How Different Are the Molecular Mechanisms of Nodal and Distant Metastasis in Luminal A Breast Cancer?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-08-00250
Ministerstvo Zdravotnictví Ceské Republiky
17-05957S
Grantová Agentura České Republiky
PubMed
32947901
PubMed Central
PMC7563588
DOI
10.3390/cancers12092638
PII: cancers12092638
Knihovny.cz E-zdroje
- Klíčová slova
- GSEA, breast cancer, distant metastasis, inhibitor, lymph node, pathway,
- Publikační typ
- časopisecké články MeSH
Lymph node status is one of the best prognostic factors in breast cancer, however, its association with distant metastasis is not straightforward. Here we compare molecular mechanisms of nodal and distant metastasis in molecular subtypes of breast cancer, with major focus on luminal A patients. We analyze a new cohort of 706 patients (MMCI_706) as well as an independent cohort of 836 primary tumors with full gene expression information (SUPERTAM_HGU133A). We evaluate the risk of distant metastasis, analyze targetable molecular mechanisms in Gene Set Enrichment Analysis and identify relevant inhibitors. Lymph node positivity is generally associated with NF-κB and Src pathways and is related to high risk (OR: 5.062 and 2.401 in MMCI_706 and SUPERTAM_HGU133A, respectively, p < 0.05) of distant metastasis in luminal A patients. However, a part (≤15%) of lymph node negative tumors at the diagnosis develop the distant metastasis which is related to cell proliferation control and thrombolysis. Distant metastasis of lymph node positive patients is mostly associated with immune response. These pro-metastatic mechanisms further vary in other molecular subtypes. Our data indicate that the management of breast cancer and prevention of distant metastasis requires stratified approach based on targeted strategies.
Department of Biochemistry Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute 65653 Brno Czech Republic
Department of Oncological Pathology Masaryk Memorial Cancer Institute 65653 Brno Czech Republic
Zobrazit více v PubMed
Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W.W., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. doi: 10.1016/j.ejca.2012.12.027. PubMed DOI
Guan X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B. 2015;5:402–418. doi: 10.1016/j.apsb.2015.07.005. PubMed DOI PMC
Osako T., Iwase T., Ushijima M., Yonekura R., Ohno S., Akiyama F. A new molecular-based lymph node staging classification determines the prognosis of breast cancer patients. Br. J. Cancer. 2017;117:1470–1477. doi: 10.1038/bjc.2017.311. PubMed DOI PMC
Colleoni M., Zahrieh D., Gelber R.D., Holmberg S.B., Mattsson J.E., Rudenstam C.-M., Lindtner J., Erzen D., Snyder R., Collins J., et al. Site of primary tumor has a prognostic role in operable breast cancer: The international breast cancer study group experience. J. Clin. Oncol. 2005;23:1390–1400. doi: 10.1200/JCO.2005.06.052. PubMed DOI
Veronesi U., Cascinelli N., Bufalino R., Morabito A., Greco M., Galluzzo D., Delle Donne V., De Lellis R., Piotti P., Sacchini V. Risk of internal mammary lymph node metastases and its relevance on prognosis of breast cancer patients. Ann. Surg. 1983;198:681–684. doi: 10.1097/00000658-198312000-00002. PubMed DOI PMC
Carter C.L., Allen C., Henson D.E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer. 1989;63:181–187. doi: 10.1002/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H. PubMed DOI
David Nathanson S., Leonard-Murali S., Burmeister C., Susick L., Baker P. Clinicopathological Evaluation of the Potential Anatomic Pathways of Systemic Metastasis from Primary Breast Cancer Suggests an Orderly Spread Through the Regional Lymph Nodes. Ann. Surg. Oncol. 2020 doi: 10.1245/s10434-020-08904-w. PubMed DOI PMC
Nathanson S.D., Kwon D., Kapke A., Hensley Alford S., Chitale D. The role of lymph node metastasis in the systemic dissemination of breast cancer. Indian J. Surg. Oncol. 2010;1:313–322. doi: 10.1007/s13193-011-0063-9. PubMed DOI PMC
Rabbani S.A., Mazar A.P. Evaluating distant metastases in breast cancer: From biology to outcomes. Cancer Metastasis Rev. 2007;26:663–674. doi: 10.1007/s10555-007-9085-8. PubMed DOI
Sanpaolo P., Barbieri V., Genovesi D. Prognostic value of breast cancer subtypes on breast cancer specific survival, distant metastases and local relapse rates in conservatively managed early stage breast cancer: A retrospective clinical study. Eur. J. Surg. Oncol. 2011;37:876–882. doi: 10.1016/j.ejso.2011.07.001. PubMed DOI
Arriagada R., Le M.G., Dunant A., Tubiana M., Contesso G. Twenty-five years of follow-up in patients with operable breast carcinoma: Correlation between clinicopathologic factors and the risk of death in each 5-year period. Cancer. 2006;106:743–750. doi: 10.1002/cncr.21659. PubMed DOI
Weiss R.B., Woolf S.H., Demakos E., Holland J.F., Berry D.A., Falkson G., Cirrincione C.T., Robbins A., Bothun S., Henderson I.C., et al. Natural history of more than 20 years of node-positive primary breast carcinoma treated with cyclophosphamide, methotrexate, and fluorouracil-based adjuvant chemotherapy: A study by the Cancer and Leukemia Group B. J. Clin. Oncol. 2003;21:1825–1835. doi: 10.1200/JCO.2003.09.006. PubMed DOI
D’Eredita’ G., Giardina C., Martellotta M., Natale T., Ferrarese F. Prognostic factors in breast cancer: The predictive value of the Nottingham Prognostic Index in patients with a long-term follow-up that were treated in a single institution. Eur. J. Cancer. 2001;37:591–596. doi: 10.1016/S0959-8049(00)00435-4. PubMed DOI
Tang C., Wang P., Li X., Zhao B., Yang H., Yu H., Li C. Lymph node status have a prognostic impact in breast cancer patients with distant metastasis. PLoS ONE. 2017;12:e0182953. doi: 10.1371/journal.pone.0182953. PubMed DOI PMC
Largillier R., Ferrero J.-M., Doyen J., Barriere J., Namer M., Mari V., Courdi A., Hannoun-Levi J.M., Ettore F., Birtwisle-Peyrottes I., et al. Prognostic factors in 1,038 women with metastatic breast cancer. Ann. Oncol. 2008;19:2012–2019. doi: 10.1093/annonc/mdn424. PubMed DOI PMC
Solomayer E.F., Diel I.J., Meyberg G.C., Gollan C., Bastert G. Metastatic breast cancer: Clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res. Treat. 2000;59:271–278. doi: 10.1023/A:1006308619659. PubMed DOI
Cardoso F., Harbeck N., Fallowfield L., Kyriakides S., Senkus E., ESMO Guidelines Working Group Locally recurrent or metastatic breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2012;23(Suppl. 7):vii11-19. doi: 10.1093/annonc/mds232. PubMed DOI
Kümmel A., Kümmel S., Barinoff J., Heitz F., Holtschmidt J., Weikel W., Lorenz-Salehi F., du Bois A., Harter P., Traut A., et al. Prognostic Factors for Local, Loco-regional and Systemic Recurrence in Early-stage Breast Cancer. Geburtshilfe Frauenheilkd. 2015;75:710–718. doi: 10.1055/s-0035-1546050. PubMed DOI PMC
Ullah I., Karthik G.-M., Alkodsi A., Kjällquist U., Stålhammar G., Lövrot J., Martinez N.-F., Lagergren J., Hautaniemi S., Hartman J., et al. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J. Clin. Investig. 2018;128:1355–1370. doi: 10.1172/JCI96149. PubMed DOI PMC
Sørlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M.B., van de Rijn M., Jeffrey S.S., et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. PubMed DOI PMC
Liu Z., Zhang X.-S., Zhang S. Breast tumor subgroups reveal diverse clinical prognostic power. Sci. Rep. 2014;4:4002. doi: 10.1038/srep04002. PubMed DOI PMC
Kennecke H., Yerushalmi R., Woods R., Cheang M.C.U., Voduc D., Speers C.H., Nielsen T.O., Gelmon K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 2010;28:3271–3277. doi: 10.1200/JCO.2009.25.9820. PubMed DOI
Mazouni C., Rimareix F., Mathieu M.-C., Uzan C., Bourgier C., André F., Delaloge S., Garbay J.-R. Outcome in breast molecular subtypes according to nodal status and surgical procedures. Am. J. Surg. 2013;205:662–667. doi: 10.1016/j.amjsurg.2012.06.006. PubMed DOI
Liao G.-S., Chou Y.-C., Hsu H.-M., Dai M.-S., Yu J.-C. The prognostic value of lymph node status among breast cancer subtypes. Am. J. Surg. 2015;209:717–724. doi: 10.1016/j.amjsurg.2014.05.029. PubMed DOI
Carey L.A., Perou C.M., Livasy C.A., Dressler L.G., Cowan D., Conway K., Karaca G., Troester M.A., Tse C.K., Edmiston S., et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295:2492–2502. doi: 10.1001/jama.295.21.2492. PubMed DOI
Shim H.J., Kim S.H., Kang B.J., Choi B.G., Kim H.S., Cha E.S., Song B.J. Breast cancer recurrence according to molecular subtype. Asian Pac. J. Cancer Prev. 2014;15:5539–5544. doi: 10.7314/APJCP.2014.15.14.5539. PubMed DOI
Chas M., Boivin L., Arbion F., Jourdan M.-L., Body G., Ouldamer L. Clinicopathologic predictors of lymph node metastasis in breast cancer patients according to molecular subtype. J. Gynecol. Obstet. Hum. Reprod. 2018;47:9–15. doi: 10.1016/j.jogoh.2017.10.008. PubMed DOI
Yang Z.-J., Yu Y., Hou X.-W., Chi J.-R., Ge J., Wang X., Cao X.-C. The prognostic value of node status in different breast cancer subtypes. Oncotarget. 2017;8:4563–4571. doi: 10.18632/oncotarget.13943. PubMed DOI PMC
Ignatov A., Eggemann H., Burger E., Ignatov T. Patterns of breast cancer relapse in accordance to biological subtype. J. Cancer Res. Clin. Oncol. 2018;144:1347–1355. doi: 10.1007/s00432-018-2644-2. PubMed DOI PMC
Kast K., Link T., Friedrich K., Petzold A., Niedostatek A., Schoffer O., Werner C., Klug S.J., Werner A., Gatzweiler A., et al. Impact of breast cancer subtypes and patterns of metastasis on outcome. Breast Cancer Res. Treat. 2015;150:621–629. doi: 10.1007/s10549-015-3341-3. PubMed DOI
Buonomo O.C., Caredda E., Portarena I., Vanni G., Orlandi A., Bagni C., Petrella G., Palombi L., Orsaria P. New insights into the metastatic behavior after breast cancer surgery, according to well-established clinicopathological variables and molecular subtypes. PLoS ONE. 2017;12:e0184680. doi: 10.1371/journal.pone.0184680. PubMed DOI PMC
Haibe-Kains B., Desmedt C., Loi S., Culhane A.C., Bontempi G., Quackenbush J., Sotiriou C. A three-gene model to robustly identify breast cancer molecular subtypes. J. Natl. Cancer Inst. 2012;104:311–325. doi: 10.1093/jnci/djr545. PubMed DOI PMC
Lehmann B.D., Bauer J.A., Chen X., Sanders M.E., Chakravarthy A.B., Shyr Y., Pietenpol J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011;121:2750–2767. doi: 10.1172/JCI45014. PubMed DOI PMC
Lipton A., Steger G.G., Figueroa J., Alvarado C., Solal-Celigny P., Body J.J., de Boer R., Berardi R., Gascon P., Tonkin K.S., et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin. Cancer Res. 2008;14:6690–6696. doi: 10.1158/1078-0432.CCR-07-5234. PubMed DOI
Gnant M., Pfeiler G., Steger G.G., Egle D., Greil R., Fitzal F., Wette V., Balic M., Haslbauer F., Melbinger-Zeinitzer E., et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): Disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:339–351. doi: 10.1016/S1470-2045(18)30862-3. PubMed DOI
Morris P.G., Rota S., Cadoo K., Zamora S., Patil S., D’Andrea G., Gilewski T., Bromberg J., Dang C., Dickler M., et al. Phase II Study of Paclitaxel and Dasatinib in Metastatic Breast Cancer. Clin. Breast Cancer. 2018;18:387–394. doi: 10.1016/j.clbc.2018.03.010. PubMed DOI PMC
Mayer E.L., Baurain J.-F., Sparano J., Strauss L., Campone M., Fumoleau P., Rugo H., Awada A., Sy O., Llombart-Cussac A. A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin. Cancer Res. 2011;17:6897–6904. doi: 10.1158/1078-0432.CCR-11-0070. PubMed DOI
Mitri Z., Nanda R., Blackwell K., Costelloe C.M., Hood I., Wei C., Brewster A.M., Ibrahim N.K., Koenig K.B., Hortobagyi G.N., et al. TBCRC-010: Phase I/II Study of Dasatinib in Combination with Zoledronic Acid for the Treatment of Breast Cancer Bone Metastasis. Clin. Cancer Res. 2016;22:5706–5712. doi: 10.1158/1078-0432.CCR-15-2845. PubMed DOI
Ocana A., Gil-Martin M., Antolín S., Atienza M., Montaño Á., Ribelles N., Urruticoechea A., Falcón A., Pernas S., Orlando J., et al. Efficacy and safety of dasatinib with trastuzumab and paclitaxel in first line HER2-positive metastatic breast cancer: Results from the phase II GEICAM/2010-04 study. Breast Cancer Res. Treat. 2019;174:693–701. doi: 10.1007/s10549-018-05100-z. PubMed DOI
Greil R., Greil-Ressler S., Weiss L., Schönlieb C., Magnes T., Radl B., Bolger G.T., Vcelar B., Sordillo P.P. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (LipocurcTM) in patients with locally advanced or metastatic cancer. Cancer Chemother. Pharmacol. 2018;82:695–706. doi: 10.1007/s00280-018-3654-0. PubMed DOI PMC
Martínez N., Herrera M., Frías L., Provencio M., Pérez-Carrión R., Díaz V., Morse M., Crespo M.C. A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: Results of a pilot study. Clin. Transl. Oncol. 2019;21:489–498. doi: 10.1007/s12094-018-1950-0. PubMed DOI
Vonderheide R.H., LoRusso P.M., Khalil M., Gartner E.M., Khaira D., Soulieres D., Dorazio P., Trosko J.A., Rüter J., Mariani G.L., et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res. 2010;16:3485–3494. doi: 10.1158/1078-0432.CCR-10-0505. PubMed DOI
Bajor D.L., Mick R., Riese M.J., Huang A.C., Sullivan B., Richman L.P., Torigian D.A., George S.M., Stelekati E., Chen F., et al. Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncoimmunology. 2018;7:e1468956. doi: 10.1080/2162402X.2018.1468956. PubMed DOI PMC
McArthur H.L., Diab A., Page D.B., Yuan J., Solomon S.B., Sacchini V., Comstock C., Durack J.C., Maybody M., Sung J., et al. A Pilot Study of Preoperative Single-Dose Ipilimumab and/or Cryoablation in Women with Early-Stage Breast Cancer with Comprehensive Immune Profiling. Clin. Cancer Res. 2016;22:5729–5737. doi: 10.1158/1078-0432.CCR-16-0190. PubMed DOI PMC
Helgason H.H., Koolen S.L.W., van Werkhoven E., Malingre M.M., Kruijtzer C.M.F., Huitema A.D.R., Schot M.E., Smit W.M., Beijnen J.H., Schellens J.H.M. Phase II and pharmacological study of oral docetaxel plus cyclosporin A in anthracycline pre-treated metastatic breast cancer. Curr. Clin. Pharmacol. 2014;9:139–147. doi: 10.2174/1574884708666131111193403. PubMed DOI
Ross H.J., Cho J., Osann K., Wong S.F., Ramsinghani N., Williams J., Downey-Hurtado N., Slater L.M. Phase I/II trial of low dose cyclosporin A with EP for advanced non-small cell lung cancer. Lung Cancer. 1997;18:189–198. doi: 10.1016/S0169-5002(97)00061-5. PubMed DOI
Vonderheide R.H., Flaherty K.T., Khalil M., Stumacher M.S., Bajor D.L., Hutnick N.A., Sullivan P., Mahany J.J., Gallagher M., Kramer A., et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 2007;25:876–883. doi: 10.1200/JCO.2006.08.3311. PubMed DOI
Beatty G.L., Torigian D.A., Chiorean E.G., Saboury B., Brothers A., Alavi A., Troxel A.B., Sun W., Teitelbaum U.R., Vonderheide R.H., et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2013;19:6286–6295. doi: 10.1158/1078-0432.CCR-13-1320. PubMed DOI PMC
Falchook G., Coleman R.L., Roszak A., Behbakht K., Matulonis U., Ray-Coquard I., Sawrycki P., Duska L.R., Tew W., Ghamande S., et al. Alisertib in Combination With Weekly Paclitaxel in Patients With Advanced Breast Cancer or Recurrent Ovarian Cancer: A Randomized Clinical Trial. JAMA Oncol. 2019;5:e183773. doi: 10.1001/jamaoncol.2018.3773. PubMed DOI PMC
Haddad T.C., D’Assoro A., Suman V., Opyrchal M., Peethambaram P., Liu M.C., Goetz M.P., Ingle J.N. Phase I trial to evaluate the addition of alisertib to fulvestrant in women with endocrine-resistant, ER+ metastatic breast cancer. Breast Cancer Res. Treat. 2018;168:639–647. doi: 10.1007/s10549-017-4616-7. PubMed DOI PMC
Suzuki S., Abe R., Nihei M., Kimijima I., Tsuchiya A., Nomizu T. Efficacy of Cepharanthin for preventing leukopenia and thrombocytopenia induced by chemotherapy in breast cancer patient—Prospective randomized study. Gan Kagaku Ryoho. 1990;17:1195–1200. PubMed
Tsukikawa S., Oikawa H., Satoh T., Morikubo M., Komoriyama H., Hagiwara M., Kanasugi K., Yamaguchi S. The effect of cepharanthin on adjuvant chemotherapy induced bone marrow suppression in patients with breast cancer. Gan Kagaku Ryoho. 1990;17:645–648. PubMed
Cicenas J., Kalyan K., Sorokinas A., Stankunas E., Levy J., Meskinyte I., Stankevicius V., Kaupinis A., Valius M. Roscovitine in cancer and other diseases. Ann. Transl. Med. 2015;3:135. doi: 10.3978/j.issn.2305-5839.2015.03.61. PubMed DOI PMC
Tolaney S.M., Hilton J.F., Cleary J.M., Gandhi L., Kwak E.L., Clark J.W., Wolanski A., Bell T.D., Rodig S.J., Chiao J.H., et al. Phase I study of sapacitabine and seliciclib in patients with advanced solid tumors. JCO. 2016;34:2503. doi: 10.1200/JCO.2016.34.15_suppl.2503. DOI
Hsieh W.-S., Soo R., Peh B.-K., Loh T., Dong D., Soh D., Wong L.-S., Green S., Chiao J., Cui C.-Y., et al. Pharmacodynamic effects of seliciclib, an orally administered cell cycle modulator, in undifferentiated nasopharyngeal cancer. Clin. Cancer Res. 2009;15:1435–1442. doi: 10.1158/1078-0432.CCR-08-1748. PubMed DOI
Zhang X., Zhang B., Zhang P., Lian L., Li L., Qiu Z., Qian K., Chen A., Liu Q., Jiang Y., et al. Norcantharidin regulates ERα signaling and tamoxifen resistance via targeting miR-873/CDK3 in breast cancer cells. PLoS ONE. 2019;14:e0217181. doi: 10.1371/journal.pone.0217181. PubMed DOI PMC
Schwarz S., Obermüller-Jevic U.C., Hellmis E., Koch W., Jacobi G., Biesalski H.-K. Lycopene inhibits disease progression in patients with benign prostate hyperplasia. J. Nutr. 2008;138:49–53. doi: 10.1093/jn/138.1.49. PubMed DOI
Mueller E., Smith M., Sarraf P., Kroll T., Aiyer A., Kaufman D.S., Oh W., Demetri G., Figg W.D., Zhou X.P., et al. Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc. Natl. Acad. Sci. USA. 2000;97:10990–10995. doi: 10.1073/pnas.180329197. PubMed DOI PMC
Heath E.I., Bible K., Martell R.E., Adelman D.C., Lorusso P.M. A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Investig. New Drugs. 2008;26:59–65. doi: 10.1007/s10637-007-9090-3. PubMed DOI
Goldstein L.J., Oliveira C.T., Heinrich B., Stemmer S.M., Mala C., Kastner S., Bevan P., Richters L., Schmalfeldt B., Harbeck N. A randomized double-blind phase II study of the combination of oral WX-671 plus capecitabine versus capecitabine monotherapy in first-line HER2-negative metastatic breast cancer (MBC) J. Clin. Oncol. 2013;31:508. doi: 10.1200/jco.2013.31.15_suppl.508. DOI
Heinemann V., Ebert M.P., Pinter T., Bevan P., Neville N.G., Mala C. Randomized phase II trial with an uPA inhibitor (WX-671) in patients with locally advanced nonmetastatic pancreatic cancer. JCO. 2010;28:4060. doi: 10.1200/jco.2010.28.15_suppl.4060. DOI
Colzani E., Johansson A.L.V., Liljegren A., Foukakis T., Clements M., Adolfsson J., Hall P., Czene K. Time-dependent risk of developing distant metastasis in breast cancer patients according to treatment, age and tumour characteristics. Br. J. Cancer. 2014;110:1378–1384. doi: 10.1038/bjc.2014.5. PubMed DOI PMC
Tchou J., Greshock J., Bergey M.R., Sonnad S.S., Sargen M., Weinstein S., Czerniecki B.J., Boraas M., Fraker D.L., Rosato E., et al. Method of primary tumor detection as a risk factor for local and distant recurrence after breast-conservation treatment for early-stage breast cancer. Clin. Breast Cancer. 2008;8:143–148. doi: 10.3816/CBC.2008.n.014. PubMed DOI
Bouchal P., Dvořáková M., Roumeliotis T., Bortlíček Z., Ihnatová I., Procházková I., Ho J.T.C., Maryáš J., Imrichová H., Budinská E., et al. Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor κB (NF-κB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer. Mol. Cell Proteom. 2015;14:1814–1830. doi: 10.1074/mcp.M114.041335. PubMed DOI PMC
Chowdhury N., Sapru S. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach. PLoS ONE. 2015;10:e0129610. doi: 10.1371/journal.pone.0129610. PubMed DOI PMC
Mekkawy A.H., Pourgholami M.H., Morris D.L. Involvement of urokinase-type plasminogen activator system in cancer: An overview. Med. Res. Rev. 2014;34:918–956. doi: 10.1002/med.21308. PubMed DOI
Prasad S., Ravindran J., Aggarwal B.B. NF-kappaB and cancer: How intimate is this relationship. Mol. Cell. Biochem. 2010;336:25–37. doi: 10.1007/s11010-009-0267-2. PubMed DOI PMC
Zhang X.H.-F., Wang Q., Gerald W., Hudis C.A., Norton L., Smid M., Foekens J.A., Massagué J. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16:67–78. doi: 10.1016/j.ccr.2009.05.017. PubMed DOI PMC
Hwang H.C., Clurman B.E. Cyclin E in normal and neoplastic cell cycles. Oncogene. 2005;24:2776–2786. doi: 10.1038/sj.onc.1208613. PubMed DOI
Duffy M.J., McGowan P.M., Harbeck N., Thomssen C., Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: Validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16:428. doi: 10.1186/s13058-014-0428-4. PubMed DOI PMC
Kim H.-J., Min A., Im S.-A., Jang H., Lee K.H., Lau A., Lee M., Kim S., Yang Y., Kim J., et al. Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. Int. J. Cancer. 2017;140:109–119. doi: 10.1002/ijc.30373. PubMed DOI
Pan W., Gong J., Yang C., Feng R., Guo F., Sun Y., Chen H. Peripheral blood CD40-CD40L expression in human breast cancer. Ir. J. Med. Sci. 2013;182:719–721. doi: 10.1007/s11845-013-0931-0. PubMed DOI
Dubovsky J.A., Beckwith K.A., Natarajan G., Woyach J.A., Jaglowski S., Zhong Y., Hessler J.D., Liu T.-M., Chang B.Y., Larkin K.M., et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122:2539–2549. doi: 10.1182/blood-2013-06-507947. PubMed DOI PMC
Mukohara T. PI3K mutations in breast cancer: Prognostic and therapeutic implications. Breast Cancer (Dove Med Press) 2015;7:111–123. doi: 10.2147/BCTT.S60696. PubMed DOI PMC
Haagenson K.K., Wu G.S. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment. Cancer Metastasis Rev. 2010;29:143–149. doi: 10.1007/s10555-010-9208-5. PubMed DOI PMC
Chan C.-H., Lee S.-W., Li C.-F., Wang J., Yang W.-L., Wu C.-Y., Wu J., Nakayama K.I., Kang H.-Y., Huang H.-Y., et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat. Cell Biol. 2010;12:457–467. doi: 10.1038/ncb2047. PubMed DOI PMC
Noman A.S., Uddin M., Chowdhury A.A., Nayeem M.J., Raihan Z., Rashid M.I., Azad A.K., Rahman M.L., Barua D., Sultana A., et al. Serum sonic hedgehog (SHH) and interleukin-(IL-6) as dual prognostic biomarkers in progressive metastatic breast cancer. Sci. Rep. 2017;7:1796. doi: 10.1038/s41598-017-01268-4. PubMed DOI PMC
Riobo-Del Galdo N.A., Lara Montero Á., Wertheimer E.V. Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells. 2019;8:375. doi: 10.3390/cells8040375. PubMed DOI PMC
Wang L., Tang C., Cao H., Li K., Pang X., Zhong L., Dang W., Tang H., Huang Y., Wei L., et al. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol. Ther. 2015;16:1220–1230. doi: 10.1080/15384047.2015.1056409. PubMed DOI PMC
Look M.P., van Putten W.L.J., Duffy M.J., Harbeck N., Christensen I.J., Thomssen C., Kates R., Spyratos F., Fernö M., Eppenberger-Castori S., et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J. Natl. Cancer Inst. 2002;94:116–128. doi: 10.1093/jnci/94.2.116. PubMed DOI
Müller R. PPARβ/δ in human cancer. Biochimie. 2017;136:90–99. doi: 10.1016/j.biochi.2016.10.019. PubMed DOI
Chen J.-J., Liu S.-P., Zhao J., Wang S.-C., Liu T.-J., Li X. Effects of a novel photoactivated photosensitizer on MDR1 over-expressing human breast cancer cells. J. Photochem. Photobiol. B Biol. 2017;171:67–74. doi: 10.1016/j.jphotobiol.2017.04.037. PubMed DOI
Balaji S.A., Udupa N., Chamallamudi M.R., Gupta V., Rangarajan A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS ONE. 2016;11:e0155013. doi: 10.1371/journal.pone.0155013. PubMed DOI PMC
McDonald E.S., Clark A.S., Tchou J., Zhang P., Freedman G.M. Clinical Diagnosis and Management of Breast Cancer. J. Nucl. Med. 2016;57(Suppl. 1):9S–16S. doi: 10.2967/jnumed.115.157834. PubMed DOI
Pagani O., Regan M.M., Walley B.A., Fleming G.F., Colleoni M., Láng I., Gomez H.L., Tondini C., Burstein H.J., Perez E.A., et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N. Engl. J. Med. 2014;371:107–118. doi: 10.1056/NEJMoa1404037. PubMed DOI PMC
Beaver J.A., Amiri-Kordestani L., Charlab R., Chen W., Palmby T., Tilley A., Zirkelbach J.F., Yu J., Liu Q., Zhao L., et al. FDA Approval: Palbociclib for the Treatment of Postmenopausal Patients with Estrogen Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Clin. Cancer Res. 2015;21:4760–4766. doi: 10.1158/1078-0432.CCR-15-1185. PubMed DOI
Finn R.S., Crown J.P., Lang I., Boer K., Bondarenko I.M., Kulyk S.O., Ettl J., Patel R., Pinter T., Schmidt M., et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study. Lancet Oncol. 2015;16:25–35. doi: 10.1016/S1470-2045(14)71159-3. PubMed DOI
Turner N.C., Ro J., André F., Loi S., Verma S., Iwata H., Harbeck N., Loibl S., Huang Bartlett C., Zhang K., et al. Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2015;373:209–219. doi: 10.1056/NEJMoa1505270. PubMed DOI
Baselga J., Campone M., Piccart M., Burris H.A., Rugo H.S., Sahmoud T., Noguchi S., Gnant M., Pritchard K.I., Lebrun F., et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 2012;366:520–529. doi: 10.1056/NEJMoa1109653. PubMed DOI PMC
Liede A., Jerzak K.J., Hernandez R.K., Wade S.W., Sun P., Narod S.A. The incidence of bone metastasis after early-stage breast cancer in Canada. Breast Cancer Res. Treat. 2016;156:587–595. doi: 10.1007/s10549-016-3782-3. PubMed DOI
Gonzalez-Suarez E., Jacob A.P., Jones J., Miller R., Roudier-Meyer M.P., Erwert R., Pinkas J., Branstetter D., Dougall W.C. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–107. doi: 10.1038/nature09495. PubMed DOI
Yoneda T., Tanaka S., Hata K. Role of RANKL/RANK in primary and secondary breast cancer. World J. Orthop. 2013;4:178–185. doi: 10.5312/wjo.v4.i4.178. PubMed DOI PMC
Kiesel L., Kohl A. Role of the RANK/RANKL pathway in breast cancer. Maturitas. 2016;86:10–16. doi: 10.1016/j.maturitas.2016.01.001. PubMed DOI
Maryas J., Pribyl J., Bouchalova P., Skladal P., Bouchal P. PDZ and LIM domain protein 2 plays dual and context-dependent roles in breast cancer development. bioRxiv. 2020 doi: 10.1101/2020.01.27.920199. DOI
Maryas J., Faktor J., Capkova L., Muller P., Bouchal P. RNF25, TRAF3IP2 and PDLIM2 are promising NF- B modulators associated with metastasis of luminal A breast cancer. Manuscript in preparation.
Kondegowda N.G., Fenutria R., Pollack I.R., Orthofer M., Garcia-Ocaña A., Penninger J.M., Vasavada R.C. Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway. Cell Metab. 2015;22:77–85. doi: 10.1016/j.cmet.2015.05.021. PubMed DOI PMC
Coleman R., Finkelstein D.M., Barrios C., Martin M., Iwata H., Hegg R., Glaspy J., Periañez A.M., Tonkin K., Deleu I., et al. Adjuvant denosumab in early breast cancer (D-CARE): An international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2019 doi: 10.1016/S1470-2045(19)30687-4. PubMed DOI
Lipton A., Fizazi K., Stopeck A.T., Henry D.H., Brown J.E., Yardley D.A., Richardson G.E., Siena S., Maroto P., Clemens M., et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: A combined analysis of 3 pivotal, randomised, phase 3 trials. Eur. J. Cancer. 2012;48:3082–3092. doi: 10.1016/j.ejca.2012.08.002. PubMed DOI
Marquardt J.U., Gomez-Quiroz L., Arreguin Camacho L.O., Pinna F., Lee Y.-H., Kitade M., Domínguez M.P., Castven D., Breuhahn K., Conner E.A., et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol. 2015;63:661–669. doi: 10.1016/j.jhep.2015.04.018. PubMed DOI PMC
García-Piñeres A.J., Lindenmeyer M.T., Merfort I. Role of cysteine residues of p65/NF-kappaB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci. 2004;75:841–856. doi: 10.1016/j.lfs.2004.01.024. PubMed DOI
Lee J., Rhee M.H., Kim E., Cho J.Y. BAY 11-7082 is a broad-spectrum inhibitor with anti-inflammatory activity against multiple targets. Mediat. Inflamm. 2012;2012:416036. doi: 10.1155/2012/416036. PubMed DOI PMC
Shimizu K., Konno S., Ozaki M., Umezawa K., Yamashita K., Todo S., Nishimura M. Dehydroxymethylepoxyquinomicin (DHMEQ), a novel NF-kappaB inhibitor, inhibits allergic inflammation and airway remodelling in murine models of asthma. Clin. Exp. Allergy. 2012;42:1273–1281. doi: 10.1111/j.1365-2222.2012.04007.x. PubMed DOI
Hiscox S., Morgan L., Green T., Nicholson R.I. Src as a therapeutic target in anti-hormone/anti-growth factor-resistant breast cancer. Endocr. Relat. Cancer. 2006;13(Suppl. 1):S53–S59. doi: 10.1677/erc.1.01297. PubMed DOI
Riggins R.B., Thomas K.S., Ta H.Q., Wen J., Davis R.J., Schuh N.R., Donelan S.S., Owen K.A., Gibson M.A., Shupnik M.A., et al. Physical and functional interactions between Cas and c-Src induce tamoxifen resistance of breast cancer cells through pathways involving epidermal growth factor receptor and signal transducer and activator of transcription 5b. Cancer Res. 2006;66:7007–7015. doi: 10.1158/0008-5472.CAN-05-3952. PubMed DOI
Elsberger B., Paravasthu D.M., Tovey S.M., Edwards J. Shorter disease-specific survival of ER-positive breast cancer patients with high cytoplasmic Src kinase expression after tamoxifen treatment. J. Cancer Res. Clin. Oncol. 2012;138:327–332. doi: 10.1007/s00432-011-1096-8. PubMed DOI PMC
Liu X., Feng R. Inhibition of epithelial to mesenchymal transition in metastatic breast carcinoma cells by c-Src suppression. Acta Biochim. Biophys. Sin. (Shanghai) 2010;42:496–501. doi: 10.1093/abbs/gmq043. PubMed DOI
Montero J.C., Seoane S., Ocaña A., Pandiella A. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: Possible combinations in solid tumors. Clin. Cancer Res. 2011;17:5546–5552. doi: 10.1158/1078-0432.CCR-10-2616. PubMed DOI
Liu S., Meng X., Chen H., Liu W., Miller T., Murph M., Lu Y., Zhang F., Gagea M., Arteaga C.L., et al. Targeting tyrosine-kinases and estrogen receptor abrogates resistance to endocrine therapy in breast cancer. Oncotarget. 2014;5:9049–9064. doi: 10.18632/oncotarget.2022. PubMed DOI PMC
Pichot C.S., Hartig S.M., Xia L., Arvanitis C., Monisvais D., Lee F.Y., Frost J.A., Corey S.J. Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. Br. J. Cancer. 2009;101:38–47. doi: 10.1038/sj.bjc.6605101. PubMed DOI PMC
Zhang L., Teng Y., Zhang Y., Liu J., Xu L., Qu J., Hou K., Yang X., Liu Y., Qu X. C-Src-mediated RANKL-induced breast cancer cell migration by activation of the ERK and Akt pathway. Oncol. Lett. 2012;3:395–400. doi: 10.3892/ol.2011.487. PubMed DOI PMC
Sp N., Kang D.Y., Joung Y.H., Park J.H., Kim W.S., Lee H.K., Song K.-D., Park Y.-M., Yang Y.M. Nobiletin Inhibits Angiogenesis by Regulating Src/FAK/STAT3-Mediated Signaling through PXN in ER+ Breast Cancer Cells. Int. J. Mol. Sci. 2017;18:935. doi: 10.3390/ijms18050935. PubMed DOI PMC
Wang H.-C., Chang F.-R., Huang T.-J., Kuo C.-Y., Tsai Y.-C., Wu C.-C. (-)-Liriopein B Suppresses Breast Cancer Progression via Inhibition of Multiple Kinases. Chem. Res. Toxicol. 2015;28:897–906. doi: 10.1021/tx500518j. PubMed DOI
Kim S.J., Nakayama S., Miyoshi Y., Taguchi T., Tamaki Y., Matsushima T., Torikoshi Y., Tanaka S., Yoshida T., Ishihara H., et al. Determination of the specific activity of CDK1 and CDK2 as a novel prognostic indicator for early breast cancer. Ann. Oncol. 2008;19:68–72. doi: 10.1093/annonc/mdm358. PubMed DOI
Johnson N., Bentley J., Wang L.-Z., Newell D.R., Robson C.N., Shapiro G.I., Curtin N.J. Pre-clinical evaluation of cyclin-dependent kinase 2 and 1 inhibition in anti-estrogen-sensitive and resistant breast cancer cells. Br. J. Cancer. 2010;102:342–350. doi: 10.1038/sj.bjc.6605479. PubMed DOI PMC
Issac M.S.M., Yousef E., Tahir M.R., Gaboury L.A. MCM2, MCM4, and MCM6 in Breast Cancer: Clinical Utility in Diagnosis and Prognosis. Neoplasia. 2019;21:1015–1035. doi: 10.1016/j.neo.2019.07.011. PubMed DOI PMC
Li J.-P., Yang Y.-X., Liu Q.-L., Pan S.-T., He Z.-X., Zhang X., Yang T., Chen X.-W., Wang D., Qiu J.-X., et al. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. Drug Des. Dev. Ther. 2015;9:1627–1652. doi: 10.2147/DDDT.S75378. PubMed DOI PMC
Gao S., Li X., Ding X., Qi W., Yang Q. Cepharanthine Induces Autophagy, Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. Cell. Physiol. Biochem. 2017;41:1633–1648. doi: 10.1159/000471234. PubMed DOI
Węsierska-Gądek J., Gritsch D., Zulehner N., Komina O., Maurer M. Roscovitine, a selective CDK inhibitor, reduces the basal and estrogen-induced phosphorylation of ER-α in human ER-positive breast cancer cells. J. Cell. Biochem. 2011;112:761–772. doi: 10.1002/jcb.23004. PubMed DOI
Yang P.-Y., Chen M.-F., Kao Y.-H., Hu D.-N., Chang F.-R., Wu Y.-C. Norcantharidin induces apoptosis of breast cancer cells: Involvement of activities of mitogen activated protein kinases and signal transducers and activators of transcription. Toxicol. In Vitro. 2011;25:699–707. doi: 10.1016/j.tiv.2011.01.011. PubMed DOI
Uppala P.T., Dissmore T., Lau B.H.S., Andacht T., Rajaram S. Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: A proteomic analysis. Phytother. Res. 2013;27:595–601. doi: 10.1002/ptr.4764. PubMed DOI
Gloria N.F., Soares N., Brand C., Oliveira F.L., Borojevic R., Teodoro A.J. Lycopene and beta-carotene induce cell-cycle arrest and apoptosis in human breast cancer cell lines. Anticancer Res. 2014;34:1377–1386. PubMed
Ono M., Takeshima M., Nakano S. Mechanism of the Anticancer Effect of Lycopene (Tetraterpenoids) Enzymes. 2015;37:139–166. doi: 10.1016/bs.enz.2015.06.002. PubMed DOI
Yin F., Wakino S., Liu Z., Kim S., Hsueh W.A., Collins A.R., Van Herle A.J., Law R.E. Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem. Biophys. Res. Commun. 2001;286:916–922. doi: 10.1006/bbrc.2001.5491. PubMed DOI
Xie G., Tang H., Wu S., Chen J., Liu J., Liao C. The cyclin-dependent kinase inhibitor SNS-032 induces apoptosis in breast cancer cells via depletion of Mcl-1 and X-linked inhibitor of apoptosis protein and displays antitumor activity in vivo. Int. J. Oncol. 2014;45:804–812. doi: 10.3892/ijo.2014.2467. PubMed DOI
Rogosnitzky M., Danks R. Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol. Rep. 2011;63:337–347. doi: 10.1016/S1734-1140(11)70500-X. PubMed DOI
Duffy M.J., O’Grady P., Devaney D., O’Siorain L., Fennelly J.J., Lijnen H.J. Urokinase-plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer. 1988;62:531–533. doi: 10.1002/1097-0142(19880801)62:3<531::AID-CNCR2820620315>3.0.CO;2-B. PubMed DOI
Manders P., Tjan-Heijnen V.C.G., Span P.N., Grebenchtchikov N., Foekens J.A., Beex L.V.A.M., Sweep C.G.J.F. Predictive impact of urokinase-type plasminogen activator: Plasminogen activator inhibitor type-1 complex on the efficacy of adjuvant systemic therapy in primary breast cancer. Cancer Res. 2004;64:659–664. doi: 10.1158/0008-5472.CAN-03-1820. PubMed DOI
Têtu B., Brisson J., Lapointe H., Bernard P. Prognostic significance of stromelysin 3, gelatinase A, and urokinase expression in breast cancer. Hum. Pathol. 1998;29:979–985. doi: 10.1016/S0046-8177(98)90204-0. PubMed DOI
Nguyen D.H., Catling A.D., Webb D.J., Sankovic M., Walker L.A., Somlyo A.V., Weber M.J., Gonias S.L. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J. Cell Biol. 1999;146:149–164. doi: 10.1083/jcb.146.1.149. PubMed DOI PMC
Lee J.-E., Kwon Y.-J., Baek H.-S., Ye D.-J., Cho E., Choi H.-K., Oh K.-S., Chun Y.-J. Synergistic induction of apoptosis by combination treatment with mesupron and auranofin in human breast cancer cells. Arch. Pharm. Res. 2017;40:746–759. doi: 10.1007/s12272-017-0923-0. PubMed DOI
Elumalai P., Brindha Mercy A., Arunkamar R., Sharmila G., Bhat F.A., Balakrishnan S., Raja Singh P., Arunakaran J. Nimbolide inhibits invasion and migration, and down-regulates uPAR chemokine gene expression, in two breast cancer cell lines. Cell Prolif. 2014;47:540–552. doi: 10.1111/cpr.12148. PubMed DOI PMC
Al-Subhi N., Ali R., Abdel-Fatah T., Moseley P.M., Chan S.Y.T., Green A.R., Ellis I.O., Rakha E.A., Madhusudan S. Targeting ataxia telangiectasia-mutated- and Rad3-related kinase (ATR) in PTEN-deficient breast cancers for personalized therapy. Breast Cancer Res. Treat. 2018;169:277–286. doi: 10.1007/s10549-018-4683-4. PubMed DOI PMC
Alsubhi N., Middleton F., Abdel-Fatah T.M.A., Stephens P., Doherty R., Arora A., Moseley P.M., Chan S.Y.T., Aleskandarany M.A., Green A.R., et al. Chk1 phosphorylated at serine345 is a predictor of early local recurrence and radio-resistance in breast cancer. Mol. Oncol. 2016;10:213–223. doi: 10.1016/j.molonc.2015.09.009. PubMed DOI PMC
Peasland A., Wang L.-Z., Rowling E., Kyle S., Chen T., Hopkins A., Cliby W.A., Sarkaria J., Beale G., Edmondson R.J., et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br. J. Cancer. 2011;105:372–381. doi: 10.1038/bjc.2011.243. PubMed DOI PMC
Li L., Lu Q., Shen Y., Hu X. Schisandrin B enhances doxorubicin-induced apoptosis of cancer cells but not normal cells. Biochem. Pharmacol. 2006;71:584–595. doi: 10.1016/j.bcp.2005.11.026. PubMed DOI
Nishida H., Tatewaki N., Nakajima Y., Magara T., Ko K.M., Hamamori Y., Konishi T. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res. 2009;37:5678–5689. doi: 10.1093/nar/gkp593. PubMed DOI PMC
Liu Z., Zhang B., Liu K., Ding Z., Hu X. Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition. PLoS ONE. 2012;7:e40480. doi: 10.1371/journal.pone.0040480. PubMed DOI PMC
Zhu Y., Mao C., Wu J., Li S., Ma R., Cao H., Ji M., Jing C., Tang J. Improved ataxia telangiectasia mutated kinase inhibitor KU60019 provides a promising treatment strategy for non-invasive breast cancer. Oncol. Lett. 2014;8:2043–2048. doi: 10.3892/ol.2014.2444. PubMed DOI PMC
Golding S.E., Rosenberg E., Valerie N., Hussaini I., Frigerio M., Cockcroft X.F., Chong W.Y., Hummersone M., Rigoreau L., Menear K.A., et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 2009;8:2894–2902. doi: 10.1158/1535-7163.MCT-09-0519. PubMed DOI PMC
Mei L., Zhang J., He K., Zhang J. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: Where we stand. J. Hematol. Oncol. 2019;12:43. doi: 10.1186/s13045-019-0733-6. PubMed DOI PMC
Dumas G., Dufresne M., Asselin É., Girouard J., Carrier C., Reyes-Moreno C. CD40 pathway activation reveals dual function for macrophages in human endometrial cancer cell survival and invasion. Cancer Immunol. Immunother. 2013;62:273–283. doi: 10.1007/s00262-012-1333-2. PubMed DOI PMC
Tong A.W., Papayoti M.H., Netto G., Armstrong D.T., Ordonez G., Lawson J.M., Stone M.J. Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. Clin. Cancer Res. 2001;7:691–703. PubMed
Kim H., Kim Y., Bae S., Kong J.M., Choi J., Jang M., Choi J., Hong J.-M., Hwang Y.-I., Kang J.S., et al. Direct Interaction of CD40 on Tumor Cells with CD40L on T Cells Increases the Proliferation of Tumor Cells by Enhancing TGF-β Production and Th17 Differentiation. PLoS ONE. 2015;10:e0125742. doi: 10.1371/journal.pone.0125742. PubMed DOI PMC
Gladue R.P., Paradis T., Cole S.H., Donovan C., Nelson R., Alpert R., Gardner J., Natoli E., Elliott E., Shepard R., et al. The CD40 agonist antibody CP-870,893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice. Cancer Immunol. Immunother. 2011;60:1009–1017. doi: 10.1007/s00262-011-1014-6. PubMed DOI PMC
Daoussis D., Andonopoulos A.P., Liossis S.-N.C. Targeting CD40L: A promising therapeutic approach. Clin. Diagn. Lab. Immunol. 2004;11:635–641. doi: 10.1128/CDLI.11.4.635-641.2004. PubMed DOI PMC
Jiang K., He B., Lai L., Chen Q., Liu Y., Guo Q., Wang Q. Cyclosporine A inhibits breast cancer cell growth by downregulating the expression of pyruvate kinase subtype M2. Int. J. Mol. Med. 2012;30:302–308. doi: 10.3892/ijmm.2012.989. PubMed DOI
Flores C., Fouquet G., Moura I.C., Maciel T.T., Hermine O. Lessons to Learn From Low-Dose Cyclosporin-A: A New Approach for Unexpected Clinical Applications. Front. Immunol. 2019;10:588. doi: 10.3389/fimmu.2019.00588. PubMed DOI PMC
Piechutta M., Berghoff A.S. New emerging targets in cancer immunotherapy: The role of Cluster of Differentiation 40 (CD40/TNFR5) ESMO Open. 2019;4:e000510. doi: 10.1136/esmoopen-2019-000510. PubMed DOI PMC
Wang X., Wong J., Sevinsky C.J., Kokabee L., Khan F., Sun Y., Conklin D.S. Bruton’s Tyrosine Kinase Inhibitors Prevent Therapeutic Escape in Breast Cancer Cells. Mol. Cancer Ther. 2016;15:2198–2208. doi: 10.1158/1535-7163.MCT-15-0813. PubMed DOI PMC
Hong D., Rasco D., Veeder M., Luke J.J., Chandler J., Balmanoukian A., George T.J., Munster P., Berlin J.D., Gutierrez M., et al. A Phase 1b/2 Study of the Bruton Tyrosine Kinase Inhibitor Ibrutinib and the PD-L1 Inhibitor Durvalumab in Patients with Pretreated Solid Tumors. Oncology. 2019;97:102–111. doi: 10.1159/000500571. PubMed DOI
Varikuti S., Singh B., Volpedo G., Ahirwar D.K., Jha B.K., Saljoughian N., Viana A.G., Verma C., Hamza O., Halsey G., et al. Ibrutinib treatment inhibits breast cancer progression and metastasis by inducing conversion of myeloid-derived suppressor cells to dendritic cells. Br. J. Cancer. 2020;122:1005–1013. doi: 10.1038/s41416-020-0743-8. PubMed DOI PMC
Yu H., Yang J., Jiao S., Li Y., Zhang W., Wang J. Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: Implications for prognosis. Cancer Immunol. Immunother. 2015;64:853–860. doi: 10.1007/s00262-015-1696-2. PubMed DOI PMC
Chen X., Shao Q., Hao S., Zhao Z., Wang Y., Guo X., He Y., Gao W., Mao H. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. 2017;8:13703–13715. doi: 10.18632/oncotarget.14626. PubMed DOI PMC
Qu Q., Zhai Z., Xu J., Li S., Chen C., Lu B. IL36 Cooperates With Anti-CTLA-4 mAbs to Facilitate Antitumor Immune Responses. Front. Immunol. 2020;11:634. doi: 10.3389/fimmu.2020.00634. PubMed DOI PMC
Chakraborty G., Rangaswami H., Jain S., Kundu G.C. Hypoxia regulates cross-talk between Syk and Lck leading to breast cancer progression and angiogenesis. J. Biol. Chem. 2006;281:11322–11331. doi: 10.1074/jbc.M512546200. PubMed DOI
Elsberger B., Fullerton R., Zino S., Jordan F., Mitchell T.J., Brunton V.G., Mallon E.A., Shiels P.G., Edwards J. Breast cancer patients’ clinical outcome measures are associated with Src kinase family member expression. Br. J. Cancer. 2010;103:899–909. doi: 10.1038/sj.bjc.6605829. PubMed DOI PMC
Llanes-Fernández L., del Arango-Prado M.C., Alcocer-González J.M., Guerra-Yi M.E., Franco-Odio S., Camacho-Rodríguez R., Madrid-Marina V., Tamez-Guerra R., Rodríguez-Padilla C. Association between the expression of IL-10 and T cell activation proteins loss in early breast cancer patients. J. Cancer Res. Clin. Oncol. 2009;135:255–264. doi: 10.1007/s00432-008-0446-7. PubMed DOI
Mahabeleshwar G.H., Das R., Kundu G.C. Tyrosine kinase, p56lck-induced cell motility, and urokinase-type plasminogen activator secretion involve activation of epidermal growth factor receptor/extracellular signal regulated kinase pathways. J. Biol. Chem. 2004;279:9733–9742. doi: 10.1074/jbc.M311400200. PubMed DOI
Wolff A.C., Hammond M.E.H., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M.S., Bilous M., Fitzgibbons P., et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013;31:3997–4013. doi: 10.1200/JCO.2013.50.9984. PubMed DOI
Maisonneuve P., Disalvatore D., Rotmensz N., Curigliano G., Colleoni M., Dellapasqua S., Pruneri G., Mastropasqua M.G., Luini A., Bassi F., et al. Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes. Breast Cancer Res. 2014;16:R65. doi: 10.1186/bcr3679. PubMed DOI PMC
Goldhirsch A., Winer E.P., Coates A.S., Gelber R.D., Piccart-Gebhart M., Thürlimann B., Senn H.-J., Panel members Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013;24:2206–2223. doi: 10.1093/annonc/mdt303. PubMed DOI PMC
[(accessed on 19 September 2014)]; Available online: http://compbio.dfci.harvard.edu/pubs/sbtpaper/
Wirapati P., Sotiriou C., Kunkel S., Farmer P., Pradervand S., Haibe-Kains B., Desmedt C., Ignatiadis M., Sengstag T., Schütz F., et al. Meta-analysis of gene expression profiles in breast cancer: Toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 2008;10:R65. doi: 10.1186/bcr2124. PubMed DOI PMC
Sontrop H.M.J., Reinders M.J.T., Moerland P.D. Breast cancer subtype predictors revisited: From consensus to concordance? BMC Med. Genom. 2016;9:26. doi: 10.1186/s12920-016-0209-2. PubMed DOI PMC
Goldhirsch A., Wood W.C., Coates A.S., Gelber R.D., Thürlimann B., Senn H.-J. Panel members Strategies for subtypes—Dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011;22:1736–1747. doi: 10.1093/annonc/mdr304. PubMed DOI PMC
R Development Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2008.
Huber W., Carey V.J., Gentleman R., Anders S., Carlson M., Carvalho B.S., Bravo H.C., Davis S., Gatto L., Girke T., et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC
Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Mootha V.K., Lindgren C.M., Eriksson K.-F., Subramanian A., Sihag S., Lehar J., Puigserver P., Carlsson E., Ridderstråle M., Laurila E., et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003;34:267–273. doi: 10.1038/ng1180. PubMed DOI
Lapcik P., Pospisilova A., Bouchal P. SUPERTAM_HGU133A Gene Set Enrichment Analysis (GSEA) in term of lymph node and distant metastasis. Mendeley Data. 2020:v1. doi: 10.17632/cdrj2vrv8f.1. DOI
Global Interactome Mapping Reveals Pro-tumorigenic Interactions of NF-κB in Breast Cancer