Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and interoperability among computational chemistry programs

. 2021 Nov 28 ; 155 (20) : 204801.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34852489

Grantová podpora
P30 CA008748 NCI NIH HHS - United States
R01 GM132386 NIGMS NIH HHS - United States

Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and interoperable interfaces that work with existing community codes to provide more functionality and composability than could be achieved with a single program. The Quantum Chemistry Common Driver and Databases (QCDB) project provides such capability through an application programming interface (API) that facilitates interoperability across multiple quantum chemistry software packages. In tandem with the Molecular Sciences Software Institute and their Quantum Chemistry Archive ecosystem, the unique functionalities of several CMS programs are integrated, including CFOUR, GAMESS, NWChem, OpenMM, Psi4, Qcore, TeraChem, and Turbomole, to provide common computational functions, i.e., energy, gradient, and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency analysis. Both standard users and power users benefit from adopting these APIs as they lower the language barrier of input styles and enable a standard layout of variables and data. These designs allow end-to-end interoperable programming of complex computations and provide best practices options by default.

Applied and Computational Mathematics RWTH Aachen University Schinkelstr 2 52062 Aachen Germany

California Institute of Technology Pasadena California 91125 USA

Center for Computational Molecular Science and Technology School of Chemistry and Biochemistry and School of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA

Center for Computational Quantum Chemistry University of Georgia Athens Georgia 30602 USA

Computational and Systems Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New York New York 10065 USA

Data Science and Learning Division Argonne National Laboratory Lemont Illinois 60439 USA

Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA

Department of Chemistry and Ames Laboratory Iowa State University Ames Iowa 50011 USA

Department of Chemistry Bethel University St Paul Minnesota 55112 USA

Department of Chemistry Centre for Theoretical and Computational Chemistry UiT The Arctic University of Norway N 9037 Tromsø Norway

Department of Chemistry Iowa State University Ames Iowa 50011 USA

Department of Chemistry Lancaster University Lancaster LA1 4YW United Kingdom

Department of Chemistry Stanford University Stanford California 94305 USA

Department of Chemistry University of California Davis Davis California 95616 USA

Department of Chemistry University of Florida Gainesville Florida 32611 USA

FU Berlin Department of Mathematics and Computer Science 14195 Berlin Germany

Institute for Advanced Computational Science Stony Brook University Stony Brook New York 11794 5250 USA

Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 612 65 Brno Czech Republic

Institute of Physical Chemistry Friedrich Schiller University Jena Jena Germany

Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany

Laboratory of Computational Biology National Institutes of Health National Heart Lung and Blood Institute Bethesda Maryland 20892 USA

Molecular Sciences Software Institute Blacksburg Virginia 24060 USA

Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 D 53115 Bonn Germany

Open Force Field Initiative University of Colorado Boulder Boulder Colorado 80309 USA

Quantum Theory Project The University of Florida 2328 New Physics Building Gainesville Florida 32611 8435 USA

School of Molecular and Life Sciences Curtin University GPO Box U1987 Perth 6845 WA Australia

The Institute for Computational Engineering and Sciences The University of Texas at Austin Austin Texas 78712 USA

Zobrazit více v PubMed

Truhlar D. G., “Basis-set extrapolation,” Chem. Phys. Lett. 294, 45–48 (1998).10.1016/s0009-2614(98)00866-5 DOI

Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., and Wilson A. K., “Basis-set convergence in correlated calculations on Ne, N2, and H2O,” Chem. Phys. Lett. 286, 243–252 (1998).10.1016/s0009-2614(98)00111-0 DOI

East A. L. L. and Allen W. D., “The heat of formation of NCO,” J. Chem. Phys. 99, 4638–4650 (1993).10.1063/1.466062 DOI

Császár A. G., Allen W. D., and Schaefer H. F., “In pursuit of the ab initio limit for conformational energy prototypes,” J. Chem. Phys. 108, 9751–9764 (1998).10.1063/1.476449 DOI

Schuurman M. S., Muir S. R., Allen W. D., and Schaefer H. F., “Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H, N, C, O] isomers,” J. Chem. Phys. 120, 11586–11599 (2004).10.1063/1.1707013 PubMed DOI

Curtiss L. A., Raghavachari K., Redfern P. C., Rassolov V., and Pople J. A., “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” J. Chem. Phys. 109, 7764–7776 (1998).10.1063/1.477422 DOI

Tajti A., Szalay P. G., Császár A. G., Kállay M., Gauss J., Valeev E. F., Flowers B. A., Vázquez J., and Stanton J. F., “HEAT: High accuracy extrapolated ab initio thermochemistry,” J. Chem. Phys. 121, 11599–11613 (2004).10.1063/1.1811608 PubMed DOI

Grimme S., Antony J., Ehrlich S., and Krieg H., “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu,” J. Chem. Phys. 132, 154104 (2010).10.1063/1.3382344 PubMed DOI

Boys S. F. and Bernardi F., “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Mol. Phys. 19, 553–566 (1970).10.1080/00268977000101561 DOI

Raghavachari K., Trucks G. W., Pople J. A., and Head-Gordon M., “A fifth-order perturbation comparison of electron correlation theories,” Chem. Phys. Lett. 157, 479–483 (1989).10.1016/s0009-2614(89)87395-6 DOI

Thaller B., Grant I. P., Quiney H. M., Andrae D., Desclaux J., Saue T., Labzowsky L., Goidenko I., Engel E., Dolg M., Sapirstein J., Christensen N., Wolf A., Reiher M., Hess B. A., Kutzelnigg W., Sundholm D., Fægri K., Dyall K. G., Schwerdtfeger P., and Visscher L., in Relativistic Electronic Structure Theory—Part 1: Fundamentals, edited by Schwerdtfeger P. (Elsevier, Amsterdam, 2002).

Born M. and Oppenheimer R., “Zur quantentheorie der molekeln,” Ann. Phys. 389, 457–484 (1927).10.1002/andp.19273892002 DOI

Kutzelnigg W., “The adiabatic approximation I. The physical background of the Born–Handy ansatz,” Mol. Phys. 90, 909–916 (1997).10.1080/00268979709482675 DOI

Warden C. E., Smith D. G. A., Burns L. A., Bozkaya U., and Sherrill C. D., “Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory,” J. Chem. Phys. 152, 124109 (2020).10.1063/5.0004863 PubMed DOI

JSON SCHEMA: A vocabulary that allows you to annotate and validate JSON documents. For the current version, see https://json-schema.org/; accessed January 2020.

Smith D. G. A., Altarawy D., Burns L. A., Welborn M., Naden L. N., Ward L., Ellis S., Pritchard B. P., and Crawford T. D., “The MolSSI QCARCHIVE project: An open-source platform to compute, organize, and share quantum chemistry data,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11, e1491 (2021).10.1002/wcms.1491 DOI

Krylov A., Windus T. L., Barnes T., Marin-Rimoldi E., Nash J. A., Pritchard B., Smith D. G. A., Altarawy D., Saxe P., Clementi C., Crawford T. D., Harrison R. J., Jha S., Pande V. S., and Head-Gordon T., “Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science,” J. Chem. Phys. 149, 180901 (2018).10.1063/1.5052551 PubMed DOI

Smith D. G. A., de Jong B., Burns L. A., Hutchison G., and Hanwell M. D., QCSCHEMA: A schema for quantum chemistry. For the current version, see https://github.com/MolSSI/QCSchema; accessed January 2020.

Barbatti M., Granucci G., Persico M., Ruckenbauer M., Vazdar M., Eckert-Maksić M., and Lischka H., “The on-the-fly surface-hopping program system NEWTON-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems,” J. Photochem. Photobiol., A 190, 228–240 (2007).10.1016/j.jphotochem.2006.12.008 DOI

Toniolo A., Thompson A. L., and Martínez T. J., “Excited state direct dynamics of benzene with reparameterized multi-reference semiempirical configuration interaction methods,” Chem. Phys. 304, 133–145 (2004).10.1016/j.chemphys.2004.04.018 DOI

Levine B. G., Coe J. D., Virshup A. M., and Martínez T. J., “Implementation of ab initio multiple spawning in the Molpro quantum chemistry package,” Chem. Phys. 347, 3–16 (2008).10.1016/j.chemphys.2008.01.014 DOI

Gaenko A., DeFusco A., Varganov S. A., Martínez T. J., and Gordon M. S., “Interfacing the ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-azomethane,” J. Phys. Chem. A 118, 10902–10908 (2014).10.1021/jp508242j PubMed DOI

Keceli M. and Elliott S., Quantum Thermochemistry Calculator; https://github.com/PACChem/QTC; accessed 25 November 2019.

Steinmetzer J., Kupfer S., and Gräfe S., “pysisyphus: Exploring potential energy surfaces in ground and excited states,” Int. J. Quantum Chem. 121, e26390 (2021).10.1002/qua.26390 DOI

Řezáč J., Cuby—Ruby framework for computational chemistry, version 4, http://cuby4.molecular.cz; accessed 22 November 2019.

Řezáč J., “Cuby: An integrative framework for computational chemistry,” J. Comput. Chem. 37, 1230–1237 (2016).10.1002/jcc.24312 PubMed DOI

Polik W. F. and Schmidt J. R., “WebMO: Web-based computational chemistry calculations in education and research,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, e1554.10.1002/wcms.1554 DOI

Larsen A. H., Mortensen J. J., Blomqvist J., Castelli I. E., Christensen R., Dułak M., Friis J., Groves M. N., Hammer B., Hargus C., Hermes E. D., Jennings P. C., Jensen P. B., Kermode J., Kitchin J. R., Kolsbjerg E. L., Kubal J., Kaasbjerg K., Lysgaard S., Maronsson J. B., Maxson T., Olsen T., Pastewka L., Peterson A., Rostgaard C., Schiøtz J., Schütt O., Strange M., Thygesen K. S., Vegge T., Vilhelmsen L., Walter M., Zeng Z., and Jacobsen K. W., “The atomic simulation environment—A Python library for working with atoms,” J. Phys.: Condens. Matter 29, 273002 (2017).10.1088/1361-648X/aa680e PubMed DOI

Gjerding M. and Larsen A. H., ASR: Atomic simulation recipes: Recipes for calculating material properties. For the current version, see https://gitlab.com/asr-dev/asr; accessed September 2021. Documentation at https://asr.readthedocs.io/en/latest/index.html.

Huber S. P., Zoupanos S., Uhrin M., Talirz L., Kahle L., Häuselmann R., Gresch D., Müller T., Yakutovich A. V., Andersen C. W., Ramirez F. F., Adorf C. S., Gargiulo F., Kumbhar S., Passaro E., Johnston C., Merkys A., Cepellotti A., Mounet N., Marzari N., Kozinsky B., and Pizzi G., “AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance,” Sci. Data 7, 300 (2020).10.1038/s41597-020-00638-4 PubMed DOI PMC

Uhrin M., Huber S. P., Yu J., Marzari N., and Pizzi G., “Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows,” Comput. Mater. Sci. 187, 110086 (2021).10.1016/j.commatsci.2020.110086 DOI

Lu Y., Farrow M. R., Fayon P., Logsdail A. J., Sokol A. A., Catlow C. R. A., Sherwood P., and Keal T. W., “Open-source, Python-based redevelopment of the ChemShell multiscale QM/MM environment,” J. Chem. Theory Comput. 15, 1317–1328 (2019).10.1021/acs.jctc.8b01036 PubMed DOI

O’Boyle N. M., Tenderholt A. L., and Langner K. M., “cclib: A library for package-independent computational chemistry algorithms,” J. Comput. Chem. 29, 839–845 (2008).10.1002/jcc.20823 PubMed DOI

Langner K. M. and Berquist E., CCLIB: Parsers and algorithms for computational chemistry logfiles. For the current version, see https://github.com/cclib/cclib; accessed May 2021, 10.5281/zenodo.1407790. DOI

Verstraelen T., Tecmer P., Heidar-Zadeh F., González-Espinoza C. E., Chan M., Kim T. D., Boguslawski K., Fias S., Vandenbrande S., Berrocal D., and Ayers P. W., HORTON, version 2.1.1, a helpful open-source research tool for n-fermion systems, see http://theochem.github.com/horton/.

Smith D. G. A., Burns L. A., Naden L., and Welborn M., QCELEMENTAL: Periodic table, physical constants, and molecule parsing for quantum chemistry. For the current version, see https://github.com/MolSSI/QCElemental; accessed January 2020.

Smith D. G. A., Lee S., Burns L. A., and Welborn M., QCENGINE: Quantum chemistry program executor and IO standardizer (QCSchema). For the current version, see https://github.com/MolSSI/QCEngine; accessed January 2020.

Smith D. G. A., Welborn M., Altarawy D., and Naden L., QCFRACTAL: A distributed compute and database platform for quantum chemistry. For the current version, see https://github.com/MolSSI/QCFractal; accessed January 2020.

Smith D. G. A., Burns L. A., Altarawy D., Naden L., and Welborn M., QCARCHIVE: A central source to compile, aggregate, query, and share quantum chemistry data, https://qcarchive.molssi.org; accessed January 2020.

Burns L. A., Lolinco A. T., Glick Z. L., Lee J., and Silva N. D., QCDB: Quantum chemistry common driver and databases. For the current version, see https://github.com/qcdb/qcdb; accessed January 2020.

Grecco H., PINT: Operate and manipulate physical quantities in Python. For the current version, see https://github.com/hgrecco/pint; accessed April 2020.

Colvin S., PYDANTIC: Data parsing and validation using Python type hints. For the current version, see https://github.com/samuelcolvin/pydantic; accessed April 2020.

Herbst M. F., Scheurer M., Fransson T., Rehn D. R., and Dreuw A., “adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 10, e1462 (2020).10.1002/wcms.1462 DOI

Herbst M. F. and Scheurer M., ADCC: Seamlessly connect your program to ADC. For the current version, see https://github.com/adc-connect/adcc; accessed January 2020. For the originating project, see https://adc-connect.org.

Matthews D. A., Cheng L., Harding M. E., Lipparini F., Stopkowicz S., Jagau T.-C., Szalay P. G., Gauss J., and Stanton J. F., “Coupled-cluster techniques for computational chemistry: The CFOUR program package,” J. Chem. Phys. 152, 214108 (2020).10.1063/5.0004837 PubMed DOI

Barca G. M. J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J. E., Fedorov D. G., Gour J. R., Gunina A. O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S. S., Li H., Li W., Lutz J. J., Magoulas I., Mato J., Mironov V., Nakata H., Pham B. Q., Piecuch P., Poole D., Pruitt S. R., Rendell A. P., Roskop L. B., Ruedenberg K., Sattasathuchana T., Schmidt M. W., Shen J., Slipchenko L., Sosonkina M., Sundriyal V., Tiwari A., Galvez Vallejo J. L., Westheimer B., Włoch M., Xu P., Zahariev F., and Gordon M. S., “Recent developments in the general atomic and molecular electronic structure system,” J. Chem. Phys. 152, 154102 (2020).10.1063/5.0005188 PubMed DOI

Werner H.-J., Knowles P. J., Knizia G., Manby F. R., Schütz M., Celani P., Györffy W., Kats D., Korona T., Lindh R., Mitrushenkov A., Rauhut G., Shamasundar K. R., Adler T. B., Amos R. D., Bennie S. J., Bernhardsson A., Berning A., Cooper D. L., Deegan M. J. O., Dobbyn A. J., Eckert F., Goll E., Hampel C., Hesselmann A., Hetzer G., Hrenar T., Jansen G., Köppl C., Lee S. J. R., Liu Y., Lloyd A. W., Ma Q., Mata R. A., May A. J., McNicholas S. J., Meyer W., Miller T. F. III, Mura M. E., Nicklass A., O’Neill D. P., Palmieri P., Peng D., Pflüger K., Pitzer R., Reiher M., Shiozaki T., Stoll H., Stone A. J., Tarroni R., Thorsteinsson T., Wang M., and Welborn M., molpro, version 2019.2, a package of ab initio programs, 2019, see https://www.molpro.net.

Werner H.-J., Knowles P. J., Manby F. R., Black J. A., Doll K., Heßelmann A., Kats D., Köhn A., Korona T., Kreplin D. A., Ma Q., Miller T. F., Mitrushchenkov A., Peterson K. A., Polyak I., Rauhut G., and Sibaev M., “The Molpro quantum chemistry package,” J. Chem. Phys. 152, 144107 (2020).10.1063/5.0005081 PubMed DOI

Bast R., Bjørgve M., Di Remigio R., Durdek A., Frediani L., Gerez G., Jensen S. R., Juselius J., Monstad R., and Wind P., MRChem: MultiResolution Chemistry, 2020.

Jensen S. R., Saha S., Flores-Livas J. A., Huhn W., Blum V., Goedecker S., and Frediani L., “The elephant in the room of density functional theory calculations,” J. Phys. Chem. Lett. 8, 1449–1457 (2017).10.1021/acs.jpclett.7b00255 PubMed DOI

Aprà E., Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., van Dam H. J. J., Alexeev Y., Anchell J., Anisimov V., Aquino F. W., Atta-Fynn R., Autschbach J., Bauman N. P., Becca J. C., Bernholdt D. E., Bhaskaran-Nair K., Bogatko S., Borowski P., Boschen J., Brabec J., Bruner A., Cauët E., Chen Y., Chuev G. N., Cramer C. J., Daily J., Deegan M. J. O., Dunning T. H., Dupuis M., Dyall K. G., Fann G. I., Fischer S. A., Fonari A., Früchtl H., Gagliardi L., Garza J., Gawande N., Ghosh S., Glaesemann K., Götz A. W., Hammond J., Helms V., Hermes E. D., Hirao K., Hirata S., Jacquelin M., Jensen L., Johnson B. G., Jónsson H., Kendall R. A., Klemm M., Kobayashi R., Konkov V., Krishnamoorthy S., Krishnan M., Lin Z., Lins R. D., Littlefield R. J., Logsdail A. J., Lopata K., Ma W., Marenich A. V., Martin del Campo J., Mejia-Rodriguez D., Moore J. E., Mullin J. M., Nakajima T., Nascimento D. R., Nichols J. A., Nichols P. J., Nieplocha J., Otero-de-la Roza A., Palmer B., Panyala A., Pirojsirikul T., Peng B., Peverati R., Pittner J., Pollack L., Richard R. M., Sadayappan P., Schatz G. C., Shelton W. A., Silverstein D. W., Smith D. M. A., Soares T. A., Song D., Swart M., Taylor H. L., Thomas G. S., Tipparaju V., Truhlar D. G., Tsemekhman K., Van Voorhis T., Vázquez-Mayagoitia Á., Verma P., Villa O., Vishnu A., Vogiatzis K. D., Wang D., Weare J. H., Williamson M. J., Windus T. L., Woliński K., Wong A. T., Wu Q., Yang C., Yu Q., Zacharias M., Zhang Z., Zhao Y., and Harrison R. J., “NWChem: Past, present, and future,” J. Chem. Phys. 152, 184102 (2020).10.1063/5.0004997 PubMed DOI

Smith D. G. A., Burns L. A., Simmonett A. C., Parrish R. M., Schieber M. C., Galvelis R., Kraus P., Kruse H., Remigio R. D., Alenaizan A., James A. M., Lehtola S., Misiewicz J. P., Scheurer M., Shaw R. A., Schriber J. B., Xie Y., Glick Z. L., Sirianni D. A., O’Brien J. S., Waldrop J. M., Kumar A., Hohenstein E. G., Pritchard B. P., Brooks B. R., Schaefer H. F. III, Sokolov A. Y., Patkowski K., DePrince A. E. III, Bozkaya U., King R. A., Evangelista F. A., Turney J. M., Crawford T. D., and Sherrill C. D., “PSI4 1.4: Open-source software for high-throughput quantum chemistry,” J. Chem. Phys. 152, 184108 (2020).10.1063/5.0006002 PubMed DOI PMC

Shao Y., Gan Z., Epifanovsky E., Gilbert A. T., Wormit M., Kussmann J., Lange A. W., Behn A., Deng J., Feng X., Ghosh D., Goldey M., Horn P. R., Jacobson L. D., Kaliman I., Khaliullin R. Z., Kuś T., Landau A., Liu J., Proynov E. I., Rhee Y. M., Richard R. M., Rohrdanz M. A., Steele R. P., Sundstrom E. J., Woodcock H. L. III, Zimmerman P. M., Zuev D., Albrecht B., Alguire E., Austin B., Beran G. J. O., Bernard Y. A., Berquist E., Brandhorst K., Bravaya K. B., Brown S. T., Casanova D., Chang C.-M., Chen Y., Chien S. H., Closser K. D., Crittenden D. L., Diedenhofen M., R. A. DiStasio, Jr., Do H., Dutoi A. D., Edgar R. G., Fatehi S., Fusti-Molnar L., Ghysels A., Golubeva-Zadorozhnaya A., Gomes J., Hanson-Heine M. W., Harbach P. H., Hauser A. W., Hohenstein E. G., Holden Z. C., Jagau T.-C., Ji H., Kaduk B., Khistyaev K., Kim J., Kim J., King R. A., Klunzinger P., Kosenkov D., Kowalczyk T., Krauter C. M., Lao K. U., Laurent A. D., Lawler K. V., Levchenko S. V., Lin C. Y., Liu F., Livshits E., Lochan R. C., Luenser A., Manohar P., Manzer S. F., Mao S.-P., Mardirossian N., Marenich A. V., Maurer S. A., Mayhall N. J., Neuscamman E., Oana C. M., Olivares-Amaya R., O’Neill D. P., Parkhill J. A., Perrine T. M., Peverati R., Prociuk A., Rehn D. R., Rosta E., Russ N. J., Sharada S. M., Sharma S., Small D. W., Sodt A., Stein T., Stück D., Su Y.-C., Thom A. J., Tsuchimochi T., Vanovschi V., Vogt L., Vydrov O., Wang T., Watson M. A., Wenzel J., White A., Williams C. F., Yang J., Yeganeh S., Yost S. R., You Z.-Q., Zhang I. Y., Zhang X., Zhao Y., Brooks B. R., Chan G. K., Chipman D. M., Cramer C. J., Goddard W. A. III, Gordon M. S., Hehre W. J., Klamt A., Schaefer H. F. III, Schmidt M. W., Sherrill C. D., Truhlar D. G., Warshel A., Xu X., Aspuru-Guzik A., Baer R., Bell A. T., Besley N. A., Chai J.-D., Dreuw A., Dunietz B. D., Furlani T. R., Gwaltney S. R., Hsu C.-P., Jung Y., Kong J., Lambrecht D. S., Liang W., Ochsenfeld C., Rassolov V. A., Slipchenko L. V., Subotnik J. E., Voorhis T. V., Herbert J. M., Krylov A. I., Gill P. M., and Head-Gordon M., “Advances in molecular quantum chemistry contained in the Q-Chem 4 program package,” Mol. Phys. 113, 184–215 (2015).10.1080/00268976.2014.952696 DOI

Manby F., Miller T., Bygrave P., Ding F., Dresselhaus T., Batista-Romero F., Buccheri A., Bungey C., Lee S., Meli R. et al., “Entos: A quantum molecular simulation package,” in ChemRxiv (Cambridge Open Engage, 2019). DOI

Ufimtsev I. S. and Martínez T. J., “Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics,” J. Chem. Theory Comput. 5, 2619–2628 (2009).10.1021/ct9003004 PubMed DOI

Seritan S., Bannwarth C., Fales B. S., Hohenstein E. G., Kokkila-Schumacher S. I. L., Luehr N., Snyder J. W., Song C., Titov A. V., Ufimtsev I. S., and Martínez T. J., “TeraChem: Accelerating electronic structure and ab initio molecular dynamics with graphical processing units,” J. Chem. Phys. 152, 224110 (2020).10.1063/5.0007615 PubMed DOI PMC

Furche F., Ahlrichs R., Hättig C., Klopper W., Sierka M., and Weigend F., “Turbomole,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 91–100 (2014).10.1002/wcms.1162 DOI

Balasubramani S. G., Chen G. P., Coriani S., Diedenhofen M., Frank M. S., Franzke Y. J., Furche F., Grotjahn R., Harding M. E., Hättig C., Hellweg A., Helmich-Paris B., Holzer C., Huniar U., Kaupp M., Marefat Khah A., Karbalaei Khani S., Müller T., Mack F., Nguyen B. D., Parker S. M., Perlt E., Rappoport D., Reiter K., Roy S., Rückert M., Schmitz G., Sierka M., Tapavicza E., Tew D. P., van Wüllen C., Voora V. K., Weigend F., Wodyński A., and Yu J. M., “TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations,” J. Chem. Phys. 152, 184107 (2020).10.1063/5.0004635 PubMed DOI PMC

Stewart J. J. P., MOPAC: Semiempirical quantum chemistry. For the current version, see http://OpenMOPAC.net/; accessed January 2020, for Stewart Computational Chemistry, Colorado Springs, CO.

Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., and Grimme S., “Extended tight-binding quantum chemistry methods,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11, e1493 (2021).10.1002/wcms.1493 DOI

Eastman P., Swails J., Chodera J. D., McGibbon R. T., Zhao Y., Beauchamp K. A., Wang L.-P., Simmonett A. C., Harrigan M. P., Stern C. D., Wiewiora R. P., Brooks B. R., and Pande V. S., “OpenMM 7: Rapid development of high performance algorithms for molecular dynamics,” PLoS Comput. Biol. 13, e1005659 (2017).10.1371/journal.pcbi.1005659 PubMed DOI PMC

Landrum G., RDKIT: Cheminformatics and machine-learning software in C++ and Python. For the current version, see 10.5281/zenodo.591637; accessed January 2020. For the originating project, see https://www.rdkit.org/. DOI

Grimme S., Antony J., Ehrlich S., and Krieg H., DFTD3: Dispersion correction for DFT, Hartree–Fock, and semi-empirical quantum chemical methods. For the current version, see https://github.com/loriab/dftd3; accessed January 2020. For the originating project, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3.

Ehrlich S. and Caldewayher E., DFTD4: Generally applicable atomic-charge dependent London dispersion correction. For the current version, see https://github.com/dftd4/dftd4; accessed April 2021.

Caldeweyher E., Bannwarth C., and Grimme S., “Extension of the D3 dispersion coefficient model,” J. Chem. Phys. 147, 034112 (2017).10.1063/1.4993215 PubMed DOI

Kruse H. and Grimme S., GCP: Geometrical counterpoise correction for DFT and Hartree–Fock quantum chemical methods. For the current version, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/gcp/gcp; accessed January 2020.

Kruse H. and Grimme S., “A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems,” J. Chem. Phys. 136, 154101 (2012).10.1063/1.3700154 PubMed DOI

Greenwell C., MP2D: A program for calculating the MP2D dispersion energy. For the current version, see https://github.com/Chandemonium/MP2D; accessed January 2020.

Řezáč J., Greenwell C., and Beran G. J. O., “Accurate noncovalent interactions via dispersion-corrected second-order Møller–Plesset perturbation theory,” J. Chem. Theory Comput. 14, 4711–4721 (2018).10.1021/acs.jctc.8b00548 PubMed DOI

Gao X., TORCHANI: Accurate neural network potential on PyTorch. For the current version, see https://github.com/aiqm/torchani; accessed January 2020.

Smith J. S., Isayev O., and Roitberg A. E., “ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost,” Chem. Sci. 8, 3192–3203 (2017).10.1039/c6sc05720a PubMed DOI PMC

Gao X., Ramezanghorbani F., Isayev O., Smith J. S., and Roitberg A. E., “TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials,” J. Chem. Inf. Model. 60, 3408–3415 (2020).10.1021/acs.jcim.0c00451 PubMed DOI

Frediani L., Fossgaard E., Flå T., and Ruud K., “Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions,” Mol. Phys. 111, 1143–1160 (2013).10.1080/00268976.2013.810793 DOI

Hirata S., “Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories,” J. Phys. Chem. A 107, 9887–9897 (2003).10.1021/jp034596z DOI

PROTOCOL BUFFERS: A language-neutral, platform-neutral extensible mechanism for serializing structured data. For the current version, see https://developers.google.com/protocol-buffers/docs/reference/proto3-spec; accessed May 2021.

Seritan S., Thompson K., and Martínez T. J., “TeraChem cloud: A high-performance computing service for scalable distributed GPU-accelerated electronic structure calculations,” J. Chem. Inf. Model. 60, 2126–2137 (2020).10.1021/acs.jcim.9b01152 PubMed DOI

Seritan S., Hicks C. B., and Ford J. E., TCPB: Python client for TeraChem’s protobuf server mode. For the current version, see https://github.com/mtzgroup/tcpb-client; accessed May 2021.

Grimme S., “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).10.1002/jcc.20495 PubMed DOI

Smith D. G. A., Burns L. A., Patkowski K., and Sherrill C. D., “Revised damping parameters for the D3 dispersion correction to density functional theory,” J. Phys. Chem. Lett. 7, 2197–2203 (2016).10.1021/acs.jpclett.6b00780 PubMed DOI

Caldeweyher E. and Brandenburg J. G., “Simplified DFT methods for consistent structures and energies of large systems,” J. Phys.: Condens. Matter 30, 213001 (2018).10.1088/1361-648x/aabcfb PubMed DOI

See https://openforcefield.org for OpenForceField.

Wang L.-P., Smith D. G. A., and Qiu Y., GEOMETRIC: A geometry optimization code that includes the TRIC coordinate system. For the current version, see https://github.com/leeping/geomeTRIC; accessed January 2020.

Wang L.-P. and Song C., “Geometry optimization made simple with translation and rotation coordinates,” J. Chem. Phys. 144, 214108 (2016).10.1063/1.4952956 PubMed DOI

Heide A. and King R. A., OptKing: A Python version of the Psi4 geometry optimizer. For the current version, see https://github.com/psi-rking/optking; accessed January 2020.

Hermann J., PYBERNY: Molecular structure optimizer. For the current version, see https://github.com/jhrmnn/pyberny; accessed January 2020. Also, for Version 0.6.2 10.5281/zenodo.3695038. DOI

Wells B. H. and Wilson S., “van der Waals interaction potentials: Many-body basis set superposition effects,” Chem. Phys. Lett. 101, 429–434 (1983).10.1016/0009-2614(83)87508-3 DOI

Valiron P. and Mayer I., “Hierarchy of counterpoise corrections for N-body clusters: Generalization of the Boys-Bernardi scheme,” Chem. Phys. Lett. 275, 46–55 (1997).10.1016/s0009-2614(97)00689-1 DOI

Kaliman I., LIBEFP: Parallel implementation of the effective fragment potential method. For the current version, see https://github.com/ilyak/libefp; accessed January 2020. PubMed

Kaliman I. A. and Slipchenko L. V., “LIBEFP: A new parallel implementation of the effective fragment potential method as a portable software library,” J. Comput. Chem. 34, 2284–2292 (2013).10.1002/jcc.23375 PubMed DOI

Bayly C. I., Cieplak P., Cornell W., and Kollman P. A., “A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model,” J. Phys. Chem. 97, 10269–10280 (1993).10.1021/j100142a004 DOI

Alenaizan A., RESP: A restrained electrostatic potential (RESP) plugin to PSI4. For the current version, see https://github.com/cdsgroup/resp; accessed January 2020.

Alenaizan A., Burns L. A., and Sherrill C. D., “Python implementation of the restrained electrostatic potential charge model,” Int. J. Quantum Chem. 120, e26035 (2020).10.1002/qua.26035 DOI

Borca C. H., CRYSTALATTE: Automating the calculation of crystal lattice energies. For the current version, see https://github.com/carlosborca/CrystaLattE; accessed January 2020.

Borca C. H., Bakr B. W., Burns L. A., and Sherrill C. D., “CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism,” J. Chem. Phys. 151, 144103 (2019).10.1063/1.5120520 PubMed DOI

Pritchard B. P., Altarawy D., Didier B., Gibson T. D., and Windus T. L., “New basis set exchange: An open, up-to-date resource for the molecular sciences community,” J. Chem. Inf. Model. 59, 4814–4820 (2019).10.1021/acs.jcim.9b00725 PubMed DOI

Naoki I., MESSAGEPACK-PYTHON: MessagePack serializer implementation for Python. For the current version, see https://github.com/msgpack/msgpack-python; accessed January 2020. For the originating project, see https://msgpack.org/.

Bytautas L., Matsunaga N., Nagata T., Gordon M. S., and Ruedenberg K., “Accurate ab initio potential energy curve of F2. III. The vibration rotation spectrum,” J. Chem. Phys. 127, 204313 (2007).10.1063/1.2805392 PubMed DOI

Martin J. M. L., “Benchmark ab initio potential curves for the light diatomic hydrides. Unusually large nonadiabatic effects in BeH and BH,” Chem. Phys. Lett. 283, 283–293 (1998).10.1016/s0009-2614(97)01400-0 DOI

Temelso B., Valeev E. F., and Sherrill C. D., “A comparison of one-particle basis set completeness, higher-order electron correlation, relativistic effects, and adiabatic corrections for spectroscopic constants of BH, CH+, and NH,” J. Phys. Chem. A 108, 3068–3075 (2004).10.1021/jp036933+ DOI

Boschen J. S., Theis D., Ruedenberg K., and Windus T. L., “Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2,” Theor. Chem. Acc. 133, 1425 (2013).10.1007/s00214-013-1425-x DOI

Bender J. D., Doraiswamy S., Truhlar D. G., and Candler G. V., “Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N4,” J. Chem. Phys. 140, 054302 (2014).10.1063/1.4862157 PubMed DOI

Fernando W. T. M. L. and Bernath P. F., “Fourier transform spectroscopy of the A1Π-X1Σ+ transition of BH and BD,” J. Mol. Spectrosc. 145, 392–402 (1991).10.1016/0022-2852(91)90126-u DOI

Huber K. P. and Herzberg G., Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

Douay M., Nietmann R., and Bernath P. F., “New observations of the DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...