protein complexes
Dotaz
Zobrazit nápovědu
- MeSH
- antigeny nádorové MeSH
- imunokomplex izolace a purifikace MeSH
- karcinom imunologie MeSH
- nádory plic imunologie MeSH
- Publikační typ
- srovnávací studie MeSH
- MeSH
- imunokomplex krev MeSH
- komplement MeSH
- lidé MeSH
- lymfoidní leukemie imunologie MeSH
- myeloidní leukemie imunologie MeSH
- obranné mechanismy MeSH
- prognóza metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- srovnávací studie MeSH
K udržování buněčné homeostázy je nutné, aby buněčné proteiny vytvářely složité a dynamické molekulární komplexy. Proto je i vysvětlení základních fyziologických procesů na molekulární úrovni založeno na studiu protein‑proteinových interakcí. Nejdříve probíhá kvalitativní analýza proteinových komplexů. Následně jsou identifikované proteinové interakce kvantifikovány po biochemické stránce. Detailní informace o strukturní podstatě daných protein‑proteinových interakcí pak mohou být získány pomocí krystalografických metod. Náhled do uspořádání proteinových komplexů na molekulární úrovni umožňuje racionálně navrhovat nové syntetické látky, které cíleně ovlivňují proteinové interakce a tím i nejrůznější fyziologické nebo patologické procesy. Tato souhrnná práce je zaměřena na popis nejčastěji používaných metod pro kvalitativní i kvantitativní hodnocení proteinových interakcí. Metody koimunoprecipitace (Co‑IP) a afinitní koprecipitace je možné využít jako prvotní nástroj pro identifikaci interakčních partnerů studovaného proteinu. Detailní biochemická analýza mezimolekulární interakce pak vyžaduje definování kinetických a termodynamických parametrů. Pro studium afinity dvou interakčních partnerů a kinetiky reakce je možné použít metodu rezonance povrchového plazmonu (surface plasmon resonance – SPR), pro studium afinity a inhibičního potenciálu inhibitorů metodu fluorescenční polarizace (FP) a pro detailní popis afinity a termodynamických parametrů interakce (∆G, ∆H a ∆S) metodu izotermální titrační kalorimetrie (isothermal titration calorimetry – ITC). Výzkum proteinových interakcí na molekulární úrovni je nejen významný pro základní výzkum, ale přináší i nové metodické přístupy, které otvírají další možnosti při racionálním navrhování nových terapeutických látek.
In order to maintain cellular homeostasis, cellular proteins coexist in complex and variable molecular assemblies. Therefore, understanding of major physiological processes at molecular level is based on analysis of protein‑protein interaction networks. Firstly, composition of the molecular assembly has to be qualitatively analyzed. In the next step, quantitative biochemical properties of the identified protein‑protein interactions are determined. Detailed information about the protein‑protein interaction interface can be obtained by crystallographic methods. Accordingly, the insight into the molecular architecture of these protein‑protein complexes allows us to rationally design new synthetic compounds that specifically influence various physiological or pathological processes by targeted modulation of protein interactions. This review is focused on description of the most used methods applied in both qualitative and quantitative analysis of protein‑protein interactions. Co‑immunoprecipitation and affinity co‑precipitation are basic methods designed for qualitative analysis of protein binding partners. Further biochemical analysis of the interaction requires definition of kinetic and thermodynamic parameters. Surface plasmon resonance (SPR) is used for description of affinity and kinetic profile of the interaction, fluorescence polarization (FP) method for fast determination of inhibition potential of inhibitors and isothermal titration calorimetry (ITC) for definition of thermodynamic parameters of the interaction (∆G, ∆H and ∆S). Besides the importance of uncovering the molecular basis of protein interactions for basic research, the same methodological approaches open new possibilities in rational design of novel therapeutic agents. Key words: protein interaction networks – co‑immunoprecipitation – pull‑down analysis – surface plasmon resonance – fluorescence polarization – isothermal titration calorimetry This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 31. 1. 2014 Accepted: 10. 3. 2014
- Klíčová slova
- koimunoprecipitace, izotermální titrační kalorimetrie, afinitní koprecipitace, pull-down analýza,
- MeSH
- fluorescenční polarizace metody MeSH
- imunoprecipitace metody MeSH
- kalorimetrie metody MeSH
- ligandy MeSH
- mapování interakce mezi proteiny * metody MeSH
- mapy interakcí proteinů MeSH
- povrchová plasmonová rezonance metody MeSH
- termodynamika MeSH
- vazba proteinů * MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
1st ed. 427 s. : il.
- Klíčová slova
- DNA,
- MeSH
- DNA vazebné proteiny MeSH
- DNA MeSH
- genetické techniky MeSH
- Publikační typ
- příručky MeSH
Thylakoids are the place of the light-photosynthetic reactions. To gain maximal efficiency, these reactions are conditional to proper pigment-pigment and protein-protein interactions. In higher plants thylakoids, the interactions lead to a lateral asymmetry in localization of protein complexes (i.e. granal/stromal thylakoids) that have been defined as a domain-like structures characteristic by different biochemical composition and function (Albertsson P-Å. 2001,Trends Plant Science 6: 349-354). We explored this complex organization of thylakoid pigment-proteins at single cell level in the cyanobacterium Synechocystis sp. PCC 6803. Our 3D confocal images captured heterogeneous distribution of all main photosynthetic pigment-protein complexes (PPCs), Photosystem I (fluorescently tagged by YFP), Photosystem II and Phycobilisomes. The acquired images depicted cyanobacterial thylakoid membrane as a stable, mosaic-like structure formed by microdomains (MDs). These microcompartments are of sub-micrometer in sizes (~0.5-1.5 μm), typical by particular PPCs ratios and importantly without full segregation of observed complexes. The most prevailing MD is represented by MD with high Photosystem I content which allows also partial separation of Photosystems like in higher plants thylakoids. We assume that MDs stability (in minutes) provides optimal conditions for efficient excitation/electron transfer. The cyanobacterial MDs thus define thylakoid membrane organization as a system controlled by co-localization of three main PPCs leading to formation of thylakoid membrane mosaic. This organization might represent evolutional and functional precursor for the granal/stromal spatial heterogeneity in photosystems that is typical for higher plant thylakoids.
- MeSH
- bakteriální proteiny metabolismus MeSH
- fotosyntéza fyziologie MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- fykobilizomy metabolismus MeSH
- konfokální mikroskopie MeSH
- membránové mikrodomény metabolismus MeSH
- Synechocystis MeSH
- tylakoidy metabolismus MeSH
- zobrazování trojrozměrné MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gradual heating of green leaves up to non-physiological temperatures is often used to estimate thermal stability of photosynthetic apparatus. However, a complete sequence of heat-induced disassembly and denaturation of chlorophyll-containing protein complexes (CPCs) has not been reported yet. In this work, we heated (1 degrees C x min(-1)) barley leaves to temperatures selected according to the changes in the chlorophyll fluorescence temperature curve (FTC) and we analyzed CPC stability by two-dimensional native Deriphat/SDS-PAGE. The first distinct change in both structure and function of photosystem II (PSII) appeared at 40-50 degrees C. PSII core (CCII) dimers began to dissociate monomers, which was accompanied by a decrease in PSII photochemistry and reflected in FTC as the first fluorescence increase. Further changes in CPCs appeared at 57-60 degrees C, when FTC increases to its second maximum. Photosystem I (PSI) cores (CCI) partially dissociated from light-harvesting complexes of PSI (LHCI) and formed aggregates. The rest of CCI-LHCI complexes, as well as the CCI aggregates, degraded to the PSI-A/B heterodimer in leaves heated to 70 degrees C. Heating to these temperatures led to a complete degradation of CCII components and corresponding loss of PSII photochemistry. Trimeric light-harvesting complexes of PSII (LHCII) markedly dissociated to monomers and denatured, as evidenced by a release of large amount of free chlorophylls. Between 70 and 80 degrees C, a complete degradation of LHCII occurred, leaving the PSI-A/B heterodimer as the only detectable CPC in the membrane. This most thermostable CPC disappeared after heating to 90 degrees C, which corresponded to a loss of PSI photochemistry.
- MeSH
- biologické pigmenty analýza MeSH
- chlorofyl analýza MeSH
- fotosyntéza MeSH
- ječmen (rod) metabolismus MeSH
- listy rostlin chemie metabolismus účinky záření MeSH
- molekulová hmotnost MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- termodynamika MeSH
- tylakoidy chemie MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The nucleus is a highly structured organelle with distinct compartmentalization of specific functions. To understand the functions of these nuclear compartments, detailed description of protein complexes which form these structures is of crucial importance. We explored therefore the potential of blue native PAGE (BN-PAGE) method for the separation of nuclear protein complexes. We focused on (i) solubility and stability of nuclear complexes under conditions prerequisite for the separation by BN-PAGE, (ii) improved separation of native nuclear protein complexes using 2-D colorless native/blue native PAGE (CN-/BN-PAGE), and (iii) mass spectrometric analysis of protein complexes which were isolated directly from native 1-D or from 2-D CN/BN-PAGE gels. The suitability of BN-PAGE for nuclear proteomic research is demonstrated by the successful separation of polymerase I and polymerase II complexes, and by mass spectrometric determination of U1 small nuclear ribonucleoprotein particle composition. Moreover, practical advice for sample preparation is provided.
- MeSH
- buněčné jádro chemie MeSH
- elektroforéza v polyakrylamidovém gelu metody MeSH
- financování organizované MeSH
- hmotnostní spektrometrie MeSH
- jaderné proteiny izolace a purifikace MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- multiproteinové komplexy chemie MeSH
- pufry MeSH
- rozpustnost MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.
- MeSH
- anaerobióza MeSH
- časové faktory MeSH
- chlorofyl metabolismus MeSH
- fluorescenční spektrometrie MeSH
- fotochemické procesy * MeSH
- Heterokontophyta metabolismus MeSH
- karotenoidy metabolismus MeSH
- kinetika MeSH
- proteiny vázající chlorofyl metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Cíl studie: Zpracování aktuálních znalostí o klinické problematice makro-komplexů a možnostech jejich detekce. Typ studie: Přehledná práce. Název a sídlo pracoviště: Institut klinické a experimentální medicíny, Vídeňská 1958/9, 140 21 Praha 4. Materiál a metody: Na základě studia literatury je v této práci zhodnocena klinická problematika makro-komplexů. Jsou uvedeny jejich typy, asociace s chorobami a frekvence výskytu. Dále jsou referovány současné možnosti detekce makro-komplexů. Výsledky: Makro-komplexy vznikají nejčastěji vazbou enzymu a imunoglobulinu G (IgG). Může se jednat buď o vazbu nespecifickou, nebo o vazbu se specifickými autoprotilátkami cirkulujícími v séru. Prvním popsaným makro-enzymem byla makro-amyláza, která je spolu s makro-AST reportována nejčastěji. Díky neustále se zvyšující citlivosti laboratorních metod jsou v současnosti zachycovány i makro-troponiny a jiné makro-proteiny. Prevalence makro-komplexů v séru není zcela známá, ve studiích se u jednotlivých makro-komplexů odlišuje a je udávána od 0,5 % (makro-TSH) do 20,4 % (makro-troponin). Přítomnost makro-komplexu se považuje za benigní nález, který se vyskytuje jak u zcela zdravých jedinců bez symptomů, tak i v asociaci s autoimunitními (zejména systémový lupus erythematodes) a jinými chorobami (malignity, zánětlivá onemocnění, aj.). Závěr: V případě přetrvávajícího izolovaného zvýšení enzymu nebo proteinu bez prokázaných příčin je potřeba věnovat pozornost možnosti výskytu makro-komplexu v séru pacienta nebo jiných možných interferencí (přítomnost heterofilních protilátek, revmatoidního faktoru, hemolýzy, aj.). Efektivní komunikace mezi klinikem a laboratoří je proto při diskrepanci výsledků nezbytná jak pro záchyt a detekci suspektních makro-komplexů, tak pro odhalení jiných interferujících látek ve vzorku séra.
Objective: Presentation of current knowledge of clinical issues of macro-complexes and possibilities of their detection. Design: literature review Settings: Institute for Clinical and Experimental Medicine Material and Methods: Clinical problems of macro-complexes are evaluated on the basis of literature review. The types of macro-complexes, their association with diseases and frequency of occurrence are listed. Furthermore, current possibilities of detection of macro-complexes are reported. Results: Macro-complexes are most often formed by binding of enzyme and immunoglobulin G (IgG). This may be either non-specific binding or binding with specific autoantibodies circulating in the serum. Macro-amylase was the first described macro-enzyme, which is reported most frequently together with macro-AST. Due to the increasing sensitivity of laboratory methods, macro-troponins and other macro-proteins are currently captured. The prevalence of macro-complexes in serum is not fully known, it varies in each particular macro-complex in studies, and is reported from 0.5% (macro-TSH) to 20.4% (macro-troponin). The presence of the macro-complex is considered to be a benign finding that occurs both in completely healthy individuals without symptoms and in association with autoimmune (especially systemic lupus erythematosus) and other diseases (malignancies, inflammatory diseases, etc.). Conclusion: In case of persistent isolated increase in enzyme or protein without proven causes, attention should be paid to the possibility of the presence of the macro-complex in the patient's serum or other possible interferences (presence of heterophilic antibodies, rheumatoid factor, hemolysis, etc.). Effective communication between the clinician and the laboratory is therefore essential for the discrepancy of results both for the capture and detection of suspected macro-complexes and for the detection of other interfering substances in the serum sample.
- Klíčová slova
- makro-komplexy, makro-enzymy, makro-proteiny,
- MeSH
- krevní proteiny * chemie izolace a purifikace MeSH
- lidé MeSH
- multiproteinové komplexy * chemie izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH