Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and interoperability among computational chemistry programs
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
R01 GM132386
NIGMS NIH HHS - United States
PubMed
34852489
PubMed Central
PMC8614229
DOI
10.1063/5.0059356
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and interoperable interfaces that work with existing community codes to provide more functionality and composability than could be achieved with a single program. The Quantum Chemistry Common Driver and Databases (QCDB) project provides such capability through an application programming interface (API) that facilitates interoperability across multiple quantum chemistry software packages. In tandem with the Molecular Sciences Software Institute and their Quantum Chemistry Archive ecosystem, the unique functionalities of several CMS programs are integrated, including CFOUR, GAMESS, NWChem, OpenMM, Psi4, Qcore, TeraChem, and Turbomole, to provide common computational functions, i.e., energy, gradient, and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency analysis. Both standard users and power users benefit from adopting these APIs as they lower the language barrier of input styles and enable a standard layout of variables and data. These designs allow end-to-end interoperable programming of complex computations and provide best practices options by default.
Applied and Computational Mathematics RWTH Aachen University Schinkelstr 2 52062 Aachen Germany
California Institute of Technology Pasadena California 91125 USA
Center for Computational Quantum Chemistry University of Georgia Athens Georgia 30602 USA
Data Science and Learning Division Argonne National Laboratory Lemont Illinois 60439 USA
Department of Chemistry and Ames Laboratory Iowa State University Ames Iowa 50011 USA
Department of Chemistry Bethel University St Paul Minnesota 55112 USA
Department of Chemistry Iowa State University Ames Iowa 50011 USA
Department of Chemistry Lancaster University Lancaster LA1 4YW United Kingdom
Department of Chemistry Stanford University Stanford California 94305 USA
Department of Chemistry University of California Davis Davis California 95616 USA
Department of Chemistry University of Florida Gainesville Florida 32611 USA
FU Berlin Department of Mathematics and Computer Science 14195 Berlin Germany
Institute of Physical Chemistry Friedrich Schiller University Jena Jena Germany
Molecular Sciences Software Institute Blacksburg Virginia 24060 USA
Open Force Field Initiative University of Colorado Boulder Boulder Colorado 80309 USA
School of Molecular and Life Sciences Curtin University GPO Box U1987 Perth 6845 WA Australia
Zobrazit více v PubMed
Truhlar D. G., “Basis-set extrapolation,” Chem. Phys. Lett. 294, 45–48 (1998).10.1016/s0009-2614(98)00866-5 DOI
Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., and Wilson A. K., “Basis-set convergence in correlated calculations on Ne, N2, and H2O,” Chem. Phys. Lett. 286, 243–252 (1998).10.1016/s0009-2614(98)00111-0 DOI
East A. L. L. and Allen W. D., “The heat of formation of NCO,” J. Chem. Phys. 99, 4638–4650 (1993).10.1063/1.466062 DOI
Császár A. G., Allen W. D., and Schaefer H. F., “In pursuit of the ab initio limit for conformational energy prototypes,” J. Chem. Phys. 108, 9751–9764 (1998).10.1063/1.476449 DOI
Schuurman M. S., Muir S. R., Allen W. D., and Schaefer H. F., “Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H, N, C, O] isomers,” J. Chem. Phys. 120, 11586–11599 (2004).10.1063/1.1707013 PubMed DOI
Curtiss L. A., Raghavachari K., Redfern P. C., Rassolov V., and Pople J. A., “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” J. Chem. Phys. 109, 7764–7776 (1998).10.1063/1.477422 DOI
Tajti A., Szalay P. G., Császár A. G., Kállay M., Gauss J., Valeev E. F., Flowers B. A., Vázquez J., and Stanton J. F., “HEAT: High accuracy extrapolated ab initio thermochemistry,” J. Chem. Phys. 121, 11599–11613 (2004).10.1063/1.1811608 PubMed DOI
Grimme S., Antony J., Ehrlich S., and Krieg H., “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu,” J. Chem. Phys. 132, 154104 (2010).10.1063/1.3382344 PubMed DOI
Boys S. F. and Bernardi F., “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Mol. Phys. 19, 553–566 (1970).10.1080/00268977000101561 DOI
Raghavachari K., Trucks G. W., Pople J. A., and Head-Gordon M., “A fifth-order perturbation comparison of electron correlation theories,” Chem. Phys. Lett. 157, 479–483 (1989).10.1016/s0009-2614(89)87395-6 DOI
Thaller B., Grant I. P., Quiney H. M., Andrae D., Desclaux J., Saue T., Labzowsky L., Goidenko I., Engel E., Dolg M., Sapirstein J., Christensen N., Wolf A., Reiher M., Hess B. A., Kutzelnigg W., Sundholm D., Fægri K., Dyall K. G., Schwerdtfeger P., and Visscher L., in Relativistic Electronic Structure Theory—Part 1: Fundamentals, edited by Schwerdtfeger P. (Elsevier, Amsterdam, 2002).
Born M. and Oppenheimer R., “Zur quantentheorie der molekeln,” Ann. Phys. 389, 457–484 (1927).10.1002/andp.19273892002 DOI
Kutzelnigg W., “The adiabatic approximation I. The physical background of the Born–Handy ansatz,” Mol. Phys. 90, 909–916 (1997).10.1080/00268979709482675 DOI
Warden C. E., Smith D. G. A., Burns L. A., Bozkaya U., and Sherrill C. D., “Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory,” J. Chem. Phys. 152, 124109 (2020).10.1063/5.0004863 PubMed DOI
JSON SCHEMA: A vocabulary that allows you to annotate and validate JSON documents. For the current version, see https://json-schema.org/; accessed January 2020.
Smith D. G. A., Altarawy D., Burns L. A., Welborn M., Naden L. N., Ward L., Ellis S., Pritchard B. P., and Crawford T. D., “The MolSSI QCARCHIVE project: An open-source platform to compute, organize, and share quantum chemistry data,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11, e1491 (2021).10.1002/wcms.1491 DOI
Krylov A., Windus T. L., Barnes T., Marin-Rimoldi E., Nash J. A., Pritchard B., Smith D. G. A., Altarawy D., Saxe P., Clementi C., Crawford T. D., Harrison R. J., Jha S., Pande V. S., and Head-Gordon T., “Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science,” J. Chem. Phys. 149, 180901 (2018).10.1063/1.5052551 PubMed DOI
Smith D. G. A., de Jong B., Burns L. A., Hutchison G., and Hanwell M. D., QCSCHEMA: A schema for quantum chemistry. For the current version, see https://github.com/MolSSI/QCSchema; accessed January 2020.
Barbatti M., Granucci G., Persico M., Ruckenbauer M., Vazdar M., Eckert-Maksić M., and Lischka H., “The on-the-fly surface-hopping program system NEWTON-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems,” J. Photochem. Photobiol., A 190, 228–240 (2007).10.1016/j.jphotochem.2006.12.008 DOI
Toniolo A., Thompson A. L., and Martínez T. J., “Excited state direct dynamics of benzene with reparameterized multi-reference semiempirical configuration interaction methods,” Chem. Phys. 304, 133–145 (2004).10.1016/j.chemphys.2004.04.018 DOI
Levine B. G., Coe J. D., Virshup A. M., and Martínez T. J., “Implementation of ab initio multiple spawning in the Molpro quantum chemistry package,” Chem. Phys. 347, 3–16 (2008).10.1016/j.chemphys.2008.01.014 DOI
Gaenko A., DeFusco A., Varganov S. A., Martínez T. J., and Gordon M. S., “Interfacing the ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-azomethane,” J. Phys. Chem. A 118, 10902–10908 (2014).10.1021/jp508242j PubMed DOI
Keceli M. and Elliott S., Quantum Thermochemistry Calculator; https://github.com/PACChem/QTC; accessed 25 November 2019.
Steinmetzer J., Kupfer S., and Gräfe S., “pysisyphus: Exploring potential energy surfaces in ground and excited states,” Int. J. Quantum Chem. 121, e26390 (2021).10.1002/qua.26390 DOI
Řezáč J., Cuby—Ruby framework for computational chemistry, version 4, http://cuby4.molecular.cz; accessed 22 November 2019.
Řezáč J., “Cuby: An integrative framework for computational chemistry,” J. Comput. Chem. 37, 1230–1237 (2016).10.1002/jcc.24312 PubMed DOI
Polik W. F. and Schmidt J. R., “WebMO: Web-based computational chemistry calculations in education and research,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, e1554.10.1002/wcms.1554 DOI
Larsen A. H., Mortensen J. J., Blomqvist J., Castelli I. E., Christensen R., Dułak M., Friis J., Groves M. N., Hammer B., Hargus C., Hermes E. D., Jennings P. C., Jensen P. B., Kermode J., Kitchin J. R., Kolsbjerg E. L., Kubal J., Kaasbjerg K., Lysgaard S., Maronsson J. B., Maxson T., Olsen T., Pastewka L., Peterson A., Rostgaard C., Schiøtz J., Schütt O., Strange M., Thygesen K. S., Vegge T., Vilhelmsen L., Walter M., Zeng Z., and Jacobsen K. W., “The atomic simulation environment—A Python library for working with atoms,” J. Phys.: Condens. Matter 29, 273002 (2017).10.1088/1361-648X/aa680e PubMed DOI
Gjerding M. and Larsen A. H., ASR: Atomic simulation recipes: Recipes for calculating material properties. For the current version, see https://gitlab.com/asr-dev/asr; accessed September 2021. Documentation at https://asr.readthedocs.io/en/latest/index.html.
Huber S. P., Zoupanos S., Uhrin M., Talirz L., Kahle L., Häuselmann R., Gresch D., Müller T., Yakutovich A. V., Andersen C. W., Ramirez F. F., Adorf C. S., Gargiulo F., Kumbhar S., Passaro E., Johnston C., Merkys A., Cepellotti A., Mounet N., Marzari N., Kozinsky B., and Pizzi G., “AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance,” Sci. Data 7, 300 (2020).10.1038/s41597-020-00638-4 PubMed DOI PMC
Uhrin M., Huber S. P., Yu J., Marzari N., and Pizzi G., “Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows,” Comput. Mater. Sci. 187, 110086 (2021).10.1016/j.commatsci.2020.110086 DOI
Lu Y., Farrow M. R., Fayon P., Logsdail A. J., Sokol A. A., Catlow C. R. A., Sherwood P., and Keal T. W., “Open-source, Python-based redevelopment of the ChemShell multiscale QM/MM environment,” J. Chem. Theory Comput. 15, 1317–1328 (2019).10.1021/acs.jctc.8b01036 PubMed DOI
O’Boyle N. M., Tenderholt A. L., and Langner K. M., “cclib: A library for package-independent computational chemistry algorithms,” J. Comput. Chem. 29, 839–845 (2008).10.1002/jcc.20823 PubMed DOI
Langner K. M. and Berquist E., CCLIB: Parsers and algorithms for computational chemistry logfiles. For the current version, see https://github.com/cclib/cclib; accessed May 2021, 10.5281/zenodo.1407790. DOI
Verstraelen T., Tecmer P., Heidar-Zadeh F., González-Espinoza C. E., Chan M., Kim T. D., Boguslawski K., Fias S., Vandenbrande S., Berrocal D., and Ayers P. W., HORTON, version 2.1.1, a helpful open-source research tool for n-fermion systems, see http://theochem.github.com/horton/.
Smith D. G. A., Burns L. A., Naden L., and Welborn M., QCELEMENTAL: Periodic table, physical constants, and molecule parsing for quantum chemistry. For the current version, see https://github.com/MolSSI/QCElemental; accessed January 2020.
Smith D. G. A., Lee S., Burns L. A., and Welborn M., QCENGINE: Quantum chemistry program executor and IO standardizer (QCSchema). For the current version, see https://github.com/MolSSI/QCEngine; accessed January 2020.
Smith D. G. A., Welborn M., Altarawy D., and Naden L., QCFRACTAL: A distributed compute and database platform for quantum chemistry. For the current version, see https://github.com/MolSSI/QCFractal; accessed January 2020.
Smith D. G. A., Burns L. A., Altarawy D., Naden L., and Welborn M., QCARCHIVE: A central source to compile, aggregate, query, and share quantum chemistry data, https://qcarchive.molssi.org; accessed January 2020.
Burns L. A., Lolinco A. T., Glick Z. L., Lee J., and Silva N. D., QCDB: Quantum chemistry common driver and databases. For the current version, see https://github.com/qcdb/qcdb; accessed January 2020.
Grecco H., PINT: Operate and manipulate physical quantities in Python. For the current version, see https://github.com/hgrecco/pint; accessed April 2020.
Colvin S., PYDANTIC: Data parsing and validation using Python type hints. For the current version, see https://github.com/samuelcolvin/pydantic; accessed April 2020.
Herbst M. F., Scheurer M., Fransson T., Rehn D. R., and Dreuw A., “adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 10, e1462 (2020).10.1002/wcms.1462 DOI
Herbst M. F. and Scheurer M., ADCC: Seamlessly connect your program to ADC. For the current version, see https://github.com/adc-connect/adcc; accessed January 2020. For the originating project, see https://adc-connect.org.
Matthews D. A., Cheng L., Harding M. E., Lipparini F., Stopkowicz S., Jagau T.-C., Szalay P. G., Gauss J., and Stanton J. F., “Coupled-cluster techniques for computational chemistry: The CFOUR program package,” J. Chem. Phys. 152, 214108 (2020).10.1063/5.0004837 PubMed DOI
Barca G. M. J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J. E., Fedorov D. G., Gour J. R., Gunina A. O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S. S., Li H., Li W., Lutz J. J., Magoulas I., Mato J., Mironov V., Nakata H., Pham B. Q., Piecuch P., Poole D., Pruitt S. R., Rendell A. P., Roskop L. B., Ruedenberg K., Sattasathuchana T., Schmidt M. W., Shen J., Slipchenko L., Sosonkina M., Sundriyal V., Tiwari A., Galvez Vallejo J. L., Westheimer B., Włoch M., Xu P., Zahariev F., and Gordon M. S., “Recent developments in the general atomic and molecular electronic structure system,” J. Chem. Phys. 152, 154102 (2020).10.1063/5.0005188 PubMed DOI
Werner H.-J., Knowles P. J., Knizia G., Manby F. R., Schütz M., Celani P., Györffy W., Kats D., Korona T., Lindh R., Mitrushenkov A., Rauhut G., Shamasundar K. R., Adler T. B., Amos R. D., Bennie S. J., Bernhardsson A., Berning A., Cooper D. L., Deegan M. J. O., Dobbyn A. J., Eckert F., Goll E., Hampel C., Hesselmann A., Hetzer G., Hrenar T., Jansen G., Köppl C., Lee S. J. R., Liu Y., Lloyd A. W., Ma Q., Mata R. A., May A. J., McNicholas S. J., Meyer W., Miller T. F. III, Mura M. E., Nicklass A., O’Neill D. P., Palmieri P., Peng D., Pflüger K., Pitzer R., Reiher M., Shiozaki T., Stoll H., Stone A. J., Tarroni R., Thorsteinsson T., Wang M., and Welborn M., molpro, version 2019.2, a package of ab initio programs, 2019, see https://www.molpro.net.
Werner H.-J., Knowles P. J., Manby F. R., Black J. A., Doll K., Heßelmann A., Kats D., Köhn A., Korona T., Kreplin D. A., Ma Q., Miller T. F., Mitrushchenkov A., Peterson K. A., Polyak I., Rauhut G., and Sibaev M., “The Molpro quantum chemistry package,” J. Chem. Phys. 152, 144107 (2020).10.1063/5.0005081 PubMed DOI
Bast R., Bjørgve M., Di Remigio R., Durdek A., Frediani L., Gerez G., Jensen S. R., Juselius J., Monstad R., and Wind P., MRChem: MultiResolution Chemistry, 2020.
Jensen S. R., Saha S., Flores-Livas J. A., Huhn W., Blum V., Goedecker S., and Frediani L., “The elephant in the room of density functional theory calculations,” J. Phys. Chem. Lett. 8, 1449–1457 (2017).10.1021/acs.jpclett.7b00255 PubMed DOI
Aprà E., Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., van Dam H. J. J., Alexeev Y., Anchell J., Anisimov V., Aquino F. W., Atta-Fynn R., Autschbach J., Bauman N. P., Becca J. C., Bernholdt D. E., Bhaskaran-Nair K., Bogatko S., Borowski P., Boschen J., Brabec J., Bruner A., Cauët E., Chen Y., Chuev G. N., Cramer C. J., Daily J., Deegan M. J. O., Dunning T. H., Dupuis M., Dyall K. G., Fann G. I., Fischer S. A., Fonari A., Früchtl H., Gagliardi L., Garza J., Gawande N., Ghosh S., Glaesemann K., Götz A. W., Hammond J., Helms V., Hermes E. D., Hirao K., Hirata S., Jacquelin M., Jensen L., Johnson B. G., Jónsson H., Kendall R. A., Klemm M., Kobayashi R., Konkov V., Krishnamoorthy S., Krishnan M., Lin Z., Lins R. D., Littlefield R. J., Logsdail A. J., Lopata K., Ma W., Marenich A. V., Martin del Campo J., Mejia-Rodriguez D., Moore J. E., Mullin J. M., Nakajima T., Nascimento D. R., Nichols J. A., Nichols P. J., Nieplocha J., Otero-de-la Roza A., Palmer B., Panyala A., Pirojsirikul T., Peng B., Peverati R., Pittner J., Pollack L., Richard R. M., Sadayappan P., Schatz G. C., Shelton W. A., Silverstein D. W., Smith D. M. A., Soares T. A., Song D., Swart M., Taylor H. L., Thomas G. S., Tipparaju V., Truhlar D. G., Tsemekhman K., Van Voorhis T., Vázquez-Mayagoitia Á., Verma P., Villa O., Vishnu A., Vogiatzis K. D., Wang D., Weare J. H., Williamson M. J., Windus T. L., Woliński K., Wong A. T., Wu Q., Yang C., Yu Q., Zacharias M., Zhang Z., Zhao Y., and Harrison R. J., “NWChem: Past, present, and future,” J. Chem. Phys. 152, 184102 (2020).10.1063/5.0004997 PubMed DOI
Smith D. G. A., Burns L. A., Simmonett A. C., Parrish R. M., Schieber M. C., Galvelis R., Kraus P., Kruse H., Remigio R. D., Alenaizan A., James A. M., Lehtola S., Misiewicz J. P., Scheurer M., Shaw R. A., Schriber J. B., Xie Y., Glick Z. L., Sirianni D. A., O’Brien J. S., Waldrop J. M., Kumar A., Hohenstein E. G., Pritchard B. P., Brooks B. R., Schaefer H. F. III, Sokolov A. Y., Patkowski K., DePrince A. E. III, Bozkaya U., King R. A., Evangelista F. A., Turney J. M., Crawford T. D., and Sherrill C. D., “PSI4 1.4: Open-source software for high-throughput quantum chemistry,” J. Chem. Phys. 152, 184108 (2020).10.1063/5.0006002 PubMed DOI PMC
Shao Y., Gan Z., Epifanovsky E., Gilbert A. T., Wormit M., Kussmann J., Lange A. W., Behn A., Deng J., Feng X., Ghosh D., Goldey M., Horn P. R., Jacobson L. D., Kaliman I., Khaliullin R. Z., Kuś T., Landau A., Liu J., Proynov E. I., Rhee Y. M., Richard R. M., Rohrdanz M. A., Steele R. P., Sundstrom E. J., Woodcock H. L. III, Zimmerman P. M., Zuev D., Albrecht B., Alguire E., Austin B., Beran G. J. O., Bernard Y. A., Berquist E., Brandhorst K., Bravaya K. B., Brown S. T., Casanova D., Chang C.-M., Chen Y., Chien S. H., Closser K. D., Crittenden D. L., Diedenhofen M., R. A. DiStasio, Jr., Do H., Dutoi A. D., Edgar R. G., Fatehi S., Fusti-Molnar L., Ghysels A., Golubeva-Zadorozhnaya A., Gomes J., Hanson-Heine M. W., Harbach P. H., Hauser A. W., Hohenstein E. G., Holden Z. C., Jagau T.-C., Ji H., Kaduk B., Khistyaev K., Kim J., Kim J., King R. A., Klunzinger P., Kosenkov D., Kowalczyk T., Krauter C. M., Lao K. U., Laurent A. D., Lawler K. V., Levchenko S. V., Lin C. Y., Liu F., Livshits E., Lochan R. C., Luenser A., Manohar P., Manzer S. F., Mao S.-P., Mardirossian N., Marenich A. V., Maurer S. A., Mayhall N. J., Neuscamman E., Oana C. M., Olivares-Amaya R., O’Neill D. P., Parkhill J. A., Perrine T. M., Peverati R., Prociuk A., Rehn D. R., Rosta E., Russ N. J., Sharada S. M., Sharma S., Small D. W., Sodt A., Stein T., Stück D., Su Y.-C., Thom A. J., Tsuchimochi T., Vanovschi V., Vogt L., Vydrov O., Wang T., Watson M. A., Wenzel J., White A., Williams C. F., Yang J., Yeganeh S., Yost S. R., You Z.-Q., Zhang I. Y., Zhang X., Zhao Y., Brooks B. R., Chan G. K., Chipman D. M., Cramer C. J., Goddard W. A. III, Gordon M. S., Hehre W. J., Klamt A., Schaefer H. F. III, Schmidt M. W., Sherrill C. D., Truhlar D. G., Warshel A., Xu X., Aspuru-Guzik A., Baer R., Bell A. T., Besley N. A., Chai J.-D., Dreuw A., Dunietz B. D., Furlani T. R., Gwaltney S. R., Hsu C.-P., Jung Y., Kong J., Lambrecht D. S., Liang W., Ochsenfeld C., Rassolov V. A., Slipchenko L. V., Subotnik J. E., Voorhis T. V., Herbert J. M., Krylov A. I., Gill P. M., and Head-Gordon M., “Advances in molecular quantum chemistry contained in the Q-Chem 4 program package,” Mol. Phys. 113, 184–215 (2015).10.1080/00268976.2014.952696 DOI
Manby F., Miller T., Bygrave P., Ding F., Dresselhaus T., Batista-Romero F., Buccheri A., Bungey C., Lee S., Meli R. et al., “Entos: A quantum molecular simulation package,” in ChemRxiv (Cambridge Open Engage, 2019). DOI
Ufimtsev I. S. and Martínez T. J., “Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics,” J. Chem. Theory Comput. 5, 2619–2628 (2009).10.1021/ct9003004 PubMed DOI
Seritan S., Bannwarth C., Fales B. S., Hohenstein E. G., Kokkila-Schumacher S. I. L., Luehr N., Snyder J. W., Song C., Titov A. V., Ufimtsev I. S., and Martínez T. J., “TeraChem: Accelerating electronic structure and ab initio molecular dynamics with graphical processing units,” J. Chem. Phys. 152, 224110 (2020).10.1063/5.0007615 PubMed DOI PMC
Furche F., Ahlrichs R., Hättig C., Klopper W., Sierka M., and Weigend F., “Turbomole,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 91–100 (2014).10.1002/wcms.1162 DOI
Balasubramani S. G., Chen G. P., Coriani S., Diedenhofen M., Frank M. S., Franzke Y. J., Furche F., Grotjahn R., Harding M. E., Hättig C., Hellweg A., Helmich-Paris B., Holzer C., Huniar U., Kaupp M., Marefat Khah A., Karbalaei Khani S., Müller T., Mack F., Nguyen B. D., Parker S. M., Perlt E., Rappoport D., Reiter K., Roy S., Rückert M., Schmitz G., Sierka M., Tapavicza E., Tew D. P., van Wüllen C., Voora V. K., Weigend F., Wodyński A., and Yu J. M., “TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations,” J. Chem. Phys. 152, 184107 (2020).10.1063/5.0004635 PubMed DOI PMC
Stewart J. J. P., MOPAC: Semiempirical quantum chemistry. For the current version, see http://OpenMOPAC.net/; accessed January 2020, for Stewart Computational Chemistry, Colorado Springs, CO.
Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., and Grimme S., “Extended tight-binding quantum chemistry methods,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11, e1493 (2021).10.1002/wcms.1493 DOI
Eastman P., Swails J., Chodera J. D., McGibbon R. T., Zhao Y., Beauchamp K. A., Wang L.-P., Simmonett A. C., Harrigan M. P., Stern C. D., Wiewiora R. P., Brooks B. R., and Pande V. S., “OpenMM 7: Rapid development of high performance algorithms for molecular dynamics,” PLoS Comput. Biol. 13, e1005659 (2017).10.1371/journal.pcbi.1005659 PubMed DOI PMC
Landrum G., RDKIT: Cheminformatics and machine-learning software in C++ and Python. For the current version, see 10.5281/zenodo.591637; accessed January 2020. For the originating project, see https://www.rdkit.org/. DOI
Grimme S., Antony J., Ehrlich S., and Krieg H., DFTD3: Dispersion correction for DFT, Hartree–Fock, and semi-empirical quantum chemical methods. For the current version, see https://github.com/loriab/dftd3; accessed January 2020. For the originating project, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3.
Ehrlich S. and Caldewayher E., DFTD4: Generally applicable atomic-charge dependent London dispersion correction. For the current version, see https://github.com/dftd4/dftd4; accessed April 2021.
Caldeweyher E., Bannwarth C., and Grimme S., “Extension of the D3 dispersion coefficient model,” J. Chem. Phys. 147, 034112 (2017).10.1063/1.4993215 PubMed DOI
Kruse H. and Grimme S., GCP: Geometrical counterpoise correction for DFT and Hartree–Fock quantum chemical methods. For the current version, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/gcp/gcp; accessed January 2020.
Kruse H. and Grimme S., “A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems,” J. Chem. Phys. 136, 154101 (2012).10.1063/1.3700154 PubMed DOI
Greenwell C., MP2D: A program for calculating the MP2D dispersion energy. For the current version, see https://github.com/Chandemonium/MP2D; accessed January 2020.
Řezáč J., Greenwell C., and Beran G. J. O., “Accurate noncovalent interactions via dispersion-corrected second-order Møller–Plesset perturbation theory,” J. Chem. Theory Comput. 14, 4711–4721 (2018).10.1021/acs.jctc.8b00548 PubMed DOI
Gao X., TORCHANI: Accurate neural network potential on PyTorch. For the current version, see https://github.com/aiqm/torchani; accessed January 2020.
Smith J. S., Isayev O., and Roitberg A. E., “ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost,” Chem. Sci. 8, 3192–3203 (2017).10.1039/c6sc05720a PubMed DOI PMC
Gao X., Ramezanghorbani F., Isayev O., Smith J. S., and Roitberg A. E., “TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials,” J. Chem. Inf. Model. 60, 3408–3415 (2020).10.1021/acs.jcim.0c00451 PubMed DOI
Frediani L., Fossgaard E., Flå T., and Ruud K., “Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions,” Mol. Phys. 111, 1143–1160 (2013).10.1080/00268976.2013.810793 DOI
Hirata S., “Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories,” J. Phys. Chem. A 107, 9887–9897 (2003).10.1021/jp034596z DOI
PROTOCOL BUFFERS: A language-neutral, platform-neutral extensible mechanism for serializing structured data. For the current version, see https://developers.google.com/protocol-buffers/docs/reference/proto3-spec; accessed May 2021.
Seritan S., Thompson K., and Martínez T. J., “TeraChem cloud: A high-performance computing service for scalable distributed GPU-accelerated electronic structure calculations,” J. Chem. Inf. Model. 60, 2126–2137 (2020).10.1021/acs.jcim.9b01152 PubMed DOI
Seritan S., Hicks C. B., and Ford J. E., TCPB: Python client for TeraChem’s protobuf server mode. For the current version, see https://github.com/mtzgroup/tcpb-client; accessed May 2021.
Grimme S., “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).10.1002/jcc.20495 PubMed DOI
Smith D. G. A., Burns L. A., Patkowski K., and Sherrill C. D., “Revised damping parameters for the D3 dispersion correction to density functional theory,” J. Phys. Chem. Lett. 7, 2197–2203 (2016).10.1021/acs.jpclett.6b00780 PubMed DOI
Caldeweyher E. and Brandenburg J. G., “Simplified DFT methods for consistent structures and energies of large systems,” J. Phys.: Condens. Matter 30, 213001 (2018).10.1088/1361-648x/aabcfb PubMed DOI
See https://openforcefield.org for OpenForceField.
Wang L.-P., Smith D. G. A., and Qiu Y., GEOMETRIC: A geometry optimization code that includes the TRIC coordinate system. For the current version, see https://github.com/leeping/geomeTRIC; accessed January 2020.
Wang L.-P. and Song C., “Geometry optimization made simple with translation and rotation coordinates,” J. Chem. Phys. 144, 214108 (2016).10.1063/1.4952956 PubMed DOI
Heide A. and King R. A., OptKing: A Python version of the Psi4 geometry optimizer. For the current version, see https://github.com/psi-rking/optking; accessed January 2020.
Hermann J., PYBERNY: Molecular structure optimizer. For the current version, see https://github.com/jhrmnn/pyberny; accessed January 2020. Also, for Version 0.6.2 10.5281/zenodo.3695038. DOI
Wells B. H. and Wilson S., “van der Waals interaction potentials: Many-body basis set superposition effects,” Chem. Phys. Lett. 101, 429–434 (1983).10.1016/0009-2614(83)87508-3 DOI
Valiron P. and Mayer I., “Hierarchy of counterpoise corrections for N-body clusters: Generalization of the Boys-Bernardi scheme,” Chem. Phys. Lett. 275, 46–55 (1997).10.1016/s0009-2614(97)00689-1 DOI
Kaliman I., LIBEFP: Parallel implementation of the effective fragment potential method. For the current version, see https://github.com/ilyak/libefp; accessed January 2020. PubMed
Kaliman I. A. and Slipchenko L. V., “LIBEFP: A new parallel implementation of the effective fragment potential method as a portable software library,” J. Comput. Chem. 34, 2284–2292 (2013).10.1002/jcc.23375 PubMed DOI
Bayly C. I., Cieplak P., Cornell W., and Kollman P. A., “A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model,” J. Phys. Chem. 97, 10269–10280 (1993).10.1021/j100142a004 DOI
Alenaizan A., RESP: A restrained electrostatic potential (RESP) plugin to PSI4. For the current version, see https://github.com/cdsgroup/resp; accessed January 2020.
Alenaizan A., Burns L. A., and Sherrill C. D., “Python implementation of the restrained electrostatic potential charge model,” Int. J. Quantum Chem. 120, e26035 (2020).10.1002/qua.26035 DOI
Borca C. H., CRYSTALATTE: Automating the calculation of crystal lattice energies. For the current version, see https://github.com/carlosborca/CrystaLattE; accessed January 2020.
Borca C. H., Bakr B. W., Burns L. A., and Sherrill C. D., “CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism,” J. Chem. Phys. 151, 144103 (2019).10.1063/1.5120520 PubMed DOI
Pritchard B. P., Altarawy D., Didier B., Gibson T. D., and Windus T. L., “New basis set exchange: An open, up-to-date resource for the molecular sciences community,” J. Chem. Inf. Model. 59, 4814–4820 (2019).10.1021/acs.jcim.9b00725 PubMed DOI
Naoki I., MESSAGEPACK-PYTHON: MessagePack serializer implementation for Python. For the current version, see https://github.com/msgpack/msgpack-python; accessed January 2020. For the originating project, see https://msgpack.org/.
Bytautas L., Matsunaga N., Nagata T., Gordon M. S., and Ruedenberg K., “Accurate ab initio potential energy curve of F2. III. The vibration rotation spectrum,” J. Chem. Phys. 127, 204313 (2007).10.1063/1.2805392 PubMed DOI
Martin J. M. L., “Benchmark ab initio potential curves for the light diatomic hydrides. Unusually large nonadiabatic effects in BeH and BH,” Chem. Phys. Lett. 283, 283–293 (1998).10.1016/s0009-2614(97)01400-0 DOI
Temelso B., Valeev E. F., and Sherrill C. D., “A comparison of one-particle basis set completeness, higher-order electron correlation, relativistic effects, and adiabatic corrections for spectroscopic constants of BH, CH+, and NH,” J. Phys. Chem. A 108, 3068–3075 (2004).10.1021/jp036933+ DOI
Boschen J. S., Theis D., Ruedenberg K., and Windus T. L., “Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2,” Theor. Chem. Acc. 133, 1425 (2013).10.1007/s00214-013-1425-x DOI
Bender J. D., Doraiswamy S., Truhlar D. G., and Candler G. V., “Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N4,” J. Chem. Phys. 140, 054302 (2014).10.1063/1.4862157 PubMed DOI
Fernando W. T. M. L. and Bernath P. F., “Fourier transform spectroscopy of the A1Π-X1Σ+ transition of BH and BD,” J. Mol. Spectrosc. 145, 392–402 (1991).10.1016/0022-2852(91)90126-u DOI
Huber K. P. and Herzberg G., Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
Douay M., Nietmann R., and Bernath P. F., “New observations of the DOI