Pull-down Assay on Streptavidin Beads and Surface Plasmon Resonance Chips for SWATH-MS-based Interactomics

. 2018 Sep-Oct ; 15 (5) : 395-404.

Jazyk angličtina Země Řecko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30194080

BACKGROUND/AIM: Pul-down assay is a popular in vitro method for identification of physical interactors of selected proteins. Here, for the first time, we compared three conventional variants of pull-down assay with the streptavidin-modified surface plasmon resonance (SPR) chips for the detection of PDZ and LIM domain protein 2 (PDLIM2) interaction partners. MATERIALS AND METHODS: PDLIM2 protein-protein interactions were analysed by three variants of pull-down assay on streptavidin beads using LC-MS/MS in "Sequential Window Acquisition of all Theoretical fragment ion spectra (SWATH)" mode and compared with LC-SWATH-MS/MS data from SPR chips. RESULTS: The results showed that (i) the use of SPR chip led to comparable data compared to on-column streptavidin beads, (ii) gravity flow and microflow in wash and elution steps provided better results than centrifugation, and (iii) type and concentration of detergent did not significantly affect the interactome data of cancer-associated PDLIM2. CONCLUSION: Our study supports further application of SPR-based affinity purification with SWATH mass spectrometry for reproducible and controlled characterization of cancer-associated interactomes.

Zobrazit více v PubMed

Braun P, Gingras AC. History of protein-protein interactions: from egg-white to complex networks. Proteomics. 2012;12:1478–1498. PubMed

Yanagida M. Functional proteomics; current achievements. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;771:89–106. PubMed

Berggard T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics. 2007;7:2833–2842. PubMed

Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648. PubMed PMC

Kool J, Jonker N, Irth H, Niessen WM. Studying protein-protein affinity and immobilized ligand-protein affinity interactions using MS-based methods. Anal Bioanal Chem. 2011;402:1109–1125. PubMed PMC

Takahashi N, Kaji H, Yanagida M, Hayano T, Isobe T. Proteomics: advanced technology for the analysis of cellular function. J Nutr. 2003;133:2090–2096. PubMed

Zhao X, Li G, Liang S. Several affinity tags commonly used in chromatographic purification. J Anal Methods Chem. 2013;2013:581093. PubMed PMC

Barrette-Ng IH, Wu SC, Tjia WM, Wong SL, Ng KK. The structure of the SBP-Tag-streptavidin complex reveals a novel helical scaffold bridging binding pockets on separate subunits. Acta Crystallogr D Biol Crystallogr. 2013;69:879–887. PubMed PMC

Wu SC, Wong SL. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins. PLoS One. 2013;8:e69530. PubMed PMC

Stotland A, Pruitt L, Webster P, Wolkowicz R. Purification of the COP9 signalosome complex and binding partners from human T cells. OMICS. 2012;16:312–319. PubMed PMC

Keefe AD, Wilson DS, Seelig B, Szostak JW. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif. 2001;23:440–446. PubMed

Wang DS, Fan SK. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications. Sensors (Basel) 2016;16:e1175. PubMed PMC

Stockley PG, Persson B. Surface plasmon resonance assays of DNA-protein interactions. Methods Mol Biol. 2009;543:653–669. PubMed

Borch J, Roepstorff P. Combinations of SPR and MS for characterization of native and recombinant proteins in cell lysates. Mol Biotechnol. 2006;33:179–190. PubMed

Reverté L, de la Iglesia P, del Río V, Campbell K, Elliott CT, Kawatsu K, Katikou P, Diogène J, Campàs M. Detection of tetrodotoxins in puffer fish by a self-assembled monolayer-based immunoassay and comparison with surface plasmon resonance, LC-MS/MS, and mouse bioassay. Anal Chem. 2015;87:10839–10847. PubMed

Nedelkov D, Tubbs KA, Nelson RW. Surface plasmon resonance-enabled mass spectrometry arrays. Electrophoresis. 2006;27:3671–3675. PubMed

Boucher LE, Bosch J. Development of a multifunctional tool for drug screening against plasmodial protein-protein interactions via surface plasmon resonance. J Mol Recognit. 2013;26:496–500. PubMed PMC

Bécsi B, Dedinszki D, Gyémánt G, Máthé C, Vasas G, Lontay B, Erdődi F. Identification of protein phosphatase interacting proteins from normal and UVA-irradiated HaCaT cell lysates by surface plasmon resonance based binding technique using biotin-microcystin-LR as phosphatase capturing. molecule. J Photochem Photobiol B. 2014;138:240–248. PubMed

Hayano T, Yamauchi Y, Asano K, Tsujimura T, Hashimoto S, Isobe T, Takahashi N. Automated SPR-LC-MS/MS system for protein interaction analysis. J Proteome Res. 2008;7:4183–4190. PubMed

Bouchal P, Dvořáková M, Roumeliotis T, Bortlíček Z, Ihnatová I, Procházková I, Ho JT, Maryáš J, Imrichová H, Budinská E, Vyzula R, Garbis SD, Vojtěšek B, Nenutil R. Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor ĸB (NF-ĸB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer. Mol Cell Proteomics. 2015;14:1814–1830. PubMed PMC

Maryas J, Bouchal P. PDLIM2 and its Role in Oncogenesis - Tumor Suppressor or Oncoprotein? Klin. Onkol. 2015;28:40–46. PubMed

Yu J, Li X, Wang Y, Li B, Li H, Li Y, Zhou W, Zhang C, Wang Y, Rao Z, Bartlam M, Cao Y. PDlim2 selectively interacts with the PDZ binding motif of highly pathogenic avian H5N1 influenza A virus NS1. PLoS One. 2011;6:e19511. PubMed PMC

Fu J, Yan P, Li S, Qu Z, Xiao G. Molecular determinants of PDLIM2 in suppressing HTLV-I Tax-mediated tumorigenesis. Oncogene. 2010;29:6499–6507. PubMed PMC

Torrado M, Senatorov VV, Trivedi R, Fariss RN, Tomarev SI. Pdlim2, a novel PDZ-LIM domain protein, interacts with alpha-actinins and filamin A. Invest Ophthalmol Vis Sci. 2004;45:3955–3963. PubMed

Dvořáková M, Jeřábková J, Procházková I, Lenčo J, Nenutil R, Bouchal P. Transgelin is upregulated in stromal cells of lymph node positive breast cancer. J Proteomics. 2016;132:103–111. PubMed

Trcka F, Durech M, Man P, Hernychova L, Muller P, Vojtesek B. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem. 2014;289:9887–9901. PubMed PMC

Collins BC, Gillet LC, Rosenberger G, Röst HL, Vichalkovski A, Gstaiger M, Aebersold R. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods. 2013;10:1246–1253. PubMed

Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–3685. PubMed

Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng LY, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015;14:1400–1410. PubMed PMC

Teo G, Kim S, Tsou CC, Collins B, Gingras AC, Nesvizhskii AI, Choi H. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. J Proteomics. 2015;129:108–120. PubMed PMC

Nishimura T, Takeichi M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development. 2008;135:1493–1502. PubMed

Xue H, Zhang J, Guo X, Wang J, Li J, Gao X, Guo X, Li T, Xu S, Zhang P, Liu Q, Li G. CREBRF is a potent tumor suppressor of glioblastoma by blocking hypoxia-induced autophagy via the CREB3/ATG5 pathway. Int J Oncol. 2016;49:519–528. PubMed

Moniz LS, Stambolic V. Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol Cell Biol. 2011;31:30–42. PubMed PMC

Tojkander S, Gateva G, Lappalainen P. Actin stress fibers--assembly, dynamics and biological roles. J Cell Sci. 2012;125:1855–1864. PubMed

Arany I, Clark JS, Reed DK, Ember I, Juncos LA. Cisplatin enhances interaction between p66Shc and HSP27: its role in reorganization of the actin cytoskeleton in renal proximal tubule cells. Anticancer Res. 2012;32:4759–4763. PubMed

Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...