Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics

. 2024 Aug 02 ; 23 (8) : 2999-3011. [epub] 20240318

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38498986

Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.

Zobrazit více v PubMed

Van Opdenbosch N.; Lamkanfi M. Caspases in Cell Death, Inflammation, and Disease. Immunity 2019, 50 (6), 1352–1364. 10.1016/j.immuni.2019.05.020. PubMed DOI PMC

Shalini S.; Dorstyn L.; Dawar S.; Kumar S. Old, New and Emerging Functions of Caspases. Cell Death Differ. 2015, 22 (4), 526–539. 10.1038/cdd.2014.216. PubMed DOI PMC

Li Z.; Jo J.; Jia J.-M.; Lo S.-C.; Whitcomb D. J.; Jiao S.; Cho K.; Sheng M. Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization. Cell 2010, 141 (5), 859–871. 10.1016/j.cell.2010.03.053. PubMed DOI PMC

Kuo C. T.; Zhu S.; Younger S.; Jan L. Y.; Jan Y. N. Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning. Neuron 2006, 51 (3), 283–290. 10.1016/j.neuron.2006.07.014. PubMed DOI

Williams D. W.; Kondo S.; Krzyzanowska A.; Hiromi Y.; Truman J. W. Local Caspase Activity Directs Engulfment of Dendrites during Pruning. Nat. Neurosci. 2006, 9 (10), 1234–1236. 10.1038/nn1774. PubMed DOI

Puhl J. G.; Masino M. A.; Mesce K. A. Necessary, Sufficient and Permissive: A Single Locomotor Command Neuron Important for Intersegmental Coordination. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32 (49), 17646–17657. 10.1523/JNEUROSCI.2249-12.2012. PubMed DOI PMC

Westphal D.; Sytnyk V.; Schachner M.; Leshchyns’ka I. Clustering of the Neural Cell Adhesion Molecule (NCAM) at the Neuronal Cell Surface Induces Caspase-8- and −3-Dependent Changes of the Spectrin Meshwork Required for NCAM-Mediated Neurite Outgrowth. J. Biol. Chem. 2010, 285 (53), 42046–42057. 10.1074/jbc.M110.177147. PubMed DOI PMC

Campbell D. S.; Okamoto H. Local Caspase Activation Interacts with Slit-Robo Signaling to Restrict Axonal Arborization. J. Cell Biol. 2013, 203 (4), 657–672. 10.1083/jcb.201303072. PubMed DOI PMC

Bulatovic I.; Ibarra C.; Österholm C.; Wang H.; Beltrán-Rodríguez A.; Varas-Godoy M.; Månsson-Broberg A.; Uhlén P.; Simon A.; Grinnemo K.-H. Sublethal Caspase Activation Promotes Generation of Cardiomyocytes from Embryonic Stem Cells. PloS One 2015, 10 (3), e012017610.1371/journal.pone.0120176. PubMed DOI PMC

Janzen V.; Fleming H. E.; Riedt T.; Karlsson G.; Riese M. J.; Lo Celso C.; Reynolds G.; Milne C. D.; Paige C. J.; Karlsson S.; Woo M.; Scadden D. T. Hematopoietic Stem Cell Responsiveness to Exogenous Signals Is Limited by Caspase-3. Cell Stem Cell 2008, 2 (6), 584–594. 10.1016/j.stem.2008.03.012. PubMed DOI PMC

Dawar S.; Shahrin N. H.; Sladojevic N.; D’Andrea R. J.; Dorstyn L.; Hiwase D. K.; Kumar S. Impaired Haematopoietic Stem Cell Differentiation and Enhanced Skewing towards Myeloid Progenitors in Aged Caspase-2-Deficient Mice. Cell Death Dis. 2016, 7 (12), e250910.1038/cddis.2016.406. PubMed DOI PMC

Oomman S.; Strahlendorf H.; Dertien J.; Strahlendorf J. Bergmann Glia Utilize Active Caspase-3 for Differentiation. Brain Res. 2006, 1078 (1), 19–34. 10.1016/j.brainres.2006.01.041. PubMed DOI

Freimuth J.; Bangen J.-M.; Lambertz D.; Hu W.; Nevzorova Y. A.; Sonntag R.; Gassler N.; Riethmacher D.; Trautwein C.; Liedtke C. Loss of Caspase-8 in Hepatocytes Accelerates the Onset of Liver Regeneration in Mice through Premature Nuclear Factor Kappa B Activation. Hepatol. Baltim. Md 2013, 58 (5), 1779–1789. 10.1002/hep.26538. PubMed DOI

Zhang Y.; Padalecki S. S.; Chaudhuri A. R.; De Waal E.; Goins B. A.; Grubbs B.; Ikeno Y.; Richardson A.; Mundy G. R.; Herman B. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice. Mech. Ageing Dev. 2007, 128 (2), 213–221. 10.1016/j.mad.2006.11.030. PubMed DOI PMC

Lopez-Cruzan M.; Herman B. Loss of Caspase-2 Accelerates Age-Dependent Alterations in Mitochondrial Production of Reactive Oxygen Species. Biogerontology 2013, 14 (2), 121–130. 10.1007/s10522-013-9415-x. PubMed DOI PMC

Shalini S.; Dorstyn L.; Wilson C.; Puccini J.; Ho L.; Kumar S. Impaired Antioxidant Defence and Accumulation of Oxidative Stress in Caspase-2-Deficient Mice. Cell Death Differ. 2012, 19 (8), 1370–1380. 10.1038/cdd.2012.13. PubMed DOI PMC

Hu B.; Elinav E.; Huber S.; Booth C. J.; Strowig T.; Jin C.; Eisenbarth S. C.; Flavell R. A. Inflammation-Induced Tumorigenesis in the Colon Is Regulated by Caspase-1 and NLRC4. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (50), 21635–21640. 10.1073/pnas.1016814108. PubMed DOI PMC

Lamy L.; Ngo V. N.; Emre N. C. T.; Shaffer A. L.; Yang Y.; Tian E.; Nair V.; Kruhlak M. J.; Zingone A.; Landgren O.; Staudt L. M. Control of Autophagic Cell Death by Caspase-10 in Multiple Myeloma. Cancer Cell 2013, 23 (4), 435–449. 10.1016/j.ccr.2013.02.017. PubMed DOI PMC

Krajewska M.; Kim H.; Shin E.; Kennedy S.; Duffy M. J.; Wong Y. F.; Marr D.; Mikolajczyk J.; Shabaik A.; Meinhold-Heerlein I.; Huang X.; Banares S.; Hedayat H.; Reed J. C.; Krajewski S. Tumor-Associated Alterations in Caspase-14 Expression in Epithelial Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005, 11 (15), 5462–5471. 10.1158/1078-0432.CCR-04-2527. PubMed DOI

Miura M.; Chen X.-D.; Allen M. R.; Bi Y.; Gronthos S.; Seo B.-M.; Lakhani S.; Flavell R. A.; Feng X.-H.; Robey P. G.; Young M.; Shi S. A Crucial Role of Caspase-3 in Osteogenic Differentiation of Bone Marrow Stromal Stem Cells. J. Clin. Invest. 2004, 114 (12), 1704–1713. 10.1172/JCI20427. PubMed DOI PMC

Mogi M.; Togari A. Activation of Caspases Is Required for Osteoblastic Differentiation. J. Biol. Chem. 2003, 278 (48), 47477–47482. 10.1074/jbc.M307055200. PubMed DOI

Kratochvílová A.; Veselá B.; Ledvina V.; Švandová E.; Klepárník K.; Dadáková K.; Beneš P.; Matalová E. Osteogenic Impact of Pro-Apoptotic Caspase Inhibitors in MC3T3-E1 Cells. Sci. Rep. 2020, 10 (1), 7489.10.1038/s41598-020-64294-9. PubMed DOI PMC

Vesela B.; Killinger M.; Rihova K.; Benes P.; Svandová E.; Kratochvilová A.; Trcka F.; Kleparnik K.; Matalova E. Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways. Front. Cell Dev. Biol. 2022, 10, 79440710.3389/fcell.2022.794407. PubMed DOI PMC

Vesela B.; Kratochvilova A.; Svandova E.; Benes P.; Rihova K.; Poliard A.; Matalova E. Caspase-12 Is Present During Craniofacial Development and Participates in Regulation of Osteogenic Markers. Front. Cell Dev. Biol. 2020, 8, 58913610.3389/fcell.2020.589136. PubMed DOI PMC

Ramesova A.; Vesela B.; Svandova E.; Lesot H.; Matalova E. Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism. Int. J. Mol. Sci. 2021, 22 (17), 9576.10.3390/ijms22179576. PubMed DOI PMC

Svandova E.; Lesot H.; Vanden Berghe T.; Tucker A. S.; Sharpe P. T.; Vandenabeele P.; Matalova E. Non-Apoptotic Functions of Caspase-7 during Osteogenesis. Cell Death Dis. 2014, 5 (8), e136610.1038/cddis.2014.330. PubMed DOI PMC

Matalova E.; Lesot H.; Svandova E.; Vanden Berghe T.; Sharpe P. T.; Healy C.; Vandenabeele P.; Tucker A. S. Caspase-7 Participates in Differentiation of Cells Forming Dental Hard Tissues. Dev. Growth Differ. 2013, 55 (5), 615–621. 10.1111/dgd.12066. PubMed DOI

Bratton S. B.; Salvesen G. S. Regulation of the Apaf-1-Caspase-9 Apoptosome. J. Cell Sci. 2010, 123 (19), 3209–3214. 10.1242/jcs.073643. PubMed DOI PMC

Li P.; Zhou L.; Zhao T.; Liu X.; Zhang P.; Liu Y.; Zheng X.; Li Q. Caspase-9: Structure, Mechanisms and Clinical Application. Oncotarget 2017, 8 (14), 23996–24008. 10.18632/oncotarget.15098. PubMed DOI PMC

An H.-K.; Chung K. M.; Park H.; Hong J.; Gim J.-E.; Choi H.; Lee Y. W.; Choi J.; Mun J. Y.; Yu S.-W. CASP9 (Caspase 9) Is Essential for Autophagosome Maturation through Regulation of Mitochondrial Homeostasis. Autophagy 2020, 16 (9), 1598–1617. 10.1080/15548627.2019.1695398. PubMed DOI PMC

Murray T. V. A.; McMahon J. M.; Howley B. A.; Stanley A.; Ritter T.; Mohr A.; Zwacka R.; Fearnhead H. O. A Non-Apoptotic Role for Caspase-9 in Muscle Differentiation. J. Cell Sci. 2008, 121 (22), 3786–3793. 10.1242/jcs.024547. PubMed DOI

Ohsawa S.; Hamada S.; Kuida K.; Yoshida H.; Igaki T.; Miura M. Maturation of the Olfactory Sensory Neurons by Apaf-1/Caspase-9-Mediated Caspase Activity. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (30), 13366–13371. 10.1073/pnas.0910488107. PubMed DOI PMC

Han J.; Goldstein L. A.; Hou W.; Watkins S. C.; Rabinowich H. Involvement of CASP9 (Caspase 9) in IGF2R/CI-MPR Endosomal Transport. Autophagy 2021, 17 (6), 1393–1409. 10.1080/15548627.2020.1761742. PubMed DOI PMC

Miyata K.; Oike Y.; Hoshii T.; Maekawa H.; Ogawa H.; Suda T.; Araki K.; Yamamura K. Increase of Smooth Muscle Cell Migration and of Intimal Hyperplasia in Mice Lacking the Alpha/Beta Hydrolase Domain Containing 2 Gene. Biochem. Biophys. Res. Commun. 2005, 329 (1), 296–304. 10.1016/j.bbrc.2005.01.127. PubMed DOI

Concordet J.-P.; Haeussler M. CRISPOR: Intuitive Guide Selection for CRISPR/Cas9 Genome Editing Experiments and Screens. Nucleic Acids Res. 2018, 46 (W1), W242–W245. 10.1093/nar/gky354. PubMed DOI PMC

Říhová K.; Dúcka M.; Zambo I. S.; Vymětalová L.; Šrámek M.; Trčka F.; Verner J.; Drápela S.; Fedr R.; Suchánková T.; Pavlatovská B.; Ondroušková E.; Kubelková I.; Zapletalová D.; Tuček Š.; Múdry P.; Krákorová D. A.; Knopfová L.; Šmarda J.; Souček K.; Borsig L.; Beneš P. Transcription Factor C-Myb: Novel Prognostic Factor in Osteosarcoma. Clin. Exp. Metastasis 2022, 39 (2), 375–390. 10.1007/s10585-021-10145-4. PubMed DOI

Knopfová L.; Biglieri E.; Volodko N.; Masařík M.; Hermanová M.; Glaus Garzón J. F.; Dúcka M.; Kučírková T.; Souček K.; Šmarda J.; Beneš P.; Borsig L. Transcription Factor C-Myb Inhibits Breast Cancer Lung Metastasis by Suppression of Tumor Cell Seeding. Oncogene 2018, 37 (8), 1020–1030. 10.1038/onc.2017.392. PubMed DOI PMC

Tyanova S.; Temu T.; Sinitcyn P.; Carlson A.; Hein M. Y.; Geiger T.; Mann M.; Cox J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods 2016, 13 (9), 731–740. 10.1038/nmeth.3901. PubMed DOI

Liao Y.; Wang J.; Jaehnig E. J.; Shi Z.; Zhang B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47 (W1), W199–W205. 10.1093/nar/gkz401. PubMed DOI PMC

WebGestalt. https://www.webgestalt.org/ (accessed 2024-02-14).

Wickham H.Ggplot2: : Elegant Graphics for Data Analysis; Springer-Verlag: New York, 2016. 10.1007/978-3-319-24277-4. DOI

Oliveros J. C.Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams, 2007–2015. https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed 2024-02-14).

Raudvere U.; Kolberg L.; Kuzmin I.; Arak T.; Adler P.; Peterson H.; Vilo J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47 (W1), W191–W198. 10.1093/nar/gkz369. PubMed DOI PMC

Shannon P.; Markiel A.; Ozier O.; Baliga N. S.; Wang J. T.; Ramage D.; Amin N.; Schwikowski B.; Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13 (11), 2498–2504. 10.1101/gr.1239303. PubMed DOI PMC

Merico D.; Isserlin R.; Stueker O.; Emili A.; Bader G. D. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PloS One 2010, 5 (11), e1398410.1371/journal.pone.0013984. PubMed DOI PMC

Benes P.; Alexova P.; Knopfova L.; Spanova A.; Smarda J. Redox State Alters Anti-Cancer Effects of Wedelolactone. Environ. Mol. Mutagen. 2012, 53 (7), 515–524. 10.1002/em.21712. PubMed DOI

Lapcik P.; Vesela B.; Potesil D.; Dadakova K.; Zapletalova M.; Benes P.; Bouchal P.; Matalova E. DiaPASEF Proteotype Analysis Indicates Changes in Cell Growth and Metabolic Switch Induced by Caspase-9 Inhibition in Chondrogenic Cells. Proteomics 2023, 23 (11), e220040810.1002/pmic.202200408. PubMed DOI

Rawlings N. D.; Barrett A. J.; Thomas P. D.; Huang X.; Bateman A.; Finn R. D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database. Nucleic Acids Res. 2018, 46 (D1), D624–D632. 10.1093/nar/gkx1134. PubMed DOI PMC

Fortelny N.; Yang S.; Pavlidis P.; Lange P. F.; Overall C. M. Proteome TopFIND 3.0 with TopFINDer and PathFINDer: Database and Analysis Tools for the Association of Protein Termini to Pre- and Post-Translational Events. Nucleic Acids Res. 2015, 43 (D1), D290–D297. 10.1093/nar/gku1012. PubMed DOI PMC

Araya L. E.; Soni I. V.; Hardy J. A.; Julien O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem. Biol. 2021, 16 (11), 2280–2296. 10.1021/acschembio.1c00456. PubMed DOI PMC

Miller M. R.; Mannowetz N.; Iavarone A. T.; Safavi R.; Gracheva E. O.; Smith J. F.; Hill R. Z.; Bautista D. M.; Kirichok Y.; Lishko P. V. Unconventional Endocannabinoid Signaling Governs Sperm Activation via the Sex Hormone Progesterone. Science 2016, 352 (6285), 555–559. 10.1126/science.aad6887. PubMed DOI PMC

Lord C. C.; Thomas G.; Brown J. M. Mammalian Alpha Beta Hydrolase Domain (ABHD) Proteins: Lipid Metabolizing Enzymes at the Interface of Cell Signaling and Energy Metabolism. Biochim. Biophys. Acta 2013, 1831 (4), 792–802. 10.1016/j.bbalip.2013.01.002. PubMed DOI PMC

Hollville E.; Deshmukh M. Physiological Functions of Non-Apoptotic Caspase Activity in the Nervous System. Semin. Cell Dev. Biol. 2018, 82, 127–136. 10.1016/j.semcdb.2017.11.037. PubMed DOI PMC

Kuranaga E. Beyond Apoptosis: Caspase Regulatory Mechanisms and Functions in Vivo. Genes Cells Devoted Mol. Cell. Mech. 2012, 17 (2), 83–97. 10.1111/j.1365-2443.2011.01579.x. PubMed DOI

Janečková E.; Bíliková P.; Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2018, 66 (1), 47–58. 10.1369/0022155417739283. PubMed DOI PMC

Meier F.; Brunner A.-D.; Frank M.; Ha A.; Bludau I.; Voytik E.; Kaspar-Schoenefeld S.; Lubeck M.; Raether O.; Bache N.; Aebersold R.; Collins B. C.; Röst H. L.; Mann M. diaPASEF: Parallel Accumulation-Serial Fragmentation Combined with Data-Independent Acquisition. Nat. Methods 2020, 17 (12), 1229–1236. 10.1038/s41592-020-00998-0. PubMed DOI

Zhou M.; Liu X.; Li Z.; Huang Q.; Li F.; Li C.-Y. Caspase-3 Regulates the Migration, Invasion and Metastasis of Colon Cancer Cells. Int. J. Cancer 2018, 143 (4), 921–930. 10.1002/ijc.31374. PubMed DOI PMC

Gorelick-Ashkenazi A.; Weiss R.; Sapozhnikov L.; Florentin A.; Tarayrah-Ibraheim L.; Dweik D.; Yacobi-Sharon K.; Arama E. Caspases Maintain Tissue Integrity by an Apoptosis-Independent Inhibition of Cell Migration and Invasion. Nat. Commun. 2018, 9 (1), 2806.10.1038/s41467-018-05204-6. PubMed DOI PMC

Keller N.; Ozmadenci D.; Ichim G.; Stupack D. Caspase-8 Function, and Phosphorylation, in Cell Migration. Semin. Cell Dev. Biol. 2018, 82, 105–117. 10.1016/j.semcdb.2018.01.009. PubMed DOI

Ghosh S.; Hegde A.; Ananthan A. S.; Kataria S.; Pincha N.; Dutta A.; Dutta A.; Athreya S.; Khedkar S.; Dey R.; Bhosale A.; Jamora C. Extracellular Caspase-1 Regulates Hair Follicle Stem Cell Migration during Wound-Healing. bioRxiv 2022, 54852910.1101/548529. DOI

Li J.; Brieher W. M.; Scimone M. L.; Kang S. J.; Zhu H.; Yin H.; von Andrian U. H.; Mitchison T.; Yuan J. Caspase-11 Regulates Cell Migration by Promoting Aip1-Cofilin-Mediated Actin Depolymerization. Nat. Cell Biol. 2007, 9 (3), 276–286. 10.1038/ncb1541. PubMed DOI

Antonopoulos C.; Cumberbatch M.; Dearman R. J.; Daniel R. J.; Kimber I.; Groves R. W. Functional Caspase-1 Is Required for Langerhans Cell Migration and Optimal Contact Sensitization in Mice. J. Immunol. Baltim. Md 1950 2001, 166 (6), 3672–3677. 10.4049/jimmunol.166.6.3672. PubMed DOI

Campano P.; Valdez L.; Guerra L.; Cheng B.; Tsin A. Role of Caspase-8 on Retinal Endothelial Cell Migration and Angiogenesis. Ann. Vasc. Med. Res. 2023, 10.47739/2378-9344/1154. DOI

Su T. T. Non-Apoptotic Roles of Apoptotic Proteases: New Tricks for an Old Dog. Open Biol. 2020, 10 (8), 20013010.1098/rsob.200130. PubMed DOI PMC

Geisbrecht E. R.; Montell D. J. A Role for Drosophila IAP1-Mediated Caspase Inhibition in Rac-Dependent Cell Migration. Cell 2004, 118 (1), 111–125. 10.1016/j.cell.2004.06.020. PubMed DOI

Sun G. G.; Wang Y. D.; Cui D. W.; Cheng Y. J.; Hu W. N. EMP1 Regulates Caspase-9 and VEGFC Expression and Suppresses Prostate Cancer Cell Proliferation and Invasion. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2014, 35 (4), 3455–3462. 10.1007/s13277-013-1456-x. PubMed DOI

Tang D.; Geng L.; Ma J. lncRNA PROX1-AS1Mediates the Migration and Invasion of Placental Trophoblast Cells via the miR-211–5p/Caspase-9 Axis. Bioengineered 2021, 12 (1), 4100–4110. 10.1080/21655979.2021.1953213. PubMed DOI PMC

Zhang X.; Zhai T.; Hei Z.; Zhou D.; Jin L.; Han C.; Wang J. Effects of Platycodin D on Apoptosis, Migration, Invasion and Cell Cycle Arrest of Gallbladder Cancer Cells. Oncol. Lett. 2020, 20 (6), 311.10.3892/ol.2020.12174. PubMed DOI PMC

Boonyarat C.; Sangchavee K.; Plekratoke K.; Yenjai C.; Reubroycharoen P.; Kaewamatawong R.; Waiwut P. Candidone Inhibits Migration and Invasion, and Induces Apoptosis in HepG2 Cells. Biol. Pharm. Bull. 2021, 44 (4), 494–500. 10.1248/bpb.b20-00718. PubMed DOI

Sun L.; Jin X.; Xie L.; Xu G.; Cui Y.; Chen Z. Swainsonine Represses Glioma Cell Proliferation, Migration and Invasion by Reduction of miR-92a Expression. BMC Cancer 2019, 19 (1), 247.10.1186/s12885-019-5425-7. PubMed DOI PMC

Bononi G.; Tuccinardi T.; Rizzolio F.; Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J. Med. Chem. 2021, 64 (14), 9759–9785. 10.1021/acs.jmedchem.1c00624. PubMed DOI PMC

Poghosyan Z.; Robbins S. M.; Houslay M. D.; Webster A.; Murphy G.; Edwards D. R. Phosphorylation-Dependent Interactions between ADAM15 Cytoplasmic Domain and Src Family Protein-Tyrosine Kinases. J. Biol. Chem. 2002, 277 (7), 4999–5007. 10.1074/jbc.M107430200. PubMed DOI

Pastén-Hidalgo K.; Hernández-Rivas R.; Roa-Espitia A. L.; Sánchez-Gutiérrez M.; Martínez-Pérez F.; Monrroy A. O.; Hernández-González E. O.; Mújica A. Presence, Processing, and Localization of Mouse ADAM15 during Sperm Maturation and the Role of Its Disintegrin Domain during Sperm–Egg Binding. Reproduction 2008, 136 (1), 41–51. 10.1530/REP-07-0300. PubMed DOI

Mahauad-Fernandez W. D.; Okeoma C. M. The Role of BST-2/Tetherin in Host Protection and Disease Manifestation. Immun. Inflamm. Dis. 2016, 4 (1), 4–23. 10.1002/iid3.92. PubMed DOI PMC

Swiecki M.; Wang Y.; Gilfillan S.; Lenschow D. J.; Colonna M. Cutting Edge: Paradoxical Roles of BST2/Tetherin in Promoting Type I IFN Response and Viral Infection. J. Immunol. Baltim. Md 1950 2012, 188 (6), 2488–2492. 10.4049/jimmunol.1103145. PubMed DOI PMC

Jones P. H.; Mehta H. V.; Maric M.; Roller R. J.; Okeoma C. M. Bone Marrow Stromal Cell Antigen 2 (BST-2) Restricts Mouse Mammary Tumor Virus (MMTV) Replication in Vivo. Retrovirology 2012, 9, 10.10.1186/1742-4690-9-10. PubMed DOI PMC

Li S. X.; Barrett B. S.; Guo K.; Kassiotis G.; Hasenkrug K. J.; Dittmer U.; Gibbert K.; Santiago M. L. Tetherin/BST-2 Promotes Dendritic Cell Activation and Function during Acute Retrovirus Infection. Sci. Rep. 2016, 6, 2042510.1038/srep20425. PubMed DOI PMC

Thiel A.; Reumann M. K.; Boskey A.; Wischmann J.; von Eisenhart-Rothe R.; Mayer-Kuckuk P. Osteoblast Migration in Vertebrate Bone. Biol. Rev. Camb. Philos. Soc. 2018, 93 (1), 350–363. 10.1111/brv.12345. PubMed DOI PMC

Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; Walzer M.; Wang S.; Brazma A.; Vizcaíno J. A. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50 (D1), D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer

. 2024 Jul 18 ; 11 (1) : 794. [epub] 20240718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...