A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články
Grantová podpora
NU22-08-00230
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU22-08-00230
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU22-08-00230
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU22-08-00230
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/18_046/0015974
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023033
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39025866
PubMed Central
PMC11258311
DOI
10.1038/s41597-024-03632-2
PII: 10.1038/s41597-024-03632-2
Knihovny.cz E-zdroje
- MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- proteom MeSH
- proteomika metody MeSH
- software MeSH
- tandemová hmotnostní spektrometrie * MeSH
- triple-negativní karcinom prsu * genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Názvy látek
- proteom MeSH
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and deeper proteome coverage is needed for its molecular characterization. We present comprehensive library of targeted mass spectrometry assays specific for TNBC and demonstrate its applicability. Proteins were extracted from 105 TNBC tissues and digested. Aliquots were pooled, fractionated using hydrophilic chromatography and analyzed by LC-MS/MS in data-dependent acquisition (DDA) parallel accumulation-serial fragmentation (PASEF) mode on timsTOF Pro LC-MS system. 16 individual lysates were analyzed in data-independent acquisition (DIA)-PASEF mode. Hybrid library was generated in Spectronaut software and covers 244,464 precursors, 168,006 peptides and 11,564 protein groups (FDR = 1%). Application of our library for pilot quantitative analysis of 16 tissues increased identification numbers in Spectronaut 18.5 and DIA-NN 1.8.1 software compared to library-free setting, with Spectronaut achieving the best results represented by 190,310 precursors, 140,566 peptides, and 10,463 protein groups. In conclusion, we introduce assay library that offers the deepest coverage of TNBC proteome to date. The TNBC library is available via PRIDE repository (PXD047793).
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Oncological Pathology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Sporikova Z, Koudelakova V, Trojanec R, Hajduch M. Genetic Markers in Triple-Negative Breast Cancer. Clin Breast Cancer. 2018;18:e841–e850. doi: 10.1016/j.clbc.2018.07.023. PubMed DOI
Won K-A, Spruck C. Triple-negative breast cancer therapy: Current and future perspectives (Review) Int J Oncol. 2020;57:1245–1261. doi: 10.3892/ijo.2020.5135. PubMed DOI PMC
Meng X, Cai Y, Chang X, Guo Y. A novel conditional survival nomogram for monitoring real-time prognosis of non-metastatic triple-negative breast cancer. Front Endocrinol (Lausanne) 2023;14:1119105. doi: 10.3389/fendo.2023.1119105. PubMed DOI PMC
Gluz O, et al. Triple-negative breast cancer–current status and future directions. Ann Oncol. 2009;20:1913–1927. doi: 10.1093/annonc/mdp492. PubMed DOI
Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–690. doi: 10.1038/nrclinonc.2016.66. PubMed DOI PMC
Maqbool M, Bekele F, Fekadu G. Treatment Strategies Against Triple-Negative Breast Cancer: An Updated Review. Breast Cancer (Dove Med Press) 2022;14:15–24. PubMed PMC
Kreike B, et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 2007;9:R65. doi: 10.1186/bcr1771. PubMed DOI PMC
Kelstrup CD, et al. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. J Proteome Res. 2018;17:727–738. doi: 10.1021/acs.jproteome.7b00602. PubMed DOI
Gillet LC, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717. doi: 10.1074/mcp.O111.016717. PubMed DOI PMC
Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–355. doi: 10.1038/nature19949. PubMed DOI
Faktor, J., Sucha, R., Paralova, V., Liu, Y. & Bouchal, P. Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues. Proteomics17, (2017). PubMed
Barkovits K, et al. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Mol Cell Proteomics. 2020;19:181–197. doi: 10.1074/mcp.RA119.001714. PubMed DOI PMC
Shao W, Lam H. Tandem mass spectral libraries of peptides and their roles in proteomics research. Mass Spectrom Rev. 2017;36:634–648. doi: 10.1002/mas.21512. PubMed DOI
Tsou C-C, et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods. 2015;12:258–264. doi: 10.1038/nmeth.3255. PubMed DOI PMC
Yang Y, et al. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nat Commun. 2020;11:146. doi: 10.1038/s41467-019-13866-z. PubMed DOI PMC
Muntel J, et al. Advancing Urinary Protein Biomarker Discovery by Data-Independent Acquisition on a Quadrupole-Orbitrap Mass Spectrometer. J Proteome Res. 2015;14:4752–4762. doi: 10.1021/acs.jproteome.5b00826. PubMed DOI PMC
Lapcik, P. et al. A large-scale assay library for targeted protein quantification in renal cell carcinoma tissues. Proteomics e2100228 10.1002/pmic.202100228 (2021). PubMed
García-Adrián S, et al. Molecular characterization of triple negative breast cancer formaldehyde-fixed paraffin-embedded samples by data-independent acquisition proteomics. Proteomics. 2022;22:e2100110. doi: 10.1002/pmic.202100110. PubMed DOI
Meng X, Liu D, Guan Y. Advances in the application of label-free quantitative proteomics techniques in malignancy research. Biomed Chromatogr. 2023;37:e5667. doi: 10.1002/bmc.5667. PubMed DOI
Meier F, et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018;17:2534–2545. doi: 10.1074/mcp.TIR118.000900. PubMed DOI PMC
Meier F, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020;17:1229–1236. doi: 10.1038/s41592-020-00998-0. PubMed DOI
Zhang F, Ge W, Ruan G, Cai X, Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics. 2020;20:e1900276. doi: 10.1002/pmic.201900276. PubMed DOI
Bruderer R, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015;14:1400–1410. doi: 10.1074/mcp.M114.044305. PubMed DOI PMC
Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC
Skowronek P, Meier F. High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF. Methods Mol Biol. 2022;2456:15–27. doi: 10.1007/978-1-0716-2124-0_2. PubMed DOI
Demichev V, et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat Commun. 2022;13:3944. doi: 10.1038/s41467-022-31492-0. PubMed DOI PMC
Muntel J, et al. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics. 2019;15:348–360. doi: 10.1039/C9MO00082H. PubMed DOI
Bouchal P, et al. Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep. 2019;28:832–843.e7. doi: 10.1016/j.celrep.2019.06.046. PubMed DOI PMC
Bouchal P, et al. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J Proteome Res. 2009;8:362–373. doi: 10.1021/pr800622b. PubMed DOI
Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI
Říhová, K. et al. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res10.1021/acs.jproteome.3c00641 (2024). PubMed PMC
Lou R, et al. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat Commun. 2023;14:94. doi: 10.1038/s41467-022-35740-1. PubMed DOI PMC
Monash Proteomics and Metabolomics Platform & Monash Bioinformatics Platform, Monash University. DIA-Analyst: An interactive web-platform to analyze and visualize proteomics data preprocessed with Spectronaut and DIA-NN. https://analyst-suites.org/apps/dia-analyst/.
Wang S, Zheng W, Hu L, Gong M, Yang H. MixProTool: A Powerful and Comprehensive Web Tool for Analyzing and Visualizing Multigroup Proteomics Data. J Comput Biol. 2018;25:1123–1127. doi: 10.1089/cmb.2018.0050. PubMed DOI
Perez-Riverol Y, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Lapcik P. 2023. A hybrid DDA/DIA-PASEF-based assay library for a deep proteotype characterization of triple-negative breast cancer. PRIDE Archive. PXD047793