 2007–2015. https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed 2024-02-14).
Raudvere U.; Kolberg L.; Kuzmin I.; Arak T.; Adler P.; Peterson H.; Vilo J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47 (W1), W191–W198. 10.1093/nar/gkz369. PubMed DOI PMC
Shannon P.; Markiel A.; Ozier O.; Baliga N. S.; Wang J. T.; Ramage D.; Amin N.; Schwikowski B.; Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13 (11), 2498–2504. 10.1101/gr.1239303. PubMed DOI PMC
Merico D.; Isserlin R.; Stueker O.; Emili A.; Bader G. D. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PloS One 2010, 5 (11), e1398410.1371/journal.pone.0013984. PubMed DOI PMC
Benes P.; Alexova P.; Knopfova L.; Spanova A.; Smarda J. Redox State Alters Anti-Cancer Effects of Wedelolactone. Environ. Mol. Mutagen. 2012, 53 (7), 515–524. 10.1002/em.21712. PubMed DOI
Lapcik P.; Vesela B.; Potesil D.; Dadakova K.; Zapletalova M.; Benes P.; Bouchal P.; Matalova E. DiaPASEF Proteotype Analysis Indicates Changes in Cell Growth and Metabolic Switch Induced by Caspase-9 Inhibition in Chondrogenic Cells. Proteomics 2023, 23 (11), e220040810.1002/pmic.202200408. PubMed DOI
Rawlings N. D.; Barrett A. J.; Thomas P. D.; Huang X.; Bateman A.; Finn R. D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database. Nucleic Acids Res. 2018, 46 (D1), D624–D632. 10.1093/nar/gkx1134. PubMed DOI PMC
Fortelny N.; Yang S.; Pavlidis P.; Lange P. F.; Overall C. M. Proteome TopFIND 3.0 with TopFINDer and PathFINDer: Database and Analysis Tools for the Association of Protein Termini to Pre- and Post-Translational Events. Nucleic Acids Res. 2015, 43 (D1), D290–D297. 10.1093/nar/gku1012. PubMed DOI PMC
Araya L. E.; Soni I. V.; Hardy J. A.; Julien O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem. Biol. 2021, 16 (11), 2280–2296. 10.1021/acschembio.1c00456. PubMed DOI PMC
Miller M. R.; Mannowetz N.; Iavarone A. T.; Safavi R.; Gracheva E. O.; Smith J. F.; Hill R. Z.; Bautista D. M.; Kirichok Y.; Lishko P. V. Unconventional Endocannabinoid Signaling Governs Sperm Activation via the Sex Hormone Progesterone. Science 2016, 352 (6285), 555–559. 10.1126/science.aad6887. PubMed DOI PMC
Lord C. C.; Thomas G.; Brown J. M. Mammalian Alpha Beta Hydrolase Domain (ABHD) Proteins: Lipid Metabolizing Enzymes at the Interface of Cell Signaling and Energy Metabolism. Biochim. Biophys. Acta 2013, 1831 (4), 792–802. 10.1016/j.bbalip.2013.01.002. PubMed DOI PMC
Hollville E.; Deshmukh M. Physiological Functions of Non-Apoptotic Caspase Activity in the Nervous System. Semin. Cell Dev. Biol. 2018, 82, 127–136. 10.1016/j.semcdb.2017.11.037. PubMed DOI PMC
Kuranaga E. Beyond Apoptosis: Caspase Regulatory Mechanisms and Functions in Vivo. Genes Cells Devoted Mol. Cell. Mech. 2012, 17 (2), 83–97. 10.1111/j.1365-2443.2011.01579.x. PubMed DOI
Janečková E.; Bíliková P.; Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2018, 66 (1), 47–58. 10.1369/0022155417739283. PubMed DOI PMC
Meier F.; Brunner A.-D.; Frank M.; Ha A.; Bludau I.; Voytik E.; Kaspar-Schoenefeld S.; Lubeck M.; Raether O.; Bache N.; Aebersold R.; Collins B. C.; Röst H. L.; Mann M. diaPASEF: Parallel Accumulation-Serial Fragmentation Combined with Data-Independent Acquisition. Nat. Methods 2020, 17 (12), 1229–1236. 10.1038/s41592-020-00998-0. PubMed DOI
Zhou M.; Liu X.; Li Z.; Huang Q.; Li F.; Li C.-Y. Caspase-3 Regulates the Migration, Invasion and Metastasis of Colon Cancer Cells. Int. J. Cancer 2018, 143 (4), 921–930. 10.1002/ijc.31374. PubMed DOI PMC
Gorelick-Ashkenazi A.; Weiss R.; Sapozhnikov L.; Florentin A.; Tarayrah-Ibraheim L.; Dweik D.; Yacobi-Sharon K.; Arama E. Caspases Maintain Tissue Integrity by an Apoptosis-Independent Inhibition of Cell Migration and Invasion. Nat. Commun. 2018, 9 (1), 2806.10.1038/s41467-018-05204-6. PubMed DOI PMC
Keller N.; Ozmadenci D.; Ichim G.; Stupack D. Caspase-8 Function, and Phosphorylation, in Cell Migration. Semin. Cell Dev. Biol. 2018, 82, 105–117. 10.1016/j.semcdb.2018.01.009. PubMed DOI
Ghosh S.; Hegde A.; Ananthan A. S.; Kataria S.; Pincha N.; Dutta A.; Dutta A.; Athreya S.; Khedkar S.; Dey R.; Bhosale A.; Jamora C. Extracellular Caspase-1 Regulates Hair Follicle Stem Cell Migration during Wound-Healing. bioRxiv 2022, 54852910.1101/548529. DOI
Li J.; Brieher W. M.; Scimone M. L.; Kang S. J.; Zhu H.; Yin H.; von Andrian U. H.; Mitchison T.; Yuan J. Caspase-11 Regulates Cell Migration by Promoting Aip1-Cofilin-Mediated Actin Depolymerization. Nat. Cell Biol. 2007, 9 (3), 276–286. 10.1038/ncb1541. PubMed DOI
Antonopoulos C.; Cumberbatch M.; Dearman R. J.; Daniel R. J.; Kimber I.; Groves R. W. Functional Caspase-1 Is Required for Langerhans Cell Migration and Optimal Contact Sensitization in Mice. J. Immunol. Baltim. Md 1950 2001, 166 (6), 3672–3677. 10.4049/jimmunol.166.6.3672. PubMed DOI
Campano P.; Valdez L.; Guerra L.; Cheng B.; Tsin A. Role of Caspase-8 on Retinal Endothelial Cell Migration and Angiogenesis. Ann. Vasc. Med. Res. 2023, 10.47739/2378-9344/1154. DOI
Su T. T. Non-Apoptotic Roles of Apoptotic Proteases: New Tricks for an Old Dog. Open Biol. 2020, 10 (8), 20013010.1098/rsob.200130. PubMed DOI PMC
Geisbrecht E. R.; Montell D. J. A Role for Drosophila IAP1-Mediated Caspase Inhibition in Rac-Dependent Cell Migration. Cell 2004, 118 (1), 111–125. 10.1016/j.cell.2004.06.020. PubMed DOI
Sun G. G.; Wang Y. D.; Cui D. W.; Cheng Y. J.; Hu W. N. EMP1 Regulates Caspase-9 and VEGFC Expression and Suppresses Prostate Cancer Cell Proliferation and Invasion. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2014, 35 (4), 3455–3462. 10.1007/s13277-013-1456-x. PubMed DOI
Tang D.; Geng L.; Ma J. lncRNA PROX1-AS1Mediates the Migration and Invasion of Placental Trophoblast Cells via the miR-211–5p/Caspase-9 Axis. Bioengineered 2021, 12 (1), 4100–4110. 10.1080/21655979.2021.1953213. PubMed DOI PMC
Zhang X.; Zhai T.; Hei Z.; Zhou D.; Jin L.; Han C.; Wang J. Effects of Platycodin D on Apoptosis, Migration, Invasion and Cell Cycle Arrest of Gallbladder Cancer Cells. Oncol. Lett. 2020, 20 (6), 311.10.3892/ol.2020.12174. PubMed DOI PMC
Boonyarat C.; Sangchavee K.; Plekratoke K.; Yenjai C.; Reubroycharoen P.; Kaewamatawong R.; Waiwut P. Candidone Inhibits Migration and Invasion, and Induces Apoptosis in HepG2 Cells. Biol. Pharm. Bull. 2021, 44 (4), 494–500. 10.1248/bpb.b20-00718. PubMed DOI
Sun L.; Jin X.; Xie L.; Xu G.; Cui Y.; Chen Z. Swainsonine Represses Glioma Cell Proliferation, Migration and Invasion by Reduction of miR-92a Expression. BMC Cancer 2019, 19 (1), 247.10.1186/s12885-019-5425-7. PubMed DOI PMC
Bononi G.; Tuccinardi T.; Rizzolio F.; Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J. Med. Chem. 2021, 64 (14), 9759–9785. 10.1021/acs.jmedchem.1c00624. PubMed DOI PMC
Poghosyan Z.; Robbins S. M.; Houslay M. D.; Webster A.; Murphy G.; Edwards D. R. Phosphorylation-Dependent Interactions between ADAM15 Cytoplasmic Domain and Src Family Protein-Tyrosine Kinases. J. Biol. Chem. 2002, 277 (7), 4999–5007. 10.1074/jbc.M107430200. PubMed DOI
Pastén-Hidalgo K.; Hernández-Rivas R.; Roa-Espitia A. L.; Sánchez-Gutiérrez M.; Martínez-Pérez F.; Monrroy A. O.; Hernández-González E. O.; Mújica A. Presence, Processing, and Localization of Mouse ADAM15 during Sperm Maturation and the Role of Its Disintegrin Domain during Sperm–Egg Binding. Reproduction 2008, 136 (1), 41–51. 10.1530/REP-07-0300. PubMed DOI
Mahauad-Fernandez W. D.; Okeoma C. M. The Role of BST-2/Tetherin in Host Protection and Disease Manifestation. Immun. Inflamm. Dis. 2016, 4 (1), 4–23. 10.1002/iid3.92. PubMed DOI PMC
Swiecki M.; Wang Y.; Gilfillan S.; Lenschow D. J.; Colonna M. Cutting Edge: Paradoxical Roles of BST2/Tetherin in Promoting Type I IFN Response and Viral Infection. J. Immunol. Baltim. Md 1950 2012, 188 (6), 2488–2492. 10.4049/jimmunol.1103145. PubMed DOI PMC
Jones P. H.; Mehta H. V.; Maric M.; Roller R. J.; Okeoma C. M. Bone Marrow Stromal Cell Antigen 2 (BST-2) Restricts Mouse Mammary Tumor Virus (MMTV) Replication in Vivo. Retrovirology 2012, 9, 10.10.1186/1742-4690-9-10. PubMed DOI PMC
Li S. X.; Barrett B. S.; Guo K.; Kassiotis G.; Hasenkrug K. J.; Dittmer U.; Gibbert K.; Santiago M. L. Tetherin/BST-2 Promotes Dendritic Cell Activation and Function during Acute Retrovirus Infection. Sci. Rep. 2016, 6, 2042510.1038/srep20425. PubMed DOI PMC
Thiel A.; Reumann M. K.; Boskey A.; Wischmann J.; von Eisenhart-Rothe R.; Mayer-Kuckuk P. Osteoblast Migration in Vertebrate Bone. Biol. Rev. Camb. Philos. Soc. 2018, 93 (1), 350–363. 10.1111/brv.12345. PubMed DOI PMC
Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; Walzer M.; Wang S.; Brazma A.; Vizcaíno J. A. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50 (D1), D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC