Catechol-O-methyl transferase suppresses cell invasion and interplays with MET signaling in estrogen dependent breast cancer
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36690660
PubMed Central
PMC9870911
DOI
10.1038/s41598-023-28078-1
PII: 10.1038/s41598-023-28078-1
Knihovny.cz E-resources
- MeSH
- Estrogens metabolism MeSH
- Catechol O-Methyltransferase * genetics MeSH
- Estrogens, Catechol MeSH
- Catechols MeSH
- Neoplasms * MeSH
- Receptors, Estrogen metabolism MeSH
- Tandem Mass Spectrometry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- catechol MeSH Browser
- Estrogens MeSH
- Catechol O-Methyltransferase * MeSH
- Estrogens, Catechol MeSH
- Catechols MeSH
- Receptors, Estrogen MeSH
Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). 2D and 3D assays revealed that COMT overexpression associates with decreased cell invasion (p < 0.0001 for Transwell assay, p < 0.05 for spheroid formation). RNA-Seq and LC-DIA-MS/MS proteomics identified genes associated with invasion (FTO, PIR, TACSTD2, ANXA3, KRT80, S100P, PREX1, CLEC3A, LCP1) being downregulated in MCF7-COMT cells, while genes associated with less aggressive phenotype (RBPMS, ROBO2, SELENBP, EPB41L2) were upregulated both at transcript (|log2FC|> 1, adj. p < 0.05) and protein (|log2FC|> 0.58, q < 0.05) levels. Importantly, proteins driving MET signaling were less abundant in COMT overexpressing cells, and pull-down confirmed interaction between COMT and Kunitz-type protease inhibitor 2 (SPINT2), a negative regulator of MET (log2FC = 5.10, q = 1.04-7). In conclusion, COMT may act as tumor suppressor in ER dependent BC not only by detoxification of catechol estrogens but also by suppressing cell invasion and interplay with MET pathway.
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
See more in PubMed
Lavigne JA, et al. An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer. Cancer Res. 1997;57:5493–5497. PubMed
Lundström K, et al. Cloning, expression and structure of catechol-O-methyltransferase. Biochim. Biophys. Acta. 1995;1251:1–10. doi: 10.1016/0167-4838(95)00071-2. PubMed DOI
Li K, Li W, Zou H. Catechol-O-methyltransferase Val158Met polymorphism and breast cancer risk in Asian population. Tumor Biol. 2014;35:2343–2350. doi: 10.1007/s13277-013-1310-1. PubMed DOI
Williams-Brown MY, et al. The effect of tamoxifen and raloxifene on estrogen metabolism and endometrial cancer risk. J. Steroid Biochem. Mol. Biol. 2011;126:78–86. doi: 10.1016/j.jsbmb.2011.05.001. PubMed DOI PMC
Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1996;36:203–232. doi: 10.1146/annurev.pa.36.040196.001223. PubMed DOI
Cohen GM, d’Arcy Doherty M. Free radical mediated cell toxicity by redox cycling chemicals. Br. J. Cancer. Suppl. 1987;8:46–52. PubMed PMC
Tan X, Chen M. Association between Catechol-O-methyltransferase rs4680 (G>A) polymorphism and lung cancer risk. Diagn. Pathol. 2014;9:192. doi: 10.1186/s13000-014-0192-x. PubMed DOI PMC
Hevir N, Šinkovec J, Rižner TL. Disturbed expression of phase I and phase II estrogen-metabolizing enzymes in endometrial cancer: Lower levels of CYP1B1 and increased expression of S-COMT. Mol. Cell. Endocrinol. 2011;331:158–167. doi: 10.1016/j.mce.2010.09.011. PubMed DOI
Yager JD. Catechol-O-methyltransferase: Characteristics, polymorphisms and role in breast cancer. Drug Discov. Today Dis. Mech. 2012;9:e41–e46. doi: 10.1016/j.ddmec.2012.10.002. PubMed DOI PMC
Peterson NB, et al. Association of COMT haplotypes and breast cancer risk in caucasian women. Anticancer Res. 2010;30:217–220. PubMed PMC
Faktor J, et al. Proteomics identification and validation of desmocollin-1 and catechol-O-methyltransferase as proteins associated with breast cancer cell migration and metastasis. Proteomics. 2019;19:e1900073. doi: 10.1002/pmic.201900073. PubMed DOI
Faktor J, Sucha R, Paralova V, Liu Y, Bouchal P. Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues. Proteomics. 2017;17:1600323. doi: 10.1002/pmic.201600323. PubMed DOI
Lukinavičius G, et al. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat. Commun. 2015;6:8497. doi: 10.1038/ncomms9497. PubMed DOI PMC
Imaris software. https://imaris.oxinst.com/
Bouchalova P, et al. Transgelin contributes to a poor response of metastatic renal cell carcinoma to Sunitinib treatment. Biomedicines. 2021;9:1145. doi: 10.3390/biomedicines9091145. PubMed DOI PMC
Bouchal P, et al. Breast cancer classification based on proteotypes obtained by SWATH mass spectrometry. Cell Rep. 2019;28:832–843.e7. doi: 10.1016/j.celrep.2019.06.046. PubMed DOI PMC
Spectronaut software. https://biognosys.com/software/spectronaut/
Shannon P, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: A network-based method for gene-set enrichment visualization and interpretation. PLoS ONE. 2010;5:e13984. doi: 10.1371/journal.pone.0013984. PubMed DOI PMC
GraphPad software. https://www.graphpad.com/
Mon EE, et al. Regulation of mitochondrial iron homeostasis by sideroflexin 2. J. Physiol. Sci. JPS. 2019;69:359–373. doi: 10.1007/s12576-018-0652-2. PubMed DOI PMC
Edemir B. Identification of prognostic organic cation and anion transporters in different cancer entities by in silico analysis. Int. J. Mol. Sci. 2020;21:E4491. doi: 10.3390/ijms21124491. PubMed DOI PMC
Shinomiya H. Plastin family of actin-bundling proteins: Its functions in leukocytes, neurons, intestines, and cancer. Int. J. Cell Biol. 2012;2012:1–8. doi: 10.1155/2012/213492. PubMed DOI PMC
Zhang H, et al. Extracellular matrix-related genes play an important role in the progression of NMIBC to MIBC: A bioinformatics analysis study. Biosci. Rep. 2020;40:BSR20194192. doi: 10.1042/BSR20194192. PubMed DOI PMC
Sangwan V, et al. Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J. Biol. Chem. 2008;283:34374–34383. doi: 10.1074/jbc.M805916200. PubMed DOI PMC
Parr C, Jiang WG. Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int. J. Cancer. 2006;119:1176–1183. doi: 10.1002/ijc.21881. PubMed DOI
Oughtred R, et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. Publ. Protein Soc. 2021;30:187–200. doi: 10.1002/pro.3978. PubMed DOI PMC
Schaefer MH, et al. HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS ONE. 2012;7:e31826. doi: 10.1371/journal.pone.0031826. PubMed DOI PMC
Calderone A, Castagnoli L, Cesareni G. mentha: A resource for browsing integrated protein-interaction networks. Nat. Methods. 2013;10:690–691. doi: 10.1038/nmeth.2561. PubMed DOI
Wu J, et al. Integrated network analysis platform for protein-protein interactions. Nat. Methods. 2009;6:75–77. doi: 10.1038/nmeth.1282. PubMed DOI
Zhang Y, et al. GNAI3 inhibits tumor cell migration and invasion and is post-transcriptionally regulated by miR-222 in hepatocellular carcinoma. Cancer Lett. 2015;356:978–984. doi: 10.1016/j.canlet.2014.11.013. PubMed DOI
Li Z-W, et al. GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology. 2019;156:2297–2312. doi: 10.1053/j.gastro.2019.02.040. PubMed DOI PMC
Lingrand M, et al. SCD1 activity promotes cell migration via a PLD-mTOR pathway in the MDA-MB-231 triple-negative breast cancer cell line. Breast Cancer Tokyo Jpn. 2020;27:594–606. doi: 10.1007/s12282-020-01053-8. PubMed DOI
Pucci S, et al. Carnitine palmitoyl transferase-1A (CPT1A): A new tumor specific target in human breast cancer. Oncotarget. 2016;7:19982–19996. doi: 10.18632/oncotarget.6964. PubMed DOI PMC
Xiong Y, et al. CPT1A regulates breast cancer-associated lymphangiogenesis via VEGF signaling. Biomed. Pharmacother. Biomedecine Pharmacother. 2018;106:1–7. doi: 10.1016/j.biopha.2018.05.112. PubMed DOI
Tolba MF, Omar HA, Hersi F, Nunes ACF, Noreddin AM. The impact of Catechol-O-methyl transferase knockdown on the cell proliferation of hormone-responsive cancers. Mol. Cell. Endocrinol. 2019;488:79–88. doi: 10.1016/j.mce.2019.03.007. PubMed DOI
Lau D, et al. Role of c-Met/β1 integrin complex in the metastatic cascade in breast cancer. JCI Insight. 2021;6:138928. doi: 10.1172/jci.insight.138928. PubMed DOI PMC
Parr C, Watkins G, Mansel RE, Jiang WG. The hepatocyte growth factor regulatory factors in human breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004;10:202–211. doi: 10.1158/1078-0432.CCR-0553-3. PubMed DOI
Shrestha Y, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene. 2012;31:3397–3408. doi: 10.1038/onc.2011.515. PubMed DOI PMC
Niendorf S, et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol. Cell. Biol. 2007;27:5029–5039. doi: 10.1128/MCB.01566-06. PubMed DOI PMC
Duan B, Wang C, Liu Z, Yang X. USP8 is a novel therapeutic target in melanoma through regulating receptor tyrosine kinase levels. Cancer Manag. Res. 2021;13:4181–4189. doi: 10.2147/CMAR.S300195. PubMed DOI PMC
Parr C, Jiang WG. Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int. J. Oncol. 2001;19:857–863. PubMed
Solís-Calero C, Carvalho HF. KLK14 interactions with HAI-1 and HAI-2 serine protease inhibitors: A molecular dynamics and relative free-energy calculations study. Cell Biol. Int. 2017;41:1246–1264. doi: 10.1002/cbin.10839. PubMed DOI
Kirchhofer D, et al. Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett. 2005;579:1945–1950. doi: 10.1016/j.febslet.2005.01.085. PubMed DOI
Betsunoh H, et al. Clinical relevance of hepsin and hepatocyte growth factor activator inhibitor type 2 expression in renal cell carcinoma. Cancer Sci. 2007;98:491–498. doi: 10.1111/j.1349-7006.2007.00412.x. PubMed DOI PMC
Morris MR, et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res. 2005;65:4598–4606. doi: 10.1158/0008-5472.CAN-04-3371. PubMed DOI
Yamauchi M, et al. Hepatocyte growth factor activator inhibitor types 1 and 2 are expressed by tubular epithelium in kidney and down-regulated in renal cell carcinoma. J. Urol. 2004;171:890–896. doi: 10.1097/01.ju.0000092861.21122.d2. PubMed DOI
Pereira MS, et al. Loss of SPINT2 expression frequently occurs in glioma, leading to increased growth and invasion via MMP2. Cell. Oncol. Dordr. 2020;43:107–121. doi: 10.1007/s13402-019-00475-7. PubMed DOI
Liu F, et al. SPINT2 is hypermethylated in both IDH1 mutated and wild-type glioblastomas, and exerts tumor suppression via reduction of c-Met activation. J. Neurooncol. 2019;142:423–434. doi: 10.1007/s11060-019-03126-x. PubMed DOI PMC
Fukushima T, et al. Aberrant methylation and silencing of the SPINT2 gene in high-grade gliomas. Cancer Sci. 2018;109:2970–2979. doi: 10.1111/cas.13732. PubMed DOI PMC
Kongkham PN, et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 2008;68:9945–9953. doi: 10.1158/0008-5472.CAN-08-2169. PubMed DOI
Hwang S, et al. Epigenetic silencing of SPINT2 promotes cancer cell motility via HGF-MET pathway activation in melanoma. J. Invest. Dermatol. 2015;135:2283–2291. doi: 10.1038/jid.2015.160. PubMed DOI PMC
Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin. Chim. Acta Int. J. Clin. Chem. 2013;424:53–65. doi: 10.1016/j.cca.2013.05.002. PubMed DOI
Kawaguchi M, et al. Hepatocyte growth factor activator inhibitor-2 stabilizes Epcam and maintains epithelial organization in the mouse intestine. Commun. Biol. 2019;2:11. doi: 10.1038/s42003-018-0255-8. PubMed DOI PMC
Marchitti SA, Orlicky DJ, Vasiliou V. Expression and initial characterization of human ALDH3B1. Biochem. Biophys. Res. Commun. 2007;356:792–798. doi: 10.1016/j.bbrc.2007.03.046. PubMed DOI PMC
Chung S, et al. Plexin-A4 mediates amyloid-β-induced tau pathology in Alzheimer’s disease animal model. Prog. Neurobiol. 2021 doi: 10.1016/j.pneurobio.2021.102075. PubMed DOI
Hosp F, et al. Quantitative interaction proteomics of neurodegenerative disease proteins. Cell Rep. 2015;11:1134–1146. doi: 10.1016/j.celrep.2015.04.030. PubMed DOI PMC
Oláh J, et al. Interactions of pathological hallmark proteins: Tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J. Biol. Chem. 2011;286:34088–34100. doi: 10.1074/jbc.M111.243907. PubMed DOI PMC
Rowe RG, Weiss SJ. Breaching the basement membrane: Who, when and how? Trends Cell Biol. 2008;18:560–574. doi: 10.1016/j.tcb.2008.08.007. PubMed DOI
Cox TR. The matrix in cancer. Nat. Rev. Cancer. 2021;21:217–238. doi: 10.1038/s41568-020-00329-7. PubMed DOI
Porter S, Clark IM, Kevorkian L, Edwards DR. The ADAMTS metalloproteinases. Biochem. J. 2005;386:15–27. doi: 10.1042/BJ20040424. PubMed DOI PMC
Gilkes DM, et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. MCR. 2013;11:456–466. doi: 10.1158/1541-7786.MCR-12-0629. PubMed DOI PMC
Rosette C, et al. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 2005;26:943–950. doi: 10.1093/carcin/bgi070. PubMed DOI
Sharma R, et al. Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. Dordr. 2017;40:199–208. doi: 10.1007/s13402-017-0324-x. PubMed DOI
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015;14:130–146. doi: 10.1038/nrd4504. PubMed DOI PMC
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and tumor suppressive components of the cell cycle in breast cancer progression and prognosis. Pharmaceutics. 2021;13:569. doi: 10.3390/pharmaceutics13040569. PubMed DOI PMC
Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016;118:544–552. doi: 10.1016/j.acthis.2016.05.002. PubMed DOI
Wang R, et al. Role of β-estradiol in MCF-7 breast cancer cell line based on the bioinformatics analysis. Gynecol. Obstet. Invest. 2019;84:268–276. doi: 10.1159/000487945. PubMed DOI
Xie T, Ho SL, Ramsden D. Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol. Pharmacol. 1999;56:31–38. doi: 10.1124/mol.56.1.31. PubMed DOI
Wu Q, Odwin-Dacosta S, Cao S, Yager JD, Tang W-Y. Estrogen down regulates COMT transcription via promoter DNA methylation in human breast cancer cells. Toxicol. Appl. Pharmacol. 2019;367:12–22. doi: 10.1016/j.taap.2019.01.016. PubMed DOI
Zou Z, Ohta T, Miura F, Oki S. ChIP-Atlas 2021 update: A data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res. 2022;50:W175–182. doi: 10.1093/nar/gkac199. PubMed DOI PMC
Oki S, et al. ChIP-Atlas: A data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 2018;19:e46255. doi: 10.15252/embr.201846255. PubMed DOI PMC
Oki, S; Ohta, T (2015): ChIP-Atlas. https://chip-atlas.org
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC