Transgelin Contributes to a Poor Response of Metastatic Renal Cell Carcinoma to Sunitinib Treatment

. 2021 Sep 03 ; 9 (9) : . [epub] 20210903

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572331

Grantová podpora
NV19-08-00250 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 34572331
PubMed Central PMC8467952
DOI 10.3390/biomedicines9091145
PII: biomedicines9091145
Knihovny.cz E-zdroje

Renal cell carcinoma (RCC) represents about 2-3% of all cancers with over 400,000 new cases per year. Sunitinib, a vascular endothelial growth factor tyrosine kinase receptor inhibitor, has been used mainly for first-line treatment of metastatic clear-cell RCC with good or intermediate prognosis. However, about one-third of metastatic RCC patients do not respond to sunitinib, leading to disease progression. Here, we aim to find and characterize proteins associated with poor sunitinib response in a pilot proteomics study. Sixteen RCC tumors from patients responding (8) vs. non-responding (8) to sunitinib 3 months after treatment initiation were analyzed using data-independent acquisition mass spectrometry, together with their adjacent non-cancerous tissues. Proteomics analysis quantified 1996 protein groups (FDR = 0.01) and revealed 27 proteins deregulated between tumors non-responding vs. responding to sunitinib, representing a pattern of deregulated proteins potentially contributing to sunitinib resistance. Gene set enrichment analysis showed an up-regulation of epithelial-to-mesenchymal transition with transgelin as one of the most significantly abundant proteins. Transgelin expression was silenced by CRISPR/Cas9 and RNA interference, and the cells with reduced transgelin level exhibited significantly slower proliferation. Our data indicate that transgelin is an essential protein supporting RCC cell proliferation, which could contribute to intrinsic sunitinib resistance.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Rini B.I., Campbell S.C., Escudier B. Renal cell carcinoma. Lancet. 2009;373:1119–1132. doi: 10.1016/S0140-6736(09)60229-4. PubMed DOI

Cohen H.T., McGovern F.J. Renal-cell carcinoma. N. Engl. J. Med. 2005;353:2477–2490. doi: 10.1056/NEJMra043172. PubMed DOI

Doberstein K., Wieland A., Lee S.B., Blaheta R.A., Wedel S., Moch H., Schraml P., Pfeilschifter J., Kristiansen G., Gutwein P. L1-CAM expression in ccRCC correlates with shorter patients survival times and confers chemoresistance in renal cell carcinoma cells. Carcinogenesis. 2011;32:262–270. doi: 10.1093/carcin/bgq249. PubMed DOI

Xu S., Zhang H., Chong Y., Guan B., Guo P. YAP Promotes VEGFA Expression and Tumor Angiogenesis Though Gli2 in Human Renal Cell Carcinoma. Arch. Med. Res. 2019;50:225–233. doi: 10.1016/j.arcmed.2019.08.010. PubMed DOI

Goebell P.J., Ivanyi P., Bedke J., Bergmann L., Berthold D., Boegemann M., Busch J., Doehn C., Krege S., Retz M., et al. Consensus paper: Current state of first- and second-line therapy in advanced clear-cell renal cell carcinoma. Future Oncol. 2020;16:2307–2328. doi: 10.2217/fon-2020-0403. PubMed DOI

Abrams T.J., Lee L.B., Murray L.J., Pryer N.K., Cherrington J.M. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol. Cancer Ther. 2003;2:471–478. PubMed

Mendel D.B., Laird A.D., Xin X., Louie S.G., Christensen J.G., Li G., Schreck R.E., Abrams T.J., Ngai T.J., Lee L.B., et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 2003;9:327–337. PubMed

Goodman V.L., Rock E.P., Dagher R., Ramchandani R.P., Abraham S., Gobburu J.V., Booth B.P., Verbois S.L., Morse D.E., Liang C.Y., et al. Approval Summary: Sunitinib for the Treatment of Imatinib Refractory or Intolerant Gastrointestinal Stromal Tumors and Advanced Renal Cell Carcinoma. Clin. Cancer Res. 2007;13:1367–1373. doi: 10.1158/1078-0432.CCR-06-2328. PubMed DOI

Motzer R.J., Hutson T., Tomczak P., Michaelson D., Bukowski R.M., Oudard S., Negrier S., Szczylik C., Pili R., Bjarnason G.A., et al. Overall Survival and Updated Results for Sunitinib Compared With Interferon Alfa in Patients With Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2009;27:3584–3590. doi: 10.1200/JCO.2008.20.1293. PubMed DOI PMC

Motzer R.J., Hutson T., Tomczak P., Michaelson D., Bukowski R.M., Rixe O., Oudard S., Negrier S., Szczylik C., Kim S.T., et al. Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2007;356:115–124. doi: 10.1056/NEJMoa065044. PubMed DOI

Morais C. Sunitinib resistance in renal cell carcinoma. J. Kidney Cancer VHL. 2014;1:1–11. doi: 10.15586/jkcvhl.2014.7. PubMed DOI PMC

Buczek M., Escudier B., Bartnik E., Szczylik C., Czarnecka A. Resistance to tyrosine kinase inhibitors in clear cell renal cell carcinoma: From the patient’s bed to molecular mechanisms. Biochim. Biophys. Acta (BBA)—Rev. Cancer. 2014;1845:31–41. doi: 10.1016/j.bbcan.2013.10.001. PubMed DOI

Busch J., Seidel C., Weikert S., Wolff I., Kempkensteffen C., Weinkauf L., Hinz S., Magheli A., Miller K., Grünwald V. Intrinsic resistance to tyrosine kinase inhibitors is associated with poor clinical outcome in metastatic renal cell carcinoma. BMC Cancer. 2011;11:295. doi: 10.1186/1471-2407-11-295. PubMed DOI PMC

Yu J.L., Rak J.W., Coomber B.L., Hicklin D.J., Kerbel R.S. Effect of p53 Status on Tumor Response to Antiangiogenic Therapy. Science. 2002;295:1526–1528. doi: 10.1126/science.1068327. PubMed DOI

Loges S., Mazzone M., Hohensinner P., Carmeliet P. Silencing or Fueling Metastasis with VEGF Inhibitors: Antiangiogenesis Revisited. Cancer Cell. 2009;15:167–170. doi: 10.1016/j.ccr.2009.02.007. PubMed DOI

Minardi D., Quaresima L., Santoni M., Bianconi M., Scartozzi M., Cascinu S., Muzzonigro G. Recent Aspects of Sunitinib Therapy in Patients with Metastatic Clear-Cell Renal Cell Carcinoma: A Systematic Review of the Literature. Curr. Urol. Rep. 2015;16:3. doi: 10.1007/s11934-014-0478-2. PubMed DOI

Gotink K.J., Broxterman H.J., Labots M., De Haas R.R., Dekker H., Honeywell R.J., Rudek M.A., Beerepoot L.V., Musters R.J., Jansen G., et al. Lysosomal Sequestration of Sunitinib: A Novel Mechanism of Drug Resistance. Clin. Cancer Res. 2011;17:7337–7346. doi: 10.1158/1078-0432.CCR-11-1667. PubMed DOI PMC

Harada K.-I., Miyake H., Kusuda Y., Fujisawa M. Expression of epithelial-mesenchymal transition markers in renal cell carcinoma: Impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int. 2012;110:E1131–E1137. doi: 10.1111/j.1464-410X.2012.11297.x. PubMed DOI

Huang D., Ding Y., Zhou M., Rini B.I., Petillo D., Qian C.-N., Kahnoski R., Futreal P.A., Furge K.A., Teh B.T. Interleukin-8 Mediates Resistance to Antiangiogenic Agent Sunitinib in Renal Cell Carcinoma. Cancer Res. 2010;70:1063–1071. doi: 10.1158/0008-5472.CAN-09-3965. PubMed DOI PMC

Sato M., Nakai Y., Nakata W., Yoshida T., Hatano K., Kawashima A., Fujita K., Uemura M., Takayama H., Nonomura N. EMMPRIN Promotes Angiogenesis, Proliferation, Invasion and Resistance to Sunitinib in Renal Cell Carcinoma, and Its Level Predicts Patient Outcome. PLoS ONE. 2013;8:e74313. doi: 10.1371/journal.pone.0074313. PubMed DOI PMC

Bielecka Z., Czarnecka A., Solarek W., Kornakiewicz A., Szczylik C. Mechanisms of Acquired Resistance to Tyrosine Kinase Inhibitors in Clear-Cell Renal Cell Carcinoma (ccRCC) Curr. Signal Transduct. Ther. 2014;8:219–228. doi: 10.2174/1574362409666140206223014. PubMed DOI PMC

Zama I.N., Hutson T.E., Elson P., Cleary J.M., Choueiri T.K., Heng D.Y., Ramaiya N., Michaelson D., Garcia J.A., Knox J.J., et al. Sunitinib rechallenge in metastatic renal cell carcinoma patients. Cancer. 2010;116:5400–5406. doi: 10.1002/cncr.25583. PubMed DOI

Bouchal P., Schubert O.T., Faktor J., Capkova L., Imrichova H., Zoufalova K., Paralova V., Hrstka R., Liu Y., Ebhardt H.A., et al. Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep. 2019;28:832–843.e7. doi: 10.1016/j.celrep.2019.06.046. PubMed DOI PMC

Janacova L., Faktor J., Capkova L., Paralova V., Pospisilova A., Podhorec J., Ebhardt H.A., Hrstka R., Nenutil R., Aebersold R., et al. SWATH-MS Analysis of FFPE Tissues Identifies Stathmin as a Potential Marker of Endometrial Cancer in Patients Exposed to Tamoxifen. J. Proteome Res. 2020;19:2617–2630. doi: 10.1021/acs.jproteome.0c00064. PubMed DOI

Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Maryáš J., Faktor J., Čápková L., Müller P., Skládal P., Bouchal P. Pull-down Assay on Streptavidin Beads and Surface Plasmon Resonance Chips for SWATH-MS-based Interactomics. Cancer Genom. Proteom. 2018;15:395–404. doi: 10.21873/cgp.20098. PubMed DOI PMC

GeneArt Genomic Cleavage Detection Kit Manual. May 10, 2018. [(accessed on 26 July 2021)]. Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FA24372_GeneArt_GenomicCleavage_Detect_Kit_man.pdf&title=R2VuZUFydCZyZWc7IEdlbm9taWMgQ2xlYXZhZ2UgRGV0ZWN0aW9uIEtpdCAtIFVzZXIgR3VpZGU=

Neely B.A., Wilkins C.E., Marlow L.A., Malyarenko D., Kim Y., Ignatchenko A., Sasinowska H., Sasinowski M., Nyalwidhe J.O., Kislinger T., et al. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma. PLoS ONE. 2016;11:e0154074. doi: 10.1371/journal.pone.0154074. PubMed DOI PMC

Song Y., Zhong L., Zhou J., Lu M., Xing T., Ma L., Shen J. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer. Proteom.—Clin. Appl. 2017;11:1700066. doi: 10.1002/prca.201700066. PubMed DOI

Sanjana N., Shalem O., Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods. 2014;11:783–784. doi: 10.1038/nmeth.3047. PubMed DOI PMC

Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelsen T.S., Heckl D., Ebert B.L., Root D.E., Doench J., et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science. 2013;343:84–87. doi: 10.1126/science.1247005. PubMed DOI PMC

Dvorakova M., Nenutil R., Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev. Proteom. 2014;11:149–165. doi: 10.1586/14789450.2014.860358. PubMed DOI

Gerolymos M., Karagianni F., Papasotiriou M., Kalliakmani P., Sotsiou F., Charonis A., Goumenos D. Expression of Transgelin in Human Glomerulonephritis of Various Etiology. Nephron Clin. Pract. 2011;119:c74–c82. doi: 10.1159/000324655. PubMed DOI

Klade C.S., Voss T., Krystek E., Ahorn H., Zatloukal K., Pummer K., Adolf G.R. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics. 2001;1:890–898. doi: 10.1002/1615-9861(200107)1:7<890::AID-PROT890>3.0.CO;2-Z. PubMed DOI

Finne K., Marti H.-P., Leh S., Skogstrand T., Vethe H., Tenstad O., Berven F.S., Scherer A., Vikse B.E. Proteomic Analysis of Minimally Damaged Renal Tubular Tissue from Two-Kidney-One-Clip Hypertensive Rats Demonstrates Extensive Changes Compared to Tissue from Controls. Nephron. 2016;132:70–80. doi: 10.1159/000442825. PubMed DOI

Marshall C.B., Krofft R.D., Blonski M.J., Kowalewska J., Logar C.M., Pippin J.W., Kim F., Feil R., Alpers C.E., Shankland S.J. Role of smooth muscle protein SM22α in glomerular epithelial cell injury. Am. J. Physiol. Renal Physiol. 2011;300:F1026–F1042. doi: 10.1152/ajprenal.00187.2010. PubMed DOI PMC

Elsafadi M., Manikandan M., Almalki S., Mahmood A., Shinwari T., Vishnubalaji R., Mobarak M., Alfayez M., Aldahmash A., Kassem M., et al. Transgelin is a poor prognostic factor associated with advanced colorectal cancer (CRC) stage promoting tumor growth and migration in a TGFbeta-dependent manner. Cell Death Dis. 2020;11:341. doi: 10.1038/s41419-020-2529-6. PubMed DOI PMC

Zhou H., Zhang Y., Chen Q., Lin Y. AKT and JNK Signaling Pathways Increase the Metastatic Potential of Colorectal Cancer Cells by Altering Transgelin Expression. Dig. Dis. Sci. 2015;61:1091–1097. doi: 10.1007/s10620-015-3985-1. PubMed DOI

Dvořáková M., Jeřábková J., Procházková I., Lenčo J., Nenutil R., Bouchal P. Transgelin is upregulated in stromal cells of lymph node positive breast cancer. J. Proteom. 2016;132:103–111. doi: 10.1016/j.jprot.2015.11.025. PubMed DOI

Chen Z., He S., Zhan Y., He A., Fang D., Gong Y., Li X., Zhou L. TGF-beta-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine. 2019;47:208–220. doi: 10.1016/j.ebiom.2019.08.012. PubMed DOI PMC

Zhou L., Zhang R., Zhang L., Sun Y., Yao W., Zhao A., Li J., Yuan Y. Upregulation of transgelin is an independent factor predictive of poor prognosis in patients with advanced pancreatic cancer. Cancer Sci. 2013;104:423–430. doi: 10.1111/cas.12107. PubMed DOI PMC

Wu X., Dong L., Zhang R., Ying K., Shen H. Transgelin overexpression in lung adenocarcinoma is associated with tumor progression. Int. J. Mol. Med. 2014;34:585–591. doi: 10.3892/ijmm.2014.1805. PubMed DOI

Fu J., Wang X., Yue Q. Functional loss of TAGLN inhibits tumor growth and increases chemosensitivity of non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2020;529:1086–1093. doi: 10.1016/j.bbrc.2020.06.066. PubMed DOI

Zhou H., Zhang Y., Wu L., Xie W., Li L., Yuan Y., Chen Y., Lin Y., He X. Elevated transgelin/TNS1 expression is a potential biomarker in human colorectal cancer. Oncotarget. 2017;9:1107–1113. doi: 10.18632/oncotarget.23275. PubMed DOI PMC

Aikins A.R., Kim M., Raymundo B., Kim C.-W. Featured Article: Downregulation of transgelin blocks interleukin-8 utilization and suppresses vasculogenic mimicry in breast cancer cells. Exp. Biol. Med. 2017;242:573–583. doi: 10.1177/1535370216685435. PubMed DOI PMC

Yu H., Konigshoff M., Jayachandran A., Handley D., Seeger W., Kaminski N., Eickelberg O. Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis. FASEB J. 2008;22:1778–1789. doi: 10.1096/fj.07-083857. PubMed DOI

Zhong W., Hou H., Liu T., Su S., Xi X., Liao Y., Xie R., Jin G., Liu X., Zhu L., et al. Cartilage Oligomeric Matrix Protein promotes epithelial-mesenchymal transition by interacting with Transgelin in Colorectal Cancer. Theranostics. 2020;10:8790–8806. doi: 10.7150/thno.44456. PubMed DOI PMC

Zhou H., Li L., Xie W., Wu L., Lin Y., He X. TAGLN and High-mobility Group AT-Hook 2 (HMGA2) Complex Regulates TGF-beta-induced Colorectal Cancer Metastasis. OncoTargets Ther. 2020;13:10489–10498. doi: 10.2147/OTT.S263090. PubMed DOI PMC

Chiu I.-J., Hsu Y.-H., Chang J.-S., Yang J.-C., Chiu H.-W., Lin Y.-F. Lactotransferrin Downregulation Drives the Metastatic Progression in Clear Cell Renal Cell Carcinoma. Cancers. 2020;12:847. doi: 10.3390/cancers12040847. PubMed DOI PMC

Ni L., Yuan C., Zhang C., Xiang Y., Wu J., Wang X., Wu X. Co-Expression Network Analysis Identified LTF in Association with Metastasis Risk and Prognosis in Clear Cell Renal Cell Carcinoma. OncoTargets Ther. 2020;13:6975–6986. doi: 10.2147/OTT.S251000. PubMed DOI PMC

Harada K., Miyake H., Kusuda Y., Fujisawa M. Characterization of mechanism involved in acquired resistance to sorafenib in a mouse renal cell cancer RenCa model. Clin. Transl. Oncol. 2013;16:801–806. doi: 10.1007/s12094-013-1151-9. PubMed DOI

Liu Y., Men C., Xu Y., Zhao K., Luo L., Dong D., Yu Q. Clusterin promotes growth and invasion of clear cell renal carcinoma cell by upregulation of S100A4 expression. Cancer Biomark. 2018;21:915–923. doi: 10.3233/CBM-171018. PubMed DOI

Nishi K., Ono T., Nakamura T., Fukunaga N., Izumi M., Watanabe H., Suenaga A., Maruyama T., Yamagata Y., Curry S., et al. Structural insights into differences in drug-binding selectivity between two forms of human alpha1-acid glycoprotein genetic variants, the A and F1*S forms. J. Biol. Chem. 2011;286:14427–14434. doi: 10.1074/jbc.M110.208926. PubMed DOI PMC

Toyama Y., Ueyama J., Nomura H., Tsukiyama I., Saito H., Hisada T., Matsuura K., Hasegawa T. Contribution of plasma proteins, albumin and alpha 1-acid glycoprotein, to pharmacokinetics of a multi-targeted receptor tyrosine kinase inhibitor, sunitinib, in analbuminemic rats. Anticancer Res. 2014;34:2283–2289. PubMed

Koh H.M., An H.J., Ko G.H., Lee J.H., Lee J.S., Kim D.C., Song D.H. Prognostic role of S100A9 expression in patients with clear cell renal cell carcinoma. Medicine. 2019;98:e17188. doi: 10.1097/MD.0000000000017188. PubMed DOI PMC

Zhang X.L., Wu Z.Z., Xu Y., Wang J.G., Wang Y.Q., Cao M.Q., Wang C.H. Saliva proteomic analysis reveals possible biomarkers of renal cell carcinoma. Open Chem. 2020;18:918–926. doi: 10.1515/chem-2020-0048. DOI

Luo T., Chen X., Zeng S., Guan B., Hu B., Meng Y., Liu F., Wong T., Lu Y., Yun C., et al. Bioinformatic identification of key genes and analysis of prognostic values in clear cell renal cell carcinoma. Oncol. Lett. 2018;16:1747–1757. doi: 10.3892/ol.2018.8842. PubMed DOI PMC

Wu Y., Wei X., Feng H., Hu B., Liu B., Luan Y., Ruan Y., Liu X., Liu Z., Liu J., et al. Integrated Analysis to Identify a Redox-Related Prognostic Signature for Clear Cell Renal Cell Carcinoma. Oxidative Med. Cell. Longev. 2021;2021:6648093. doi: 10.1155/2021/6648093. PubMed DOI PMC

Maruschke M., Koczan D., Reuter D., Ziems B., Nizze H., Hakenberg O., Thiesen H.-J. Putative Biomarker Genes for Grading Clear Cell Renal Cell Carcinoma. Urol. Int. 2011;87:205–217. doi: 10.1159/000328196. PubMed DOI

Brooks S.A., Brannon A.R., Parker J.S., Fisher J.C., Sen O., Kattan M., Hakimi A.A., Hsieh J.J., Choueiri T.K., Tamboli P., et al. ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. Eur. Urol. 2014;66:77–84. doi: 10.1016/j.eururo.2014.02.035. PubMed DOI PMC

Thibodeau B.J., Fulton M., Fortier L.E., Geddes T.J., Pruetz B.L., Ahmed S., Banes-Berceli A., Zhang P.L., Wilson G., Hafron J. Characterization of clear cell renal cell carcinoma by gene expression profiling. Urol. Oncol. Semin. Orig. Investig. 2015;34:168.e1–168.e9. doi: 10.1016/j.urolonc.2015.11.001. PubMed DOI

Sandim V., Pereira D.D.A., Kalume D.E., Oliveira-Carvalho A.L., Ornellas A.A., Soares M.R., Alves G., Zingali R.B. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 2016;34:5.e11–5.e25. doi: 10.1016/j.urolonc.2015.07.016. PubMed DOI

Landolt L., Eikrem Ø., Strauss P., Scherer A., Lovett D.H., Beisland C., Finne K., Osman T., Ibrahim M.M., Gausdal G., et al. Clear Cell Renal Cell Carcinoma is linked to Epithelial-to-Mesenchymal Transition and to Fibrosis. Physiol. Rep. 2017;5:e13305. doi: 10.14814/phy2.13305. PubMed DOI PMC

Piva F., Giulietti M., Santoni M., Occhipinti G., Scarpelli M., López-Beltrán A., Cheng L., Principato G., Montironi R. Epithelial to Mesenchymal Transition in Renal Cell Carcinoma: Implications for Cancer Therapy. Mol. Diagn. Ther. 2016;20:111–117. doi: 10.1007/s40291-016-0192-5. PubMed DOI

Medici D., Nawshad A. Type I collagen promotes epithelial-mesenchymal transition through ILK-dependent activation of NF-kappaB and LEF-1. Matrix Biol. 2010;29:161–165. doi: 10.1016/j.matbio.2009.12.003. PubMed DOI PMC

Lee Y.H., Albig A.R., Regner M., Schiemann B.J., Schiemann W.P. Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis. 2008;29:2243–2251. doi: 10.1093/carcin/bgn199. PubMed DOI PMC

Lin Y., Buckhaults P.J., Lee J.R., Xiong H., Farrell C., Podolsky R.H., Schade R.R., Dynan W. Association of the Actin-Binding Protein Transgelin with Lymph Node Metastasis in Human Colorectal Cancer. Neoplasia. 2009;11:864–873. doi: 10.1593/neo.09542. PubMed DOI PMC

Genovese F., Manresa A.A., Leeming D.J., Karsdal M.A., Boor P. The extracellular matrix in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014;7:4. doi: 10.1186/1755-1536-7-4. PubMed DOI PMC

Yang H., Li W., Lv Y., Fan Q., Mao X., Long T., Xie L., Dong C., Yang R., Zhang H. Exploring the mechanism of clear cell renal cell carcinoma metastasis and key genes based on multi-tool joint analysis. Gene. 2019;720:144103. doi: 10.1016/j.gene.2019.144103. PubMed DOI

Beuselinck B., Job S., Becht E., Karadimou A., Verkarre V., Couchy G., Giraldo N., Rioux-Leclercq N., Molinié V., Sibony M., et al. Molecular Subtypes of Clear Cell Renal Cell Carcinoma Are Associated with Sunitinib Response in the Metastatic Setting. Clin. Cancer Res. 2015;21:1329–1339. doi: 10.1158/1078-0432.CCR-14-1128. PubMed DOI

Beuselinck B., Jean-Baptiste J., Couchy G., Job S., De Reynies A., Wolter P., Theodore C., Gravis G., Rousseau B., Albiges L., et al. RANK/OPG ratio of expression in primary clear-cell renal cell carcinoma is associated with bone metastasis and prognosis in patients treated with anti-VEGFR-TKIs. Br. J. Cancer. 2015;113:1313–1322. doi: 10.1038/bjc.2015.352. PubMed DOI PMC

Beuselinck B., Verbiest A., Couchy G., Job S., de Reynies A., Meiller C., Albersen M., Verkarre V., Lerut E., Méjean A., et al. Pro-angiogenic gene expression is associated with better outcome on sunitinib in metastatic clear-cell renal cell carcinoma. Acta Oncol. 2017;57:498–508. doi: 10.1080/0284186X.2017.1388927. PubMed DOI

Dumond A., Brachet E., Durivault J., Vial V., Puszko A.K., Lepelletier Y., Montemagno C., Pagnuzzi-Boncompagni M., Hermine O., Garbay C., et al. Neuropilin 1 and Neuropilin 2 gene invalidation or pharmacological inhibition reveals their relevance for the treatment of metastatic renal cell carcinoma. J. Exp. Clin. Cancer Res. 2021;40:1–18. doi: 10.1186/s13046-021-01832-x. PubMed DOI PMC

Shin S.-J., Jeon Y.K., Cho Y.M., Lee J., Chung D.H., Park J.Y., Go H. The Association Between PD-L1 Expression and the Clinical Outcomes to Vascular Endothelial Growth Factor-Targeted Therapy in Patients With Metastatic Clear Cell Renal Cell Carcinoma. Oncologist. 2015;20:1253–1260. doi: 10.1634/theoncologist.2015-0151. PubMed DOI PMC

Furukawa J., Miyake H., Fujisawa M. GLI2 expression levels in radical nephrectomy specimens as a predictor of disease progression in patients with metastatic clear cell renal cell carcinoma following treatment with sunitinib. Mol. Clin. Oncol. 2016;5:186–192. doi: 10.3892/mco.2016.950. PubMed DOI PMC

Stewart G., O’Mahony F.C., Laird A., Rashid S., Martin S.A., Eöry L., Lubbock A., Nanda J., O’Donnell M., Mackay A., et al. Carbonic Anhydrase 9 Expression Increases with Vascular Endothelial Growth Factor–Targeted Therapy and Is Predictive of Outcome in Metastatic Clear Cell Renal Cancer. Eur. Urol. 2014;66:956–963. doi: 10.1016/j.eururo.2014.04.007. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...