A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer

. 2024 Jul 18 ; 11 (1) : 794. [epub] 20240718

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39025866

Grantová podpora
NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/18_046/0015974 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023033 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 39025866
PubMed Central PMC11258311
DOI 10.1038/s41597-024-03632-2
PII: 10.1038/s41597-024-03632-2
Knihovny.cz E-zdroje

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and deeper proteome coverage is needed for its molecular characterization. We present comprehensive library of targeted mass spectrometry assays specific for TNBC and demonstrate its applicability. Proteins were extracted from 105 TNBC tissues and digested. Aliquots were pooled, fractionated using hydrophilic chromatography and analyzed by LC-MS/MS in data-dependent acquisition (DDA) parallel accumulation-serial fragmentation (PASEF) mode on timsTOF Pro LC-MS system. 16 individual lysates were analyzed in data-independent acquisition (DIA)-PASEF mode. Hybrid library was generated in Spectronaut software and covers 244,464 precursors, 168,006 peptides and 11,564 protein groups (FDR = 1%). Application of our library for pilot quantitative analysis of 16 tissues increased identification numbers in Spectronaut 18.5 and DIA-NN 1.8.1 software compared to library-free setting, with Spectronaut achieving the best results represented by 190,310 precursors, 140,566 peptides, and 10,463 protein groups. In conclusion, we introduce assay library that offers the deepest coverage of TNBC proteome to date. The TNBC library is available via PRIDE repository (PXD047793).

Zobrazit více v PubMed

Sporikova Z, Koudelakova V, Trojanec R, Hajduch M. Genetic Markers in Triple-Negative Breast Cancer. Clin Breast Cancer. 2018;18:e841–e850. doi: 10.1016/j.clbc.2018.07.023. PubMed DOI

Won K-A, Spruck C. Triple-negative breast cancer therapy: Current and future perspectives (Review) Int J Oncol. 2020;57:1245–1261. doi: 10.3892/ijo.2020.5135. PubMed DOI PMC

Meng X, Cai Y, Chang X, Guo Y. A novel conditional survival nomogram for monitoring real-time prognosis of non-metastatic triple-negative breast cancer. Front Endocrinol (Lausanne) 2023;14:1119105. doi: 10.3389/fendo.2023.1119105. PubMed DOI PMC

Gluz O, et al. Triple-negative breast cancer–current status and future directions. Ann Oncol. 2009;20:1913–1927. doi: 10.1093/annonc/mdp492. PubMed DOI

Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–690. doi: 10.1038/nrclinonc.2016.66. PubMed DOI PMC

Maqbool M, Bekele F, Fekadu G. Treatment Strategies Against Triple-Negative Breast Cancer: An Updated Review. Breast Cancer (Dove Med Press) 2022;14:15–24. PubMed PMC

Kreike B, et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 2007;9:R65. doi: 10.1186/bcr1771. PubMed DOI PMC

Kelstrup CD, et al. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. J Proteome Res. 2018;17:727–738. doi: 10.1021/acs.jproteome.7b00602. PubMed DOI

Gillet LC, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717. doi: 10.1074/mcp.O111.016717. PubMed DOI PMC

Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–355. doi: 10.1038/nature19949. PubMed DOI

Faktor, J., Sucha, R., Paralova, V., Liu, Y. & Bouchal, P. Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues. Proteomics17, (2017). PubMed

Barkovits K, et al. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Mol Cell Proteomics. 2020;19:181–197. doi: 10.1074/mcp.RA119.001714. PubMed DOI PMC

Shao W, Lam H. Tandem mass spectral libraries of peptides and their roles in proteomics research. Mass Spectrom Rev. 2017;36:634–648. doi: 10.1002/mas.21512. PubMed DOI

Tsou C-C, et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods. 2015;12:258–264. doi: 10.1038/nmeth.3255. PubMed DOI PMC

Yang Y, et al. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nat Commun. 2020;11:146. doi: 10.1038/s41467-019-13866-z. PubMed DOI PMC

Muntel J, et al. Advancing Urinary Protein Biomarker Discovery by Data-Independent Acquisition on a Quadrupole-Orbitrap Mass Spectrometer. J Proteome Res. 2015;14:4752–4762. doi: 10.1021/acs.jproteome.5b00826. PubMed DOI PMC

Lapcik, P. et al. A large-scale assay library for targeted protein quantification in renal cell carcinoma tissues. Proteomics e2100228 10.1002/pmic.202100228 (2021). PubMed

García-Adrián S, et al. Molecular characterization of triple negative breast cancer formaldehyde-fixed paraffin-embedded samples by data-independent acquisition proteomics. Proteomics. 2022;22:e2100110. doi: 10.1002/pmic.202100110. PubMed DOI

Meng X, Liu D, Guan Y. Advances in the application of label-free quantitative proteomics techniques in malignancy research. Biomed Chromatogr. 2023;37:e5667. doi: 10.1002/bmc.5667. PubMed DOI

Meier F, et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018;17:2534–2545. doi: 10.1074/mcp.TIR118.000900. PubMed DOI PMC

Meier F, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020;17:1229–1236. doi: 10.1038/s41592-020-00998-0. PubMed DOI

Zhang F, Ge W, Ruan G, Cai X, Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics. 2020;20:e1900276. doi: 10.1002/pmic.201900276. PubMed DOI

Bruderer R, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015;14:1400–1410. doi: 10.1074/mcp.M114.044305. PubMed DOI PMC

Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC

Skowronek P, Meier F. High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF. Methods Mol Biol. 2022;2456:15–27. doi: 10.1007/978-1-0716-2124-0_2. PubMed DOI

Demichev V, et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat Commun. 2022;13:3944. doi: 10.1038/s41467-022-31492-0. PubMed DOI PMC

Muntel J, et al. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics. 2019;15:348–360. doi: 10.1039/C9MO00082H. PubMed DOI

Bouchal P, et al. Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep. 2019;28:832–843.e7. doi: 10.1016/j.celrep.2019.06.046. PubMed DOI PMC

Bouchal P, et al. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J Proteome Res. 2009;8:362–373. doi: 10.1021/pr800622b. PubMed DOI

Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI

Říhová, K. et al. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res10.1021/acs.jproteome.3c00641 (2024). PubMed PMC

Lou R, et al. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat Commun. 2023;14:94. doi: 10.1038/s41467-022-35740-1. PubMed DOI PMC

Monash Proteomics and Metabolomics Platform & Monash Bioinformatics Platform, Monash University. DIA-Analyst: An interactive web-platform to analyze and visualize proteomics data preprocessed with Spectronaut and DIA-NN. https://analyst-suites.org/apps/dia-analyst/.

Wang S, Zheng W, Hu L, Gong M, Yang H. MixProTool: A Powerful and Comprehensive Web Tool for Analyzing and Visualizing Multigroup Proteomics Data. J Comput Biol. 2018;25:1123–1127. doi: 10.1089/cmb.2018.0050. PubMed DOI

Perez-Riverol Y, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC

Lapcik P. 2023. A hybrid DDA/DIA-PASEF-based assay library for a deep proteotype characterization of triple-negative breast cancer. PRIDE Archive. PXD047793

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...