Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry

. 2019 Jul 16 ; 28 (3) : 832-843.e7.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31315058
Odkazy

PubMed 31315058
PubMed Central PMC6656695
DOI 10.1016/j.celrep.2019.06.046
PII: S2211-1247(19)30819-8
Knihovny.cz E-zdroje

Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotype-based classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of disease-regulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification.

Zobrazit více v PubMed

Azim H.A., Jr., Peccatori F.A., Brohée S., Branstetter D., Loi S., Viale G., Piccart M., Dougall W.C., Pruneri G., Sotiriou C. RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy. Breast Cancer Res. 2015;17:24. PubMed PMC

Bhargava R., Dabbs D.J., Beriwal S., Yildiz I.A., Badve P., Soran A., Johnson R.R., Brufsky A.M., Lembersky B.C., McGuire K.P., Ahrendt G.M. Semiquantitative hormone receptor level influences response to trastuzumab-containing neoadjuvant chemotherapy in HER2-positive breast cancer. Mod. Pathol. 2011;24:367–374. PubMed

Bilgin B., Sendur M.A.N., Şener Dede D., Akıncı M.B., Yalçın B. A current and comprehensive review of cyclin-dependent kinase inhibitors for the treatment of metastatic breast cancer. Curr. Med. Res. Opin. 2017;33:1559–1569. PubMed

Bouchal P., Roumeliotis T., Hrstka R., Nenutil R., Vojtesek B., Garbis S.D. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J. Proteome Res. 2009;8:362–373. PubMed

Bouchal P., Dvorakova M., Scherl A., Garbis S.D., Nenutil R., Vojtesek B. Intact protein profiling in breast cancer biomarker discovery: protein identification issue and the solutions based on 3D protein separation, bottom-up and top-down mass spectrometry. Proteomics. 2013;13:1053–1058. PubMed

Bouchal P., Dvořáková M., Roumeliotis T., Bortlíček Z., Ihnatová I., Procházková I., Ho J.T., Maryáš J., Imrichová H., Budinská E. Combined proteomics and transcriptomics identifies carboxypeptidase B1 and nuclear factor κB (NF-κB) associated proteins as putative biomarkers of metastasis in low grade breast cancer. Mol. Cell. Proteomics. 2015;14:1814–1830. PubMed PMC

Brouckaert O., Schoneveld A., Truyers C., Kellen E., Van Ongeval C., Vergote I., Moerman P., Floris G., Wildiers H., Christiaens M.R., MBC Leuven, Belgium Breast cancer phenotype, nodal status and palpability may be useful in the detection of overdiagnosed screening-detected breast cancers. Ann. Oncol. 2013;24:1847–1852. PubMed

Brozkova K., Budinska E., Bouchal P., Hernychova L., Knoflickova D., Valik D., Vyzula R., Vojtesek B., Nenutil R. Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression. Breast Cancer Res. 2008;10:R48. PubMed PMC

Cancer Genome Atlas N., Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. PubMed PMC

Chae S.W., Sohn J.H., Kim D.H., Choi Y.J., Park Y.L., Kim K., Cho Y.H., Pyo J.S., Kim J.H. Overexpressions of Cyclin B1, cdc2, p16 and p53 in human breast cancer: the clinicopathologic correlations and prognostic implications. Yonsei Med. J. 2011;52:445–453. PubMed PMC

Choi M., Chang C.Y., Clough T., Broudy D., Killeen T., MacLean B., Vitek O. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics. 2014;30:2524–2526. PubMed

Ciriello G., Gatza M.L., Beck A.H., Wilkerson M.D., Rhie S.K., Pastore A., Zhang H., McLellan M., Yau C., Kandoth C., TCGA Research Network Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–519. PubMed PMC

Collins B.C., Hunter C.L., Liu Y., Schilling B., Rosenberger G., Bader S.L., Chan D.W., Gibson B.W., Gingras A.C., Held J.M. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 2017;8:291. PubMed PMC

Deutsch E.W., Mendoza L., Shteynberg D., Farrah T., Lam H., Tasman N., Sun Z., Nilsson E., Pratt B., Prazen B. A guided tour of the trans-proteomic pipeline. Proteomics. 2010;10:1150–1159. PubMed PMC

Enserink J.M., Kolodner R.D. An overview of Cdk1-controlled targets and processes. Cell Div. 2010;5:11. PubMed PMC

Escher C., Reiter L., MacLean B., Ossola R., Herzog F., Chilton J., MacCoss M.J., Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics. 2012;12:1111–1121. PubMed PMC

Faktor J., Sucha R., Paralova V., Liu Y., Bouchal P. Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues. Proteomics. 2017;17:1600323. PubMed

Fedele C.G., Ooms L.M., Ho M., Vieusseux J., O’Toole S.A., Millar E.K., Lopez-Knowles E., Sriratana A., Gurung R., Baglietto L. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc. Natl. Acad. Sci. USA. 2010;107:22231–22236. PubMed PMC

Gillet L.C., Navarro P., Tate S., Röst H., Selevsek N., Reiter L., Bonner R., Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics. 2012;11 O111–016717. PubMed PMC

Guo T., Kouvonen P., Koh C.C., Gillet L.C., Wolski W.E., Röst H.L., Rosenberger G., Collins B.C., Blum L.C., Gillessen S. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat. Med. 2015;21:407–413. PubMed PMC

Györffy B., Lanczky A., Eklund A.C., Denkert C., Budczies J., Li Q., Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 2010;123:725–731. PubMed

Haibe-Kains B., Desmedt C., Loi S., Culhane A.C., Bontempi G., Quackenbush J., Sotiriou C. A three-gene model to robustly identify breast cancer molecular subtypes. J. Natl. Cancer Inst. 2012;104:311–325. PubMed PMC

Hothorn T., Hornik K., Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 2006;15:651–674.

Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002;74:5383–5392. PubMed

Kennedy J.J., Abbatiello S.E., Kim K., Yan P., Whiteaker J.R., Lin C., Kim J.S., Zhang Y., Wang X., Ivey R.G. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat. Methods. 2014;11:149–155. PubMed PMC

Kockmann T., Trachsel C., Panse C., Wahlander A., Selevsek N., Grossmann J., Wolski W.E., Schlapbach R. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective. Proteomics. 2016;16:2183–2192. PubMed

Lam H., Deutsch E.W., Eddes J.S., Eng J.K., King N., Stein S.E., Aebersold R. Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics. 2007;7:655–667. PubMed

Lam H., Deutsch E.W., Eddes J.S., Eng J.K., Stein S.E., Aebersold R. Building consensus spectral libraries for peptide identification in proteomics. Nat. Methods. 2008;5:873–875. PubMed PMC

Lam S.W., Jimenez C.R., Boven E. Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat. Rev. 2014;40:129–138. PubMed

Lehmann B.D., Bauer J.A., Chen X., Sanders M.E., Chakravarthy A.B., Shyr Y., Pietenpol J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 2011;121:2750–2767. PubMed PMC

Liu Y., Hüttenhain R., Surinova S., Gillet L.C., Mouritsen J., Brunner R., Navarro P., Aebersold R. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics. 2013;13:1247–1256. PubMed

Lundberg E., Fagerberg L., Klevebring D., Matic I., Geiger T., Cox J., Algenäs C., Lundeberg J., Mann M., Uhlen M. Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 2010;6:450. PubMed PMC

Malek M., Kielkowska A., Chessa T., Anderson K.E., Barneda D., Pir P., Nakanishi H., Eguchi S., Koizumi A., Sasaki J. PTEN regulates PI(3,4)P2 signaling downstream of class I PI3K. Mol. Cell. 2017;68:566–580.e10. PubMed PMC

McCarthy D.J., Chen Y., Smyth G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–4297. PubMed PMC

Mertins P., Mani D.R., Ruggles K.V., Gillette M.A., Clauser K.R., Wang P., Wang X., Qiao J.W., Cao S., Petralia F., NCI CPTAC Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534:55–62. PubMed PMC

Nakamura K., Hirayama-Kurogi M., Ito S., Kuno T., Yoneyama T., Obuchi W., Terasaki T., Ohtsuki S. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: comparison with MRM/SRM and HR-MRM/PRM. Proteomics. 2016;16:2106–2117. PubMed

Palma G., Frasci G., Chirico A., Esposito E., Siani C., Saturnino C., Arra C., Ciliberto G., Giordano A., D’Aiuto M. Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget. 2015;6:26560–26574. PubMed PMC

Parise C.A., Caggiano V. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J. Cancer Epidemiol. 2014;2014:469251. PubMed PMC

Pavlou M.P., Dimitromanolakis A., Diamandis E.P. Coupling proteomics and transcriptomics in the quest of subtype-specific proteins in breast cancer. Proteomics. 2013;13:1083–1095. PubMed

Pernikářová V., Bouchal P. Targeted proteomics of solid cancers: from quantification of known biomarkers towards reading the digital proteome maps. Expert Rev. Proteomics. 2015;12:651–667. PubMed

Planeta J., Karásek P., Vejrosta J. Development of packed capillary columns using carbon dioxide slurries. J. Sep. Sci. 2003;26:525–530.

Prat A., Pineda E., Adamo B., Galván P., Fernández A., Gaba L., Díez M., Viladot M., Arance A., Muñoz M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24(Suppl 2):S26–S35. PubMed

Pratt M.A., Tibbo E., Robertson S.J., Jansson D., Hurst K., Perez-Iratxeta C., Lau R., Niu M.Y. The canonical NF-kappaB pathway is required for formation of luminal mammary neoplasias and is activated in the mammary progenitor population. Oncogene. 2009;28:2710–2722. PubMed

Procházková I., Lenčo J., Fučíková A., Dresler J., Čápková L., Hrstka R., Nenutil R., Bouchal P. Targeted proteomics driven verification of biomarker candidates associated with breast cancer aggressiveness. Biochim. Biophys. Acta. Proteins Proteomics. 2017;1865:488–498. PubMed

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. PubMed PMC

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. PubMed PMC

Rosenberger G., Ludwig C., Röst H.L., Aebersold R., Malmström L. aLFQ: an R-package for estimating absolute protein quantities from label-free LC-MS/MS proteomics data. Bioinformatics. 2014;30:2511–2513. PubMed PMC

Röst H.L., Rosenberger G., Navarro P., Gillet L., Miladinović S.M., Schubert O.T., Wolski W., Collins B.C., Malmström J., Malmström L., Aebersold R. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 2014;32:219–223. PubMed

Röst H.L., Liu Y., D’Agostino G., Zanella M., Navarro P., Rosenberger G., Collins B.C., Gillet L., Testa G., Malmström L., Aebersold R. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat. Methods. 2016;13:777–783. PubMed PMC

Schmidlin T., Garrigues L., Lane C.S., Mulder T.C., van Doorn S., Post H., de Graaf E.L., Lemeer S., Heck A.J., Altelaar A.F. Assessment of SRM, MRM(3), and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Proteomics. 2016;16:2193–2205. PubMed

Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. PubMed

Sequeira S.J., Wen H.C., Avivar-Valderas A., Farias E.F., Aguirre-Ghiso J.A. Inhibition of eIF2alpha dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis. BMC Cell Biol. 2009;10:64. PubMed PMC

Shetty A., Loddo M., Fanshawe T., Prevost A.T., Sainsbury R., Williams G.H., Stoeber K. DNA replication licensing and cell cycle kinetics of normal and neoplastic breast. Br. J. Cancer. 2005;93:1295–1300. PubMed PMC

Shteynberg D., Deutsch E.W., Lam H., Eng J.K., Sun Z., Tasman N., Mendoza L., Moritz R.L., Aebersold R., Nesvizhskii A.I. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics. 2011;10 M111.007690. PubMed PMC

Tyanova S., Albrechtsen R., Kronqvist P., Cox J., Mann M., Geiger T. Proteomic maps of breast cancer subtypes. Nat. Commun. 2016;7:10259. PubMed PMC

Vowinckel J., Capuano F., Campbell K., Deery M.J., Lilley K.S., Ralser M. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000Res. 2013;2:272. PubMed PMC

Waldemarson S., Kurbasic E., Krogh M., Cifani P., Berggård T., Borg Å., James P. Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples. Breast Cancer Res. 2016;18:69. PubMed PMC

Wang L., Zhao Z., Meyer M.B., Saha S., Yu M., Guo A., Wisinski K.B., Huang W., Cai W., Pike J.W. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell. 2014;25:21–36. PubMed PMC

Wiśniewski J.R., Ostasiewicz P., Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011;10:3040–3049. PubMed

Wojnar A., Kobierzycki C., Krolicka A., Pula B., Podhorska-Okolow M., Dziegiel P. Correlation of Ki-67 and MCM-2 proliferative marker expression with grade of histological malignancy (G) in ductal breast cancers. Folia Histochem. Cytobiol. 2010;48:442–446. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...