Pull-down Assay on Streptavidin Beads and Surface Plasmon Resonance Chips for SWATH-MS-based Interactomics
Jazyk angličtina Země Řecko Médium print
Typ dokumentu časopisecké články
PubMed
30194080
PubMed Central
PMC6199577
DOI
10.21873/cgp.20098
PII: 15/5/395
Knihovny.cz E-zdroje
- Klíčová slova
- LC-SWATH-MS/MS, PDLIM2, SPR, protein-protein interactions, pull-down assay,
- MeSH
- chromatografie kapalinová MeSH
- interakční proteinové domény a motivy genetika MeSH
- lidé MeSH
- mikrofilamentové proteiny genetika izolace a purifikace MeSH
- nádory genetika patologie MeSH
- povrchová plasmonová rezonance * MeSH
- proteiny s doménou LIM genetika izolace a purifikace MeSH
- streptavidin chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikrofilamentové proteiny MeSH
- PDLIM2 protein, human MeSH Prohlížeč
- proteiny s doménou LIM MeSH
- streptavidin MeSH
BACKGROUND/AIM: Pul-down assay is a popular in vitro method for identification of physical interactors of selected proteins. Here, for the first time, we compared three conventional variants of pull-down assay with the streptavidin-modified surface plasmon resonance (SPR) chips for the detection of PDZ and LIM domain protein 2 (PDLIM2) interaction partners. MATERIALS AND METHODS: PDLIM2 protein-protein interactions were analysed by three variants of pull-down assay on streptavidin beads using LC-MS/MS in "Sequential Window Acquisition of all Theoretical fragment ion spectra (SWATH)" mode and compared with LC-SWATH-MS/MS data from SPR chips. RESULTS: The results showed that (i) the use of SPR chip led to comparable data compared to on-column streptavidin beads, (ii) gravity flow and microflow in wash and elution steps provided better results than centrifugation, and (iii) type and concentration of detergent did not significantly affect the interactome data of cancer-associated PDLIM2. CONCLUSION: Our study supports further application of SPR-based affinity purification with SWATH mass spectrometry for reproducible and controlled characterization of cancer-associated interactomes.
Masaryk Memorial Cancer Institute Regional Centre for Applied Molecular Oncology Brno Czech Republic
Masaryk University Faculty of Science Department of Biochemistry Brno Czech Republic
Zobrazit více v PubMed
Braun P, Gingras AC. History of protein-protein interactions: from egg-white to complex networks. Proteomics. 2012;12:1478–1498. PubMed
Yanagida M. Functional proteomics; current achievements. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;771:89–106. PubMed
Berggard T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics. 2007;7:2833–2842. PubMed
Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648. PubMed PMC
Kool J, Jonker N, Irth H, Niessen WM. Studying protein-protein affinity and immobilized ligand-protein affinity interactions using MS-based methods. Anal Bioanal Chem. 2011;402:1109–1125. PubMed PMC
Takahashi N, Kaji H, Yanagida M, Hayano T, Isobe T. Proteomics: advanced technology for the analysis of cellular function. J Nutr. 2003;133:2090–2096. PubMed
Zhao X, Li G, Liang S. Several affinity tags commonly used in chromatographic purification. J Anal Methods Chem. 2013;2013:581093. PubMed PMC
Barrette-Ng IH, Wu SC, Tjia WM, Wong SL, Ng KK. The structure of the SBP-Tag-streptavidin complex reveals a novel helical scaffold bridging binding pockets on separate subunits. Acta Crystallogr D Biol Crystallogr. 2013;69:879–887. PubMed PMC
Wu SC, Wong SL. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins. PLoS One. 2013;8:e69530. PubMed PMC
Stotland A, Pruitt L, Webster P, Wolkowicz R. Purification of the COP9 signalosome complex and binding partners from human T cells. OMICS. 2012;16:312–319. PubMed PMC
Keefe AD, Wilson DS, Seelig B, Szostak JW. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif. 2001;23:440–446. PubMed
Wang DS, Fan SK. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications. Sensors (Basel) 2016;16:e1175. PubMed PMC
Stockley PG, Persson B. Surface plasmon resonance assays of DNA-protein interactions. Methods Mol Biol. 2009;543:653–669. PubMed
Borch J, Roepstorff P. Combinations of SPR and MS for characterization of native and recombinant proteins in cell lysates. Mol Biotechnol. 2006;33:179–190. PubMed
Reverté L, de la Iglesia P, del Río V, Campbell K, Elliott CT, Kawatsu K, Katikou P, Diogène J, Campàs M. Detection of tetrodotoxins in puffer fish by a self-assembled monolayer-based immunoassay and comparison with surface plasmon resonance, LC-MS/MS, and mouse bioassay. Anal Chem. 2015;87:10839–10847. PubMed
Nedelkov D, Tubbs KA, Nelson RW. Surface plasmon resonance-enabled mass spectrometry arrays. Electrophoresis. 2006;27:3671–3675. PubMed
Boucher LE, Bosch J. Development of a multifunctional tool for drug screening against plasmodial protein-protein interactions via surface plasmon resonance. J Mol Recognit. 2013;26:496–500. PubMed PMC
Bécsi B, Dedinszki D, Gyémánt G, Máthé C, Vasas G, Lontay B, Erdődi F. Identification of protein phosphatase interacting proteins from normal and UVA-irradiated HaCaT cell lysates by surface plasmon resonance based binding technique using biotin-microcystin-LR as phosphatase capturing. molecule. J Photochem Photobiol B. 2014;138:240–248. PubMed
Hayano T, Yamauchi Y, Asano K, Tsujimura T, Hashimoto S, Isobe T, Takahashi N. Automated SPR-LC-MS/MS system for protein interaction analysis. J Proteome Res. 2008;7:4183–4190. PubMed
Bouchal P, Dvořáková M, Roumeliotis T, Bortlíček Z, Ihnatová I, Procházková I, Ho JT, Maryáš J, Imrichová H, Budinská E, Vyzula R, Garbis SD, Vojtěšek B, Nenutil R. Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor ĸB (NF-ĸB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer. Mol Cell Proteomics. 2015;14:1814–1830. PubMed PMC
Maryas J, Bouchal P. PDLIM2 and its Role in Oncogenesis - Tumor Suppressor or Oncoprotein? Klin. Onkol. 2015;28:40–46. PubMed
Yu J, Li X, Wang Y, Li B, Li H, Li Y, Zhou W, Zhang C, Wang Y, Rao Z, Bartlam M, Cao Y. PDlim2 selectively interacts with the PDZ binding motif of highly pathogenic avian H5N1 influenza A virus NS1. PLoS One. 2011;6:e19511. PubMed PMC
Fu J, Yan P, Li S, Qu Z, Xiao G. Molecular determinants of PDLIM2 in suppressing HTLV-I Tax-mediated tumorigenesis. Oncogene. 2010;29:6499–6507. PubMed PMC
Torrado M, Senatorov VV, Trivedi R, Fariss RN, Tomarev SI. Pdlim2, a novel PDZ-LIM domain protein, interacts with alpha-actinins and filamin A. Invest Ophthalmol Vis Sci. 2004;45:3955–3963. PubMed
Dvořáková M, Jeřábková J, Procházková I, Lenčo J, Nenutil R, Bouchal P. Transgelin is upregulated in stromal cells of lymph node positive breast cancer. J Proteomics. 2016;132:103–111. PubMed
Trcka F, Durech M, Man P, Hernychova L, Muller P, Vojtesek B. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem. 2014;289:9887–9901. PubMed PMC
Collins BC, Gillet LC, Rosenberger G, Röst HL, Vichalkovski A, Gstaiger M, Aebersold R. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods. 2013;10:1246–1253. PubMed
Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–3685. PubMed
Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng LY, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015;14:1400–1410. PubMed PMC
Teo G, Kim S, Tsou CC, Collins B, Gingras AC, Nesvizhskii AI, Choi H. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. J Proteomics. 2015;129:108–120. PubMed PMC
Nishimura T, Takeichi M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development. 2008;135:1493–1502. PubMed
Xue H, Zhang J, Guo X, Wang J, Li J, Gao X, Guo X, Li T, Xu S, Zhang P, Liu Q, Li G. CREBRF is a potent tumor suppressor of glioblastoma by blocking hypoxia-induced autophagy via the CREB3/ATG5 pathway. Int J Oncol. 2016;49:519–528. PubMed
Moniz LS, Stambolic V. Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol Cell Biol. 2011;31:30–42. PubMed PMC
Tojkander S, Gateva G, Lappalainen P. Actin stress fibers--assembly, dynamics and biological roles. J Cell Sci. 2012;125:1855–1864. PubMed
Arany I, Clark JS, Reed DK, Ember I, Juncos LA. Cisplatin enhances interaction between p66Shc and HSP27: its role in reorganization of the actin cytoskeleton in renal proximal tubule cells. Anticancer Res. 2012;32:4759–4763. PubMed
Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717. PubMed PMC
Global Interactome Mapping Reveals Pro-tumorigenic Interactions of NF-κB in Breast Cancer
Transgelin Contributes to a Poor Response of Metastatic Renal Cell Carcinoma to Sunitinib Treatment