• This record comes from PubMed

Global Interactome Mapping Reveals Pro-tumorigenic Interactions of NF-κB in Breast Cancer

. 2024 Apr ; 23 (4) : 100744. [epub] 20240228

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 38417630
PubMed Central PMC10988130
DOI 10.1016/j.mcpro.2024.100744
PII: S1535-9476(24)00034-3
Knihovny.cz E-resources

NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.

See more in PubMed

Prasad S., Ravindran J., Aggarwal B.B. NF-kappaB and cancer: how intimate is this relationship. Mol. Cell. Biochem. 2010;336:25–37. PubMed PMC

Hoesel B., Schmid J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer. 2013;12:86. PubMed PMC

Lim S.-O., Li C.-W., Xia W., Cha J.-H., Chan L.-C., Wu Y., et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30:925–939. PubMed PMC

Zhang Q., Lenardo M.J., Baltimore D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57. PubMed PMC

Oeckinghaus A., Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 2009;1:a000034. PubMed PMC

Ghosh S., May M.J., Kopp E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998;16:225–260. PubMed

Baldwin A.S. Series introduction: the transcription factor NF-kappaB and human disease. J. Clin. Invest. 2001;107:3–6. PubMed PMC

Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 2000;18:621–663. PubMed

Dolcet X., Llobet D., Pallares J., Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446:475–482. PubMed

Barnabei L., Laplantine E., Mbongo W., Rieux-Laucat F., Weil R. NF-κB: at the borders of autoimmunity and inflammation. Front. Immunol. 2021;12 PubMed PMC

Nakshatri H., Bhat-Nakshatri P., Martin D.A., Goulet R.J., Sledge G.W. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell Biol. 1997;17:3629–3639. PubMed PMC

Zhou Y., Eppenberger-Castori S., Marx C., Yau C., Scott G.K., Eppenberger U., et al. Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int. J. Biochem. Cell Biol. 2005;37:1130–1144. PubMed

Sun X.-F., Zhang H. NFKB and NFKBI polymorphisms in relation to susceptibility of tumour and other diseases. Histol. Histopathol. 2007;22:1387–1398. PubMed

Zhou Y., Eppenberger-Castori S., Eppenberger U., Benz C.C. The NFkappaB pathway and endocrine-resistant breast cancer. Endocr. Relat. Cancer. 2005;12:S37–46. PubMed

Agrawal A.K., Pielka E., Lipinski A., Jelen M., Kielan W., Agrawal S. Clinical validation of nuclear factor kappa B expression in invasive breast cancer. Tumour Biol. 2018;40 PubMed

Bouchal P., Dvořáková M., Roumeliotis T., Bortlíček Z., Ihnatová I., Procházková I., et al. Combined proteomics and transcriptomics identifies carboxypeptidase B1 and nuclear factor κB (NF-κB) associated proteins as putative biomarkers of metastasis in low grade breast cancer. Mol. Cell Proteomics. 2015;14:1814–1830. PubMed PMC

Lapcik P., Pospisilova A., Janacova L., Grell P., Fabian P., Bouchal P. How different are the molecular mechanisms of nodal and distant metastasis in luminal A breast cancer? Cancers (Basel) 2020;12:E2638. PubMed PMC

Ideker T., Krogan N.J. Differential network biology. Mol. Syst. Biol. 2012;8:565. PubMed PMC

Kristensen A.R., Gsponer J., Foster L.J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods. 2012;9:907–909. PubMed PMC

Stacey R.G., Skinnider M.A., Scott N.E., Foster L.J. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE) BMC Bioinformatics. 2017;18:457. PubMed PMC

Kerr C.H., Skinnider M.A., Andrews D.D.T., Madero A.M., Chan Q.W.T., Stacey R.G., et al. Dynamic rewiring of the human interactome by interferon signaling. Genome Biol. 2020;21:140. PubMed PMC

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. PubMed

Brockman J.A., Scherer D.C., McKinsey T.A., Hall S.M., Qi X., Lee W.Y., et al. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol. Cell Biol. 1995;15:2809–2818. PubMed PMC

Janacova L., Faktor J., Capkova L., Paralova V., Pospisilova A., Podhorec J., et al. SWATH-MS analysis of FFPE tissues identifies stathmin as a potential marker of endometrial cancer in patients exposed to tamoxifen. J. Proteome Res. 2020;19:2617–2630. PubMed

Bouchal P., Roumeliotis T., Hrstka R., Nenutil R., Vojtesek B., Garbis S.D. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J. Proteome Res. 2009;8:362–373. PubMed

Stejskal K., Potěšil D., Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. PubMed

Baker P.R., Chalkley R.J. MS-viewer: a web-based spectral viewer for proteomics results. Mol. Cell Proteomics. 2014;13:1392–1396. PubMed PMC

Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. PubMed PMC

Giurgiu M., Reinhard J., Brauner B., Dunger-Kaltenbach I., Fobo G., Frishman G., et al. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019;47:D559–D563. PubMed PMC

Stacey R.G., Skinnider M.A., Chik J.H.L., Foster L.J. Context-specific interactions in literature-curated protein interaction databases. BMC Genomics. 2018;19:758. PubMed PMC

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. PubMed PMC

Goenawan I.H., Bryan K., Lynn D.J. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics. 2016;32:2713–2715. PubMed PMC

Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–D646. PubMed PMC

Warde-Farley D., Donaldson S.L., Comes O., Zuberi K., Badrawi R., Chao P., et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–220. PubMed PMC

Kim C.Y., Baek S., Cha J., Yang S., Kim E., Marcotte E.M., et al. HumanNet v3: an improved database of human gene networks for disease research. Nucleic Acids Res. 2022;50:D632–D639. PubMed PMC

Oughtred R., Rust J., Chang C., Breitkreutz B.-J., Stark C., Willems A., et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200. PubMed PMC

Gillespie M., Jassal B., Stephan R., Milacic M., Rothfels K., Senff-Ribeiro A., et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–D692. PubMed PMC

Orchard S., Ammari M., Aranda B., Breuza L., Briganti L., Broackes-Carter F., et al. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42:D358–363. PubMed PMC

Schaefer M.H., Fontaine J.-F., Vinayagam A., Porras P., Wanker E.E., Andrade-Navarro M.A. HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS One. 2012;7 PubMed PMC

Kotlyar M., Pastrello C., Sheahan N., Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 2016;44:D536–541. PubMed PMC

Licata L., Briganti L., Peluso D., Perfetto L., Iannuccelli M., Galeota E., et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40:D857–861. PubMed PMC

Das J., Yu H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 2012;6:92. PubMed PMC

Huttlin E.L., Bruckner R.J., Navarrete-Perea J., Cannon J.R., Baltier K., Gebreab F., et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 2021;184:3022–3040.e28. PubMed PMC

Drew K., Wallingford J.B., Marcotte E.M. hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Mol. Syst. Biol. 2021;17 PubMed PMC

Skinnider M.A., Foster L.J. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments. Nat. Methods. 2021;18:806–815. PubMed

Havugimana P.C., Goel R.K., Phanse S., Youssef A., Padhorny D., Kotelnikov S., et al. Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat. Commun. 2022;13:4043. PubMed PMC

Havugimana P.C., Hart G.T., Nepusz T., Yang H., Turinsky A.L., Li Z., et al. A census of human soluble protein complexes. Cell. 2012;150:1068–1081. PubMed PMC

Wan C., Borgeson B., Phanse S., Tu F., Drew K., Clark G., et al. Panorama of ancient metazoan macromolecular complexes. Nature. 2015;525:339–344. PubMed PMC

Huttlin E.L., Ting L., Bruckner R.J., Gebreab F., Gygi M.P., Szpyt J., et al. The BioPlex network: a systematic exploration of the human interactome. Cell. 2015;162:425–440. PubMed PMC

Huttlin E.L., Bruckner R.J., Paulo J.A., Cannon J.R., Ting L., Baltier K., et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–509. PubMed PMC

Kim M., Park J., Bouhaddou M., Kim K., Rojc A., Modak M., et al. A protein interaction landscape of breast cancer. Science. 2021;374 PubMed PMC

Li T., Wernersson R., Hansen R.B., Horn H., Mercer J., Slodkowicz G., et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods. 2017;14:61–64. PubMed PMC

Calderone A., Castagnoli L., Cesareni G. mentha: a resource for browsing integrated protein-interaction networks. Nat. Methods. 2013;10:690–691. PubMed

Wu J., Vallenius T., Ovaska K., Westermarck J., Mäkelä T.P., Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat. Methods. 2009;6:75–77. PubMed

Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005;102:15545–15550. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC

Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv. 2021 doi: 10.1101/2021.10.04.463034. [preprint] DOI

Yu D., Chojnowski G., Rosenthal M., Kosinski J. AlphaPulldown-a python package for protein-protein interaction screens using AlphaFold-Multimer. Bioinformatics. 2023;39:btac749. PubMed PMC

Bryant P., Pozzati G., Zhu W., Shenoy A., Kundrotas P., Elofsson A. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 2022;13:6028. PubMed PMC

Bryant P., Pozzati G., Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 2022;13:1265. PubMed PMC

Malhotra S., Joseph A.P., Thiyagalingam J., Topf M. Assessment of protein–protein interfaces in cryo-EM derived assemblies. Nat. Commun. 2021;12:3399. PubMed PMC

Chae U., Kim H.S., Kim K.-M., Lee H., Lee H.-S., Park J.-W., et al. IDH2 deficiency in microglia decreases the pro-inflammatory response via the ERK and NF-κB pathways. Inflammation. 2018;41:1965–1973. PubMed

Yi W.-R., Li Z.-H., Qi B.-W., Ernest M.E.R., Hu X., Yu A.-X. Downregulation of IDH2 exacerbates the malignant progression of osteosarcoma cells via increased NF-κB and MMP-9 activation. Oncol. Rep. 2016;35:2277–2285. PubMed

Takai Y., Sasaki T., Matozaki T. Small GTP-binding proteins. Physiol. Rev. 2001;81:153–208. PubMed

Bennett E.J., Rush J., Gygi S.P., Harper J.W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 2010;143:951–965. PubMed PMC

Kouranti I., Abdel Khalek W., Mazurkiewicz S., Loisel-Ferreira I., Gautreau A.M., Pintard L., et al. Cullin 3 exon 9 deletion in familial hyperkalemic hypertension impairs cullin3-ring-E3 ligase (CRL3) dynamic regulation and cycling. Int. J. Mol. Sci. 2022;23:5151. PubMed PMC

Dörfel M.J., Lyon G.J. The biological functions of Naa10 - from amino-terminal acetylation to human disease. Gene. 2015;567:103–131. PubMed PMC

Anderson-Baucum E., Piñeros A.R., Kulkarni A., Webb-Robertson B.-J., Maier B., Anderson R.M., et al. Deoxyhypusine synthase promotes a pro-inflammatory macrophage phenotype. Cell Metab. 2021;33:1883–1893.e7. PubMed PMC

Wang D., Westerheide S.D., Hanson J.L., Baldwin A.S. Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 2000;275:32592–32597. PubMed

Dominguez I., Sonenshein G.E., Seldin D.C. Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell Mol. Life Sci. 2009;66:1850–1857. PubMed PMC

Schaefer S., Guerra B. Protein kinase CK2 regulates redox homeostasis through NF-κB and Bcl-xL in cardiomyoblasts. Mol. Cell Biochem. 2017;436:137–150. PubMed

Qaiser F., Trembley J.H., Sadiq S., Muhammad I., Younis R., Hashmi S.N., et al. Examination of CK2α and NF-κB p65 expression in human benign prostatic hyperplasia and prostate cancer tissues. Mol. Cell Biochem. 2016;420:43–51. PubMed PMC

Bae D.-H., Lane D.J.R., Siafakas A.R., Sutak R., Paluncic J., Huang M.L.H., et al. Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866 PubMed

Ma X., Ruan Q., Ji X., Yang J., Peng H. Ligustrazine alleviates cyclophosphamide-induced hepatotoxicity via the inhibition of Txnip/Trx/NF-κB pathway. Life Sci. 2021;274 PubMed

Chen H., Lo S.H. Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. Biochem. J. 2003;370:1039–1045. PubMed PMC

Zhao J., Tian M., Zhang S., Delfarah A., Gao R., Rao Y., et al. Deamidation shunts RelA from mediating inflammation to aerobic glycolysis. Cell Metab. 2020;31:937–955.e7. PubMed PMC

Niyonsaba F., Suzuki A., Ushio H., Nagaoka I., Ogawa H., Okumura K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol. 2009;160:243–249. PubMed

Yao H.-S., Sun C., Li X.-X., Wang Y., Jin K.-Z., Zhang X.-P., et al. Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci. Rep. 2016;6 PubMed PMC

Pribyl M., Hodny Z., Kubikova I. Suprabasin-A review. Genes (Basel) 2021;12:108. PubMed PMC

Wang Z., Shi Y., Ying C., Jiang Y., Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene. 2021;40:1458–1475. PubMed PMC

Van Quickelberghe E., De Sutter D., van Loo G., Eyckerman S., Gevaert K. A protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway. Sci. Data. 2018;5 PubMed PMC

Willmann K.L., Sacco R., Martins R., Garncarz W., Krolo A., Knapp S., et al. Expanding the interactome of the noncanonical NF-κB signaling pathway. J. Proteome Res. 2016;15:2900–2909. PubMed PMC

Hayden M.S., Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21:223–244. PubMed PMC

Oeckinghaus A., Hayden M.S., Ghosh S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 2011;12:695–708. PubMed

Dorrington M.G., Fraser I.D.C. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front. Immunol. 2019;10:705. PubMed PMC

Fan Y., Mao R., Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4:176–185. PubMed PMC

Wang W., Nag S.A., Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem. 2015;22:264–289. PubMed PMC

Ling J., Kumar R. Crosstalk between NFkB and glucocorticoid signaling: a potential target of breast cancer therapy. Cancer Lett. 2012;322:119–126. PubMed

Xu X., Zhang M., Xu F., Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol. Cancer. 2020;19:165. PubMed PMC

Zhan T., Rindtorff N., Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–1473. PubMed PMC

Ergin V., Erdogan M., Menevse A. Regulation of Shootin1 gene expression involves NGF-induced alternative splicing during neuronal differentiation of PC12 cells. Sci. Rep. 2015;5 PubMed PMC

Higashiguchi Y., Katsuta K., Minegishi T., Yonemura S., Urasaki A., Inagaki N. Identification of a shootin1 isoform expressed in peripheral tissues. Cell Tissue Res. 2016;366:75–87. PubMed

Fenner B.J., Scannell M., Prehn J.H.M. Expanding the substantial interactome of NEMO using protein microarrays. PLoS One. 2010;5:e8799. PubMed PMC

Nakata T., Hirokawa N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 1995;131:1039–1053. PubMed PMC

Tanaka Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A., et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 1998;93:1147–1158. PubMed

Gan H., Xue W., Gao Y., Zhu G., Chan D., Cheah K.S.E., et al. KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. Cell Biosci. 2019;9:85. PubMed PMC

Xiao W., Chen X., Liu L., Shu Y., Zhang M., Zhong Y. Role of protein arginine methyltransferase 5 in human cancers. Biomed. Pharmacother. 2019;114 PubMed

Stopa N., Krebs J.E., Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol. Life Sci. 2015;72:2041–2059. PubMed PMC

Vinet M., Suresh S., Maire V., Monchecourt C., Némati F., Lesage L., et al. Protein arginine methyltransferase 5: a novel therapeutic target for triple-negative breast cancers. Cancer Med. 2019;8:2414–2428. PubMed PMC

Hartley A.-V., Wang B., Mundade R., Jiang G., Sun M., Wei H., et al. PRMT5-mediated methylation of YBX1 regulates NF-κB activity in colorectal cancer. Sci. Rep. 2020;10 PubMed PMC

Lattouf H., Poulard C., Le Romancer M. PRMT5 prognostic value in cancer. Oncotarget. 2019;10:3151–3153. PubMed PMC

Wei H., Wang B., Miyagi M., She Y., Gopalan B., Huang D.-B., et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proc. Natl. Acad. Sci. U. S. A. 2013;110:13516–13521. PubMed PMC

Frasor J., El-Shennawy L., Stender J.D., Kastrati I. NFκB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol. Cell Endocrinol. 2015;418 Pt 3:235–239. PubMed PMC

Frasor J., Weaver A., Pradhan M., Dai Y., Miller L.D., Lin C.-Y., et al. Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res. 2009;69:8918–8925. PubMed PMC

Xing D., Oparil S., Yu H., Gong K., Feng W., Black J., et al. Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLoS One. 2012;7 PubMed PMC

Galien R., Garcia T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res. 1997;25:2424–2429. PubMed PMC

Ghisletti S., Meda C., Maggi A., Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol. Cell Biol. 2005;25:2957–2968. PubMed PMC

De Bosscher K., Vanden Berghe W., Haegeman G. Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene. 2006;25:6868–6886. PubMed

Xia Y., Shen S., Verma I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014;2:823–830. PubMed PMC

Bhattacharya A., Agarwal M., Mukherjee R., Sen P., Sinha D.K. 3D micro-environment regulates NF-κβ dependent adhesion to induce monocyte differentiation. Cell Death Dis. 2018;9:914. PubMed PMC

Pavitra E., Kancharla J., Gupta V.K., Prasad K., Sung J.Y., Kim J., et al. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed. Pharmacother. 2023;163 PubMed

Liu J., Wang H., Zheng M., Deng L., Zhang X., Lin B. p53 and ANXA4/NF-κB p50 complexes regulate cell proliferation, apoptosis and tumor progression in ovarian clear cell carcinoma. Int. J. Mol. Med. 2020;46:2102–2114. PubMed PMC

Deng S., Wang J., Hou L., Li J., Chen G., Jing B., et al. Annexin A1, A2, A4 and A5 play important roles in breast cancer, pancreatic cancer and laryngeal carcinoma, alone and/or synergistically. Oncol. Lett. 2013;5:107–112. PubMed PMC

Zimmermann U., Balabanov S., Giebel J., Teller S., Junker H., Schmoll D., et al. Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumour dissemination. Cancer Lett. 2004;209:111–118. PubMed

Porter D., Weremowicz S., Chin K., Seth P., Keshaviah A., Lahti-Domenici J., et al. A neural survival factor is a candidate oncogene in breast cancer. Proc. Natl. Acad. Sci. U. S. A. 2003;100:10931–10936. PubMed PMC

Lager T.W., Conner C., Keating C.R., Warshaw J.N., Panopoulos A.D. Cell surface GRP78 and Dermcidin cooperate to regulate breast cancer cell migration through Wnt signaling. Oncogene. 2021;40:4050–4059. PubMed PMC

Gilkes D.M., Bajpai S., Wong C.C., Chaturvedi P., Hubbi M.E., Wirtz D., et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 2013;11:456–466. PubMed PMC

Gehrmann M.L., Hathout Y., Fenselau C. Evaluation of metabolic labeling for comparative proteomics in breast cancer cells. J. Proteome Res. 2004;3:1063–1068. PubMed

Heusel M., Bludau I., Rosenberger G., Hafen R., Frank M., Banaei-Esfahani A., et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol. 2019;15:e8438. PubMed PMC

van Strien J., Haupt A., Schulte U., Braun H.-P., Cabrera-Orefice A., Choudhary J.S., et al. CEDAR, an online resource for the reporting and exploration of complexome profiling data. Biochim. Biophys. Acta Bioenerg. 2021;1862 PubMed

Maryáš J., Faktor J., Čápková L., Müller P., Skládal P., Bouchal P. Pull-down Assay on Streptavidin beads and surface Plasmon resonance Chips for SWATH-MS-based interactomics. Cancer Genomics Proteomics. 2018;15:395–404. PubMed PMC

Ciaccio P.J., Walsh E.S., Tew K.D. Promoter analysis of a human dihydrodiol dehydrogenase. Biochem. Biophys. Res. Commun. 1996;228:524–529. PubMed

Brasse-Lagnel C., Lavoinne A., Loeber D., Fairand A., Bôle-Feysot C., Deniel N., et al. Glutamine and interleukin-1beta interact at the level of Sp1 and nuclear factor-kappaB to regulate argininosuccinate synthetase gene expression. FEBS J. 2007;274:5250–5262. PubMed

Israël A., Le Bail O., Hatat D., Piette J., Kieran M., Logeat F., et al. TNF stimulates expression of mouse MHC class I genes by inducing an NF kappa B-like enhancer binding activity which displaces constitutive factors. EMBO J. 1989;8:3793–3800. PubMed PMC

Gobin S.J.P., Biesta P., de Steenwinkel J.E.M., Datema G., van den Elsen P.J. HLA-G transactivation by cAMP-response element-binding protein (CREB). An alternative transactivation pathway to the conserved major histocompatibility complex (MHC) class I regulatory routes. J. Biol. Chem. 2002;277:39525–39531. PubMed

Hinz M., Lemke P., Anagnostopoulos I., Hacker C., Krappmann D., Mathas S., et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med. 2002;196:605–617. PubMed PMC

Bien S., Ritter C.A., Gratz M., Sperker B., Sonnemann J., Beck J.F., et al. Nuclear factor-kappaB mediates up-regulation of cathepsin B by doxorubicin in tumor cells. Mol. Pharmacol. 2004;65:1092–1102. PubMed

Vadlamudi R.K., Shin J. Genomic structure and promoter analysis of the p62 gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett. 1998;435:138–142. PubMed

Kwak E.L., Larochelle D.A., Beaumont C., Torti S.V., Torti F.M. Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J. Biol. Chem. 1995;270:15285–15293. PubMed

García-Nogales P., Almeida A., Fernández E., Medina J.M., Bolaños J.P. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes. J. Neurochem. 1999;72:1750–1758. PubMed

Peng Z., Geh E., Chen L., Meng Q., Fan Y., Sartor M., et al. Inhibitor of kappaB kinase beta regulates redox homeostasis by controlling the constitutive levels of glutathione. Mol. Pharmacol. 2010;77:784–792. PubMed PMC

Nagashima R., Sugiyama C., Yoneyama M., Kuramoto N., Kawada K., Ogita K. Acoustic overstimulation facilitates the expression of glutamate-cysteine ligase catalytic subunit probably through enhanced DNA binding of activator protein-1 and/or NF-kappaB in the murine cochlea. Neurochem. Int. 2007;51:209–215. PubMed

Yang H., Magilnick N., Lee C., Kalmaz D., Ou X., Chan J.Y., et al. Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1. Mol. Cell. Biol. 2005;25:5933–5946. PubMed PMC

Arinze I.J., Kawai Y. Transcriptional activation of the human Galphai2 gene promoter through nuclear factor-kappaB and antioxidant response elements. J. Biol. Chem. 2005;280:9786–9795. PubMed

Ammirante M., Rosati A., Gentilella A., Festa M., Petrella A., Marzullo L., et al. The activity of hsp90 alpha promoter is regulated by NF-kappa B transcription factors. Oncogene. 2008;27:1175–1178. PubMed

Cazals V., Nabeyrat E., Corroyer S., de Keyzer Y., Clement A. Role for NF-kappa B in mediating the effects of hyperoxia on IGF-binding protein 2 promoter activity in lung alveolar epithelial cells. Biochim. Biophys. Acta. 1999;1448:349–362. PubMed

Cleynen I., Brants J.R., Peeters K., Deckers R., Debiec-Rychter M., Sciot R., et al. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol. Cancer Res. 2007;5:363–372. PubMed

Graham W.V., Wang F., Clayburgh D.R., Cheng J.X., Yoon B., Wang Y., et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J. Biol. Chem. 2006;281:26205–26215. PubMed

Ten R.M., Paya C.V., Israël N., Le Bail O., Mattei M.G., Virelizier J.L., et al. The characterization of the promoter of the gene encoding the p50 subunit of NF-kappa B indicates that it participates in its own regulation. EMBO J. 1992;11:195–203. PubMed PMC

Yao K.S., O’Dwyer P.J. Involvement of NF-kappa B in the induction of NAD(P)H:quinone oxidoreductase (DT-diaphorase) by hypoxia, oltipraz and mitomycin C. Biochem. Pharmacol. 1995;49:275–282. PubMed

Carter K.L., Cahir-McFarland E., Kieff E. Epstein-barr virus-induced changes in B-lymphocyte gene expression. J. Virol. 2002;76:10427–10436. PubMed PMC

Matsuda A., Suzuki Y., Honda G., Muramatsu S., Matsuzaki O., Nagano Y., et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene. 2003;22:3307–3318. PubMed

Suh K.S., Tatunchak T.T., Crutchley J.M., Edwards L.E., Marin K.G., Yuspa S.H. Genomic structure and promoter analysis of PKC-delta. Genomics. 2003;82:57–67. PubMed

Ossendorp F., Fu N., Camps M., Granucci F., Gobin S.J.P., van den Elsen P.J., et al. Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature dendritic cells. J. Immunol. 2005;174:7815–7822. PubMed

Pacifico F., Paolillo M., Chiappetta G., Crescenzi E., Arena S., Scaloni A., et al. RbAp48 is a target of nuclear factor-kappaB activity in thyroid cancer. J. Clin. Endocrinol. Metab. 2007;92:1458–1466. PubMed

Huang X., Pawliczak R., Yao X.-L., Madara P., Alsaaty S., Shelhamer J.H., et al. Characterization of the human p11 promoter sequence. Gene. 2003;310:133–142. PubMed

Tulchinsky E., Prokhortchouk E., Georgiev G., Lukanidin E. A kappaB-related binding site is an integral part of the mts1 gene composite enhancer element located in the first intron of the gene. J. Biol. Chem. 1997;272:4828–4835. PubMed

Joo J.H., Kim J.W., Lee Y., Yoon S.Y., Kim J.H., Paik S.-G., et al. Involvement of NF-kappaB in the regulation of S100A6 gene expression in human hepatoblastoma cell line HepG2. Biochem. Biophys. Res. Commun. 2003;307:274–280. PubMed

Kiss D.L., Xu W., Gopalan S., Buzanowska K., Wilczynska K.M., Rydel R.E., et al. Duration of alpha 1-antichymotrypsin gene activation by interleukin-1 is determined by efficiency of inhibitor of nuclear factor kappa B alpha resynthesis in primary human astrocytes. J. Neurochem. 2005;92:730–738. PubMed PMC

Zeng W., Remold-O’Donnell E. Human monocyte/neutrophil elastase inhibitor (MNEI) is regulated by PU.1/Spi-1, Sp1, and NF-kappaB. J. Cell. Biochem. 2000;78:519–532. PubMed

Majid S.M., Liss A.S., You M., Bose H.R. The suppression of SH3BGRL is important for v-Rel-mediated transformation. Oncogene. 2006;25:756–768. PubMed

Yan Y., Dalmasso G., Sitaraman S., Merlin D. Characterization of the human intestinal CD98 promoter and its regulation by interferon-gamma. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G535–G545. PubMed

Rojo A.I., Salinas M., Martín D., Perona R., Cuadrado A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J. Neurosci. 2004;24:7324–7334. PubMed PMC

Das K.C., Lewis-Molock Y., White C.W. Activation of NF-kappa B and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am. J. Physiol. 1995;269:L588–L602. PubMed

Xu Y., Krishnan A., Wan X.S., Majima H., Yeh C.C., Ludewig G., et al. Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene. 1999;18:93–102. PubMed

Xu Y., Kiningham K.K., Devalaraja M.N., Yeh C.C., Majima H., Kasarskis E.J., et al. An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol. 1999;18:709–722. PubMed

Xu Y., Fang F., Dhar S.K., St Clair W.H., Kasarskis E.J., St Clair D.K. The role of a single-stranded nucleotide loop in transcriptional regulation of the human sod2 gene. J. Biol. Chem. 2007;282:15981–15994. PubMed PMC

Xu Y., Fang F., St Clair D.K., Josson S., Sompol P., Spasojevic I., et al. Suppression of RelB-mediated manganese superoxide dismutase expression reveals a primary mechanism for radiosensitization effect of 1alpha,25-dihydroxyvitamin D(3) in prostate cancer cells. Mol. Cancer Ther. 2007;6:2048–2056. PubMed PMC

Wang C.Y., Mayo M.W., Korneluk R.G., Goeddel D.V., Baldwin A.S. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680–1683. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...