Global Interactome Mapping Reveals Pro-tumorigenic Interactions of NF-κB in Breast Cancer
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38417630
PubMed Central
PMC10988130
DOI
10.1016/j.mcpro.2024.100744
PII: S1535-9476(24)00034-3
Knihovny.cz E-resources
- Keywords
- AlphaPullDown, NF-κB, RELA, breast cancer, interaction, protein complexes, protein correlation profiling, proteomics,
- MeSH
- Carcinogenesis metabolism MeSH
- Humans MeSH
- Protein Interaction Mapping MeSH
- Protein Interaction Maps * MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms * metabolism pathology MeSH
- NF-kappa B * metabolism MeSH
- Protein-Arginine N-Methyltransferases metabolism MeSH
- Signal Transduction MeSH
- Transcription Factor RelA * metabolism MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- NF-kappa B * MeSH
- Protein-Arginine N-Methyltransferases MeSH
- RELA protein, human MeSH Browser
- Transcription Factor RelA * MeSH
NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Michael Smith Laboratories University of British Columbia Vancouver Canada
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
See more in PubMed
Prasad S., Ravindran J., Aggarwal B.B. NF-kappaB and cancer: how intimate is this relationship. Mol. Cell. Biochem. 2010;336:25–37. PubMed PMC
Hoesel B., Schmid J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer. 2013;12:86. PubMed PMC
Lim S.-O., Li C.-W., Xia W., Cha J.-H., Chan L.-C., Wu Y., et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30:925–939. PubMed PMC
Zhang Q., Lenardo M.J., Baltimore D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57. PubMed PMC
Oeckinghaus A., Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 2009;1:a000034. PubMed PMC
Ghosh S., May M.J., Kopp E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998;16:225–260. PubMed
Baldwin A.S. Series introduction: the transcription factor NF-kappaB and human disease. J. Clin. Invest. 2001;107:3–6. PubMed PMC
Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 2000;18:621–663. PubMed
Dolcet X., Llobet D., Pallares J., Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446:475–482. PubMed
Barnabei L., Laplantine E., Mbongo W., Rieux-Laucat F., Weil R. NF-κB: at the borders of autoimmunity and inflammation. Front. Immunol. 2021;12 PubMed PMC
Nakshatri H., Bhat-Nakshatri P., Martin D.A., Goulet R.J., Sledge G.W. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell Biol. 1997;17:3629–3639. PubMed PMC
Zhou Y., Eppenberger-Castori S., Marx C., Yau C., Scott G.K., Eppenberger U., et al. Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int. J. Biochem. Cell Biol. 2005;37:1130–1144. PubMed
Sun X.-F., Zhang H. NFKB and NFKBI polymorphisms in relation to susceptibility of tumour and other diseases. Histol. Histopathol. 2007;22:1387–1398. PubMed
Zhou Y., Eppenberger-Castori S., Eppenberger U., Benz C.C. The NFkappaB pathway and endocrine-resistant breast cancer. Endocr. Relat. Cancer. 2005;12:S37–46. PubMed
Agrawal A.K., Pielka E., Lipinski A., Jelen M., Kielan W., Agrawal S. Clinical validation of nuclear factor kappa B expression in invasive breast cancer. Tumour Biol. 2018;40 PubMed
Bouchal P., Dvořáková M., Roumeliotis T., Bortlíček Z., Ihnatová I., Procházková I., et al. Combined proteomics and transcriptomics identifies carboxypeptidase B1 and nuclear factor κB (NF-κB) associated proteins as putative biomarkers of metastasis in low grade breast cancer. Mol. Cell Proteomics. 2015;14:1814–1830. PubMed PMC
Lapcik P., Pospisilova A., Janacova L., Grell P., Fabian P., Bouchal P. How different are the molecular mechanisms of nodal and distant metastasis in luminal A breast cancer? Cancers (Basel) 2020;12:E2638. PubMed PMC
Ideker T., Krogan N.J. Differential network biology. Mol. Syst. Biol. 2012;8:565. PubMed PMC
Kristensen A.R., Gsponer J., Foster L.J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods. 2012;9:907–909. PubMed PMC
Stacey R.G., Skinnider M.A., Scott N.E., Foster L.J. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE) BMC Bioinformatics. 2017;18:457. PubMed PMC
Kerr C.H., Skinnider M.A., Andrews D.D.T., Madero A.M., Chan Q.W.T., Stacey R.G., et al. Dynamic rewiring of the human interactome by interferon signaling. Genome Biol. 2020;21:140. PubMed PMC
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. PubMed
Brockman J.A., Scherer D.C., McKinsey T.A., Hall S.M., Qi X., Lee W.Y., et al. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol. Cell Biol. 1995;15:2809–2818. PubMed PMC
Janacova L., Faktor J., Capkova L., Paralova V., Pospisilova A., Podhorec J., et al. SWATH-MS analysis of FFPE tissues identifies stathmin as a potential marker of endometrial cancer in patients exposed to tamoxifen. J. Proteome Res. 2020;19:2617–2630. PubMed
Bouchal P., Roumeliotis T., Hrstka R., Nenutil R., Vojtesek B., Garbis S.D. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J. Proteome Res. 2009;8:362–373. PubMed
Stejskal K., Potěšil D., Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. PubMed
Baker P.R., Chalkley R.J. MS-viewer: a web-based spectral viewer for proteomics results. Mol. Cell Proteomics. 2014;13:1392–1396. PubMed PMC
Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. PubMed PMC
Giurgiu M., Reinhard J., Brauner B., Dunger-Kaltenbach I., Fobo G., Frishman G., et al. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019;47:D559–D563. PubMed PMC
Stacey R.G., Skinnider M.A., Chik J.H.L., Foster L.J. Context-specific interactions in literature-curated protein interaction databases. BMC Genomics. 2018;19:758. PubMed PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. PubMed PMC
Goenawan I.H., Bryan K., Lynn D.J. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics. 2016;32:2713–2715. PubMed PMC
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–D646. PubMed PMC
Warde-Farley D., Donaldson S.L., Comes O., Zuberi K., Badrawi R., Chao P., et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–220. PubMed PMC
Kim C.Y., Baek S., Cha J., Yang S., Kim E., Marcotte E.M., et al. HumanNet v3: an improved database of human gene networks for disease research. Nucleic Acids Res. 2022;50:D632–D639. PubMed PMC
Oughtred R., Rust J., Chang C., Breitkreutz B.-J., Stark C., Willems A., et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200. PubMed PMC
Gillespie M., Jassal B., Stephan R., Milacic M., Rothfels K., Senff-Ribeiro A., et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–D692. PubMed PMC
Orchard S., Ammari M., Aranda B., Breuza L., Briganti L., Broackes-Carter F., et al. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42:D358–363. PubMed PMC
Schaefer M.H., Fontaine J.-F., Vinayagam A., Porras P., Wanker E.E., Andrade-Navarro M.A. HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS One. 2012;7 PubMed PMC
Kotlyar M., Pastrello C., Sheahan N., Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 2016;44:D536–541. PubMed PMC
Licata L., Briganti L., Peluso D., Perfetto L., Iannuccelli M., Galeota E., et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40:D857–861. PubMed PMC
Das J., Yu H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 2012;6:92. PubMed PMC
Huttlin E.L., Bruckner R.J., Navarrete-Perea J., Cannon J.R., Baltier K., Gebreab F., et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 2021;184:3022–3040.e28. PubMed PMC
Drew K., Wallingford J.B., Marcotte E.M. hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Mol. Syst. Biol. 2021;17 PubMed PMC
Skinnider M.A., Foster L.J. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments. Nat. Methods. 2021;18:806–815. PubMed
Havugimana P.C., Goel R.K., Phanse S., Youssef A., Padhorny D., Kotelnikov S., et al. Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat. Commun. 2022;13:4043. PubMed PMC
Havugimana P.C., Hart G.T., Nepusz T., Yang H., Turinsky A.L., Li Z., et al. A census of human soluble protein complexes. Cell. 2012;150:1068–1081. PubMed PMC
Wan C., Borgeson B., Phanse S., Tu F., Drew K., Clark G., et al. Panorama of ancient metazoan macromolecular complexes. Nature. 2015;525:339–344. PubMed PMC
Huttlin E.L., Ting L., Bruckner R.J., Gebreab F., Gygi M.P., Szpyt J., et al. The BioPlex network: a systematic exploration of the human interactome. Cell. 2015;162:425–440. PubMed PMC
Huttlin E.L., Bruckner R.J., Paulo J.A., Cannon J.R., Ting L., Baltier K., et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–509. PubMed PMC
Kim M., Park J., Bouhaddou M., Kim K., Rojc A., Modak M., et al. A protein interaction landscape of breast cancer. Science. 2021;374 PubMed PMC
Li T., Wernersson R., Hansen R.B., Horn H., Mercer J., Slodkowicz G., et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods. 2017;14:61–64. PubMed PMC
Calderone A., Castagnoli L., Cesareni G. mentha: a resource for browsing integrated protein-interaction networks. Nat. Methods. 2013;10:690–691. PubMed
Wu J., Vallenius T., Ovaska K., Westermarck J., Mäkelä T.P., Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat. Methods. 2009;6:75–77. PubMed
Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005;102:15545–15550. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv. 2021 doi: 10.1101/2021.10.04.463034. [preprint] DOI
Yu D., Chojnowski G., Rosenthal M., Kosinski J. AlphaPulldown-a python package for protein-protein interaction screens using AlphaFold-Multimer. Bioinformatics. 2023;39:btac749. PubMed PMC
Bryant P., Pozzati G., Zhu W., Shenoy A., Kundrotas P., Elofsson A. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 2022;13:6028. PubMed PMC
Bryant P., Pozzati G., Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 2022;13:1265. PubMed PMC
Malhotra S., Joseph A.P., Thiyagalingam J., Topf M. Assessment of protein–protein interfaces in cryo-EM derived assemblies. Nat. Commun. 2021;12:3399. PubMed PMC
Chae U., Kim H.S., Kim K.-M., Lee H., Lee H.-S., Park J.-W., et al. IDH2 deficiency in microglia decreases the pro-inflammatory response via the ERK and NF-κB pathways. Inflammation. 2018;41:1965–1973. PubMed
Yi W.-R., Li Z.-H., Qi B.-W., Ernest M.E.R., Hu X., Yu A.-X. Downregulation of IDH2 exacerbates the malignant progression of osteosarcoma cells via increased NF-κB and MMP-9 activation. Oncol. Rep. 2016;35:2277–2285. PubMed
Takai Y., Sasaki T., Matozaki T. Small GTP-binding proteins. Physiol. Rev. 2001;81:153–208. PubMed
Bennett E.J., Rush J., Gygi S.P., Harper J.W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 2010;143:951–965. PubMed PMC
Kouranti I., Abdel Khalek W., Mazurkiewicz S., Loisel-Ferreira I., Gautreau A.M., Pintard L., et al. Cullin 3 exon 9 deletion in familial hyperkalemic hypertension impairs cullin3-ring-E3 ligase (CRL3) dynamic regulation and cycling. Int. J. Mol. Sci. 2022;23:5151. PubMed PMC
Dörfel M.J., Lyon G.J. The biological functions of Naa10 - from amino-terminal acetylation to human disease. Gene. 2015;567:103–131. PubMed PMC
Anderson-Baucum E., Piñeros A.R., Kulkarni A., Webb-Robertson B.-J., Maier B., Anderson R.M., et al. Deoxyhypusine synthase promotes a pro-inflammatory macrophage phenotype. Cell Metab. 2021;33:1883–1893.e7. PubMed PMC
Wang D., Westerheide S.D., Hanson J.L., Baldwin A.S. Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 2000;275:32592–32597. PubMed
Dominguez I., Sonenshein G.E., Seldin D.C. Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell Mol. Life Sci. 2009;66:1850–1857. PubMed PMC
Schaefer S., Guerra B. Protein kinase CK2 regulates redox homeostasis through NF-κB and Bcl-xL in cardiomyoblasts. Mol. Cell Biochem. 2017;436:137–150. PubMed
Qaiser F., Trembley J.H., Sadiq S., Muhammad I., Younis R., Hashmi S.N., et al. Examination of CK2α and NF-κB p65 expression in human benign prostatic hyperplasia and prostate cancer tissues. Mol. Cell Biochem. 2016;420:43–51. PubMed PMC
Bae D.-H., Lane D.J.R., Siafakas A.R., Sutak R., Paluncic J., Huang M.L.H., et al. Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866 PubMed
Ma X., Ruan Q., Ji X., Yang J., Peng H. Ligustrazine alleviates cyclophosphamide-induced hepatotoxicity via the inhibition of Txnip/Trx/NF-κB pathway. Life Sci. 2021;274 PubMed
Chen H., Lo S.H. Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. Biochem. J. 2003;370:1039–1045. PubMed PMC
Zhao J., Tian M., Zhang S., Delfarah A., Gao R., Rao Y., et al. Deamidation shunts RelA from mediating inflammation to aerobic glycolysis. Cell Metab. 2020;31:937–955.e7. PubMed PMC
Niyonsaba F., Suzuki A., Ushio H., Nagaoka I., Ogawa H., Okumura K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol. 2009;160:243–249. PubMed
Yao H.-S., Sun C., Li X.-X., Wang Y., Jin K.-Z., Zhang X.-P., et al. Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci. Rep. 2016;6 PubMed PMC
Pribyl M., Hodny Z., Kubikova I. Suprabasin-A review. Genes (Basel) 2021;12:108. PubMed PMC
Wang Z., Shi Y., Ying C., Jiang Y., Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene. 2021;40:1458–1475. PubMed PMC
Van Quickelberghe E., De Sutter D., van Loo G., Eyckerman S., Gevaert K. A protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway. Sci. Data. 2018;5 PubMed PMC
Willmann K.L., Sacco R., Martins R., Garncarz W., Krolo A., Knapp S., et al. Expanding the interactome of the noncanonical NF-κB signaling pathway. J. Proteome Res. 2016;15:2900–2909. PubMed PMC
Hayden M.S., Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21:223–244. PubMed PMC
Oeckinghaus A., Hayden M.S., Ghosh S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 2011;12:695–708. PubMed
Dorrington M.G., Fraser I.D.C. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front. Immunol. 2019;10:705. PubMed PMC
Fan Y., Mao R., Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4:176–185. PubMed PMC
Wang W., Nag S.A., Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem. 2015;22:264–289. PubMed PMC
Ling J., Kumar R. Crosstalk between NFkB and glucocorticoid signaling: a potential target of breast cancer therapy. Cancer Lett. 2012;322:119–126. PubMed
Xu X., Zhang M., Xu F., Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol. Cancer. 2020;19:165. PubMed PMC
Zhan T., Rindtorff N., Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–1473. PubMed PMC
Ergin V., Erdogan M., Menevse A. Regulation of Shootin1 gene expression involves NGF-induced alternative splicing during neuronal differentiation of PC12 cells. Sci. Rep. 2015;5 PubMed PMC
Higashiguchi Y., Katsuta K., Minegishi T., Yonemura S., Urasaki A., Inagaki N. Identification of a shootin1 isoform expressed in peripheral tissues. Cell Tissue Res. 2016;366:75–87. PubMed
Fenner B.J., Scannell M., Prehn J.H.M. Expanding the substantial interactome of NEMO using protein microarrays. PLoS One. 2010;5:e8799. PubMed PMC
Nakata T., Hirokawa N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 1995;131:1039–1053. PubMed PMC
Tanaka Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A., et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 1998;93:1147–1158. PubMed
Gan H., Xue W., Gao Y., Zhu G., Chan D., Cheah K.S.E., et al. KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. Cell Biosci. 2019;9:85. PubMed PMC
Xiao W., Chen X., Liu L., Shu Y., Zhang M., Zhong Y. Role of protein arginine methyltransferase 5 in human cancers. Biomed. Pharmacother. 2019;114 PubMed
Stopa N., Krebs J.E., Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol. Life Sci. 2015;72:2041–2059. PubMed PMC
Vinet M., Suresh S., Maire V., Monchecourt C., Némati F., Lesage L., et al. Protein arginine methyltransferase 5: a novel therapeutic target for triple-negative breast cancers. Cancer Med. 2019;8:2414–2428. PubMed PMC
Hartley A.-V., Wang B., Mundade R., Jiang G., Sun M., Wei H., et al. PRMT5-mediated methylation of YBX1 regulates NF-κB activity in colorectal cancer. Sci. Rep. 2020;10 PubMed PMC
Lattouf H., Poulard C., Le Romancer M. PRMT5 prognostic value in cancer. Oncotarget. 2019;10:3151–3153. PubMed PMC
Wei H., Wang B., Miyagi M., She Y., Gopalan B., Huang D.-B., et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proc. Natl. Acad. Sci. U. S. A. 2013;110:13516–13521. PubMed PMC
Frasor J., El-Shennawy L., Stender J.D., Kastrati I. NFκB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol. Cell Endocrinol. 2015;418 Pt 3:235–239. PubMed PMC
Frasor J., Weaver A., Pradhan M., Dai Y., Miller L.D., Lin C.-Y., et al. Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res. 2009;69:8918–8925. PubMed PMC
Xing D., Oparil S., Yu H., Gong K., Feng W., Black J., et al. Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLoS One. 2012;7 PubMed PMC
Galien R., Garcia T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res. 1997;25:2424–2429. PubMed PMC
Ghisletti S., Meda C., Maggi A., Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol. Cell Biol. 2005;25:2957–2968. PubMed PMC
De Bosscher K., Vanden Berghe W., Haegeman G. Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene. 2006;25:6868–6886. PubMed
Xia Y., Shen S., Verma I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014;2:823–830. PubMed PMC
Bhattacharya A., Agarwal M., Mukherjee R., Sen P., Sinha D.K. 3D micro-environment regulates NF-κβ dependent adhesion to induce monocyte differentiation. Cell Death Dis. 2018;9:914. PubMed PMC
Pavitra E., Kancharla J., Gupta V.K., Prasad K., Sung J.Y., Kim J., et al. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed. Pharmacother. 2023;163 PubMed
Liu J., Wang H., Zheng M., Deng L., Zhang X., Lin B. p53 and ANXA4/NF-κB p50 complexes regulate cell proliferation, apoptosis and tumor progression in ovarian clear cell carcinoma. Int. J. Mol. Med. 2020;46:2102–2114. PubMed PMC
Deng S., Wang J., Hou L., Li J., Chen G., Jing B., et al. Annexin A1, A2, A4 and A5 play important roles in breast cancer, pancreatic cancer and laryngeal carcinoma, alone and/or synergistically. Oncol. Lett. 2013;5:107–112. PubMed PMC
Zimmermann U., Balabanov S., Giebel J., Teller S., Junker H., Schmoll D., et al. Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumour dissemination. Cancer Lett. 2004;209:111–118. PubMed
Porter D., Weremowicz S., Chin K., Seth P., Keshaviah A., Lahti-Domenici J., et al. A neural survival factor is a candidate oncogene in breast cancer. Proc. Natl. Acad. Sci. U. S. A. 2003;100:10931–10936. PubMed PMC
Lager T.W., Conner C., Keating C.R., Warshaw J.N., Panopoulos A.D. Cell surface GRP78 and Dermcidin cooperate to regulate breast cancer cell migration through Wnt signaling. Oncogene. 2021;40:4050–4059. PubMed PMC
Gilkes D.M., Bajpai S., Wong C.C., Chaturvedi P., Hubbi M.E., Wirtz D., et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 2013;11:456–466. PubMed PMC
Gehrmann M.L., Hathout Y., Fenselau C. Evaluation of metabolic labeling for comparative proteomics in breast cancer cells. J. Proteome Res. 2004;3:1063–1068. PubMed
Heusel M., Bludau I., Rosenberger G., Hafen R., Frank M., Banaei-Esfahani A., et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol. 2019;15:e8438. PubMed PMC
van Strien J., Haupt A., Schulte U., Braun H.-P., Cabrera-Orefice A., Choudhary J.S., et al. CEDAR, an online resource for the reporting and exploration of complexome profiling data. Biochim. Biophys. Acta Bioenerg. 2021;1862 PubMed
Maryáš J., Faktor J., Čápková L., Müller P., Skládal P., Bouchal P. Pull-down Assay on Streptavidin beads and surface Plasmon resonance Chips for SWATH-MS-based interactomics. Cancer Genomics Proteomics. 2018;15:395–404. PubMed PMC
Ciaccio P.J., Walsh E.S., Tew K.D. Promoter analysis of a human dihydrodiol dehydrogenase. Biochem. Biophys. Res. Commun. 1996;228:524–529. PubMed
Brasse-Lagnel C., Lavoinne A., Loeber D., Fairand A., Bôle-Feysot C., Deniel N., et al. Glutamine and interleukin-1beta interact at the level of Sp1 and nuclear factor-kappaB to regulate argininosuccinate synthetase gene expression. FEBS J. 2007;274:5250–5262. PubMed
Israël A., Le Bail O., Hatat D., Piette J., Kieran M., Logeat F., et al. TNF stimulates expression of mouse MHC class I genes by inducing an NF kappa B-like enhancer binding activity which displaces constitutive factors. EMBO J. 1989;8:3793–3800. PubMed PMC
Gobin S.J.P., Biesta P., de Steenwinkel J.E.M., Datema G., van den Elsen P.J. HLA-G transactivation by cAMP-response element-binding protein (CREB). An alternative transactivation pathway to the conserved major histocompatibility complex (MHC) class I regulatory routes. J. Biol. Chem. 2002;277:39525–39531. PubMed
Hinz M., Lemke P., Anagnostopoulos I., Hacker C., Krappmann D., Mathas S., et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med. 2002;196:605–617. PubMed PMC
Bien S., Ritter C.A., Gratz M., Sperker B., Sonnemann J., Beck J.F., et al. Nuclear factor-kappaB mediates up-regulation of cathepsin B by doxorubicin in tumor cells. Mol. Pharmacol. 2004;65:1092–1102. PubMed
Vadlamudi R.K., Shin J. Genomic structure and promoter analysis of the p62 gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett. 1998;435:138–142. PubMed
Kwak E.L., Larochelle D.A., Beaumont C., Torti S.V., Torti F.M. Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J. Biol. Chem. 1995;270:15285–15293. PubMed
García-Nogales P., Almeida A., Fernández E., Medina J.M., Bolaños J.P. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes. J. Neurochem. 1999;72:1750–1758. PubMed
Peng Z., Geh E., Chen L., Meng Q., Fan Y., Sartor M., et al. Inhibitor of kappaB kinase beta regulates redox homeostasis by controlling the constitutive levels of glutathione. Mol. Pharmacol. 2010;77:784–792. PubMed PMC
Nagashima R., Sugiyama C., Yoneyama M., Kuramoto N., Kawada K., Ogita K. Acoustic overstimulation facilitates the expression of glutamate-cysteine ligase catalytic subunit probably through enhanced DNA binding of activator protein-1 and/or NF-kappaB in the murine cochlea. Neurochem. Int. 2007;51:209–215. PubMed
Yang H., Magilnick N., Lee C., Kalmaz D., Ou X., Chan J.Y., et al. Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1. Mol. Cell. Biol. 2005;25:5933–5946. PubMed PMC
Arinze I.J., Kawai Y. Transcriptional activation of the human Galphai2 gene promoter through nuclear factor-kappaB and antioxidant response elements. J. Biol. Chem. 2005;280:9786–9795. PubMed
Ammirante M., Rosati A., Gentilella A., Festa M., Petrella A., Marzullo L., et al. The activity of hsp90 alpha promoter is regulated by NF-kappa B transcription factors. Oncogene. 2008;27:1175–1178. PubMed
Cazals V., Nabeyrat E., Corroyer S., de Keyzer Y., Clement A. Role for NF-kappa B in mediating the effects of hyperoxia on IGF-binding protein 2 promoter activity in lung alveolar epithelial cells. Biochim. Biophys. Acta. 1999;1448:349–362. PubMed
Cleynen I., Brants J.R., Peeters K., Deckers R., Debiec-Rychter M., Sciot R., et al. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol. Cancer Res. 2007;5:363–372. PubMed
Graham W.V., Wang F., Clayburgh D.R., Cheng J.X., Yoon B., Wang Y., et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J. Biol. Chem. 2006;281:26205–26215. PubMed
Ten R.M., Paya C.V., Israël N., Le Bail O., Mattei M.G., Virelizier J.L., et al. The characterization of the promoter of the gene encoding the p50 subunit of NF-kappa B indicates that it participates in its own regulation. EMBO J. 1992;11:195–203. PubMed PMC
Yao K.S., O’Dwyer P.J. Involvement of NF-kappa B in the induction of NAD(P)H:quinone oxidoreductase (DT-diaphorase) by hypoxia, oltipraz and mitomycin C. Biochem. Pharmacol. 1995;49:275–282. PubMed
Carter K.L., Cahir-McFarland E., Kieff E. Epstein-barr virus-induced changes in B-lymphocyte gene expression. J. Virol. 2002;76:10427–10436. PubMed PMC
Matsuda A., Suzuki Y., Honda G., Muramatsu S., Matsuzaki O., Nagano Y., et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene. 2003;22:3307–3318. PubMed
Suh K.S., Tatunchak T.T., Crutchley J.M., Edwards L.E., Marin K.G., Yuspa S.H. Genomic structure and promoter analysis of PKC-delta. Genomics. 2003;82:57–67. PubMed
Ossendorp F., Fu N., Camps M., Granucci F., Gobin S.J.P., van den Elsen P.J., et al. Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature dendritic cells. J. Immunol. 2005;174:7815–7822. PubMed
Pacifico F., Paolillo M., Chiappetta G., Crescenzi E., Arena S., Scaloni A., et al. RbAp48 is a target of nuclear factor-kappaB activity in thyroid cancer. J. Clin. Endocrinol. Metab. 2007;92:1458–1466. PubMed
Huang X., Pawliczak R., Yao X.-L., Madara P., Alsaaty S., Shelhamer J.H., et al. Characterization of the human p11 promoter sequence. Gene. 2003;310:133–142. PubMed
Tulchinsky E., Prokhortchouk E., Georgiev G., Lukanidin E. A kappaB-related binding site is an integral part of the mts1 gene composite enhancer element located in the first intron of the gene. J. Biol. Chem. 1997;272:4828–4835. PubMed
Joo J.H., Kim J.W., Lee Y., Yoon S.Y., Kim J.H., Paik S.-G., et al. Involvement of NF-kappaB in the regulation of S100A6 gene expression in human hepatoblastoma cell line HepG2. Biochem. Biophys. Res. Commun. 2003;307:274–280. PubMed
Kiss D.L., Xu W., Gopalan S., Buzanowska K., Wilczynska K.M., Rydel R.E., et al. Duration of alpha 1-antichymotrypsin gene activation by interleukin-1 is determined by efficiency of inhibitor of nuclear factor kappa B alpha resynthesis in primary human astrocytes. J. Neurochem. 2005;92:730–738. PubMed PMC
Zeng W., Remold-O’Donnell E. Human monocyte/neutrophil elastase inhibitor (MNEI) is regulated by PU.1/Spi-1, Sp1, and NF-kappaB. J. Cell. Biochem. 2000;78:519–532. PubMed
Majid S.M., Liss A.S., You M., Bose H.R. The suppression of SH3BGRL is important for v-Rel-mediated transformation. Oncogene. 2006;25:756–768. PubMed
Yan Y., Dalmasso G., Sitaraman S., Merlin D. Characterization of the human intestinal CD98 promoter and its regulation by interferon-gamma. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G535–G545. PubMed
Rojo A.I., Salinas M., Martín D., Perona R., Cuadrado A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J. Neurosci. 2004;24:7324–7334. PubMed PMC
Das K.C., Lewis-Molock Y., White C.W. Activation of NF-kappa B and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am. J. Physiol. 1995;269:L588–L602. PubMed
Xu Y., Krishnan A., Wan X.S., Majima H., Yeh C.C., Ludewig G., et al. Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene. 1999;18:93–102. PubMed
Xu Y., Kiningham K.K., Devalaraja M.N., Yeh C.C., Majima H., Kasarskis E.J., et al. An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol. 1999;18:709–722. PubMed
Xu Y., Fang F., Dhar S.K., St Clair W.H., Kasarskis E.J., St Clair D.K. The role of a single-stranded nucleotide loop in transcriptional regulation of the human sod2 gene. J. Biol. Chem. 2007;282:15981–15994. PubMed PMC
Xu Y., Fang F., St Clair D.K., Josson S., Sompol P., Spasojevic I., et al. Suppression of RelB-mediated manganese superoxide dismutase expression reveals a primary mechanism for radiosensitization effect of 1alpha,25-dihydroxyvitamin D(3) in prostate cancer cells. Mol. Cancer Ther. 2007;6:2048–2056. PubMed PMC
Wang C.Y., Mayo M.W., Korneluk R.G., Goeddel D.V., Baldwin A.S. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680–1683. PubMed