Cerebrospinal fluid neurofilament light chains and CXCL13 as predictive factors for clinical course of multiple sclerosis

. 2023 Mar ; 167 (1) : 30-35. [epub] 20230125

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu pozorovací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36695545

AIM: The aim of this study was to identify whether NfL and CXCL13 cerebrospinal fluid (CSF) concentrations at diagnostic lumbar puncture can predict the course of multiple sclerosis (MS) in terms of relapses, higher expanded disability status scale (EDSS) and magnetic resonance imaging (MRI) activity. METHODS: We conducted a single-centre prospective observational cohort study at the MS center, University Hospital Ostrava, Czech Republic. CSF NfL (cNfL) and CXCL13 concentrations were examined (ELISA method) in patients with clinically isolated syndrome (CIS) and relapsing-remitting MS (RRMS) at the time of diagnostic lumbar puncture. RESULTS: A total of 44 patients with CIS or early RRMS were enrolled, 31 (70.5%) of whom were women. The median age at the time of CSF sampling was 31.21 years (IQR 25.43-39.32), and the follow-up period was 54.6 months (IQR 44.03-59.48). In the simple and multiple logistic regression models, CXCL13 levels did not predict relapses, MRI activity or EDSS > 2.5. Similarly, cNfL concentrations did not predict relapses or MRI activity in either model. In the multiple regression, higher cNfL levels were associated with reaching EDSS > 2.5 (odds ratio [OR] 1.002, 95% confidence interval [CI] 1.000 to 1.003). CONCLUSIONS: Our data did not confirm cNfL and/or CXCL13 CSF levels were predictive factors for disease activity such as relapses and MRI activity at the time of diagnostic lumbar puncture in patients with RRMS. While cNfL CSF levels predicted higher disability only after adjustment for other known risk factors, elevated CSF CXCL13 did not predict higher disability at all.

Zobrazit více v PubMed

Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain pathology 2007;17(2):210-18. PubMed DOI

Dobson R, Giovannoni G. Multiple sclerosis - a review. Eur J Neurol 2019; 6(1):27-40. PubMed DOI

Kappos L, Edan G, Freedman MS, Montalban X, Hartung HP, Hemmer B & BENEFIT Study Group. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology 2016;87(10):978-87. PubMed DOI

Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA neurology 2015;72(2):152-8. PubMed DOI

Malmeström C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003;61(12):1720-5. PubMed DOI

Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain research 2003;987(1):25-31. PubMed DOI

Trentini A, Comabella M, Tintoré M, Koel-Simmelink MJ, Killestein J, Roos B, Teunissen CE. N-acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. J Neurol 2014;261(12):2338-43. PubMed DOI

Villar LM, Picón C, Costa-Frossard L, Alenda R, García-Caldentey J, Espiño M, Álvarez-Cermeño JC. Cerebrospinal fluid immunological biomarkers associated with axonal damage in multiple sclerosis. Eur J Neurol 2015;22(8):1169-75. PubMed DOI

Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A, Casha S. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatry 2015;86(3):273-9. PubMed DOI

Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Malaspina A. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 2015;84(22):2247-57. PubMed DOI

Kuhle J, Barro C, Disanto G, Mathias A, Soneson C, Bonnier G, Granziera C. Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult Scler 2016t;22(12):1550-9. doi: 10.1177/1352458515623365 PubMed DOI

Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 2005;233(1-2):183-98. doi: 10.1016/j.jns.2005.03.015 PubMed DOI

Bjornevik K, Munger KL, Cortese M, Barro C, Healy BC, Niebuhr DW, Ascherio A. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis. JAMA Neurol 2020;77(1):58-64. doi: 10.1001/jamaneurol.2019.3238 PubMed DOI

van den Bosch A, Fransen N, Mason M, Rozemuller AJ, Teunissen C, Smolders J, Huitinga I. Neurofilament Light Chain Levels in Multiple Sclerosis Correlate With Lesions Containing Foamy Macrophages and With Acute Axonal Damage. Neurol Neuroimmunol Neuroinflamm 2022;9(3):e1154. doi: 10.1212/NXI.0000000000001154 PubMed DOI

Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021;144(10):2954-63. doi: 10.1093/brain/awab241 PubMed DOI

Novakova L, Axelsson M, Khademi M, Zetterberg H, Blennow K, Malmeström C, Lycke J. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing-remitting multiple sclerosis. J Neurochem 2017;141(2):296-304. doi: 10.1111/jnc.13881 PubMed DOI

Khademi M, Kockum I, Andersson ML, Iacobaeus E, Brundin L, Sellebjerg F, Olsson T. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult Scler 2011;17(3):335-43. doi: 10.1177/1352458510389102 PubMed DOI

DiSano KD, Gilli F, Pachner AR. Intrathecally produced CXCL13: A predictive biomarker in multiple sclerosis. Mult Scler J Exp Transl Clin 2020;6(4):2055217320981396. doi: 10.1177/2055217320981396 PubMed DOI

Thompson AJ, Banwell BL, Barkhof F, Carroll,W, Coetzee T, Comi G, Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17(2):162-73. doi: 10.1016/S1474-4422(17)30470-2 PubMed DOI

Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69(2):292-302. doi: 10.1002/ana.22366 PubMed DOI

Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33(11):1444-52. doi: 10.1212/wnl.33.11.1444 PubMed DOI

Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Tourtellotte WW. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983;13(3):227-31. doi: 10.1002/ana.410130302 PubMed DOI

Vidal-Jordana A, Pareto D, Sastre-Garriga J, Auger C, Ciampi E, Montalban X, Rovira A. Measurement of cortical thickness and volume of subcortical structures in multiple sclerosis: agreement between 2D spin-echo and 3D MPRAGE T1-weighted images. AJNR Am J Neuroradiol. 2017;38(2):250-6. doi: 10.3174/ajnr.A4999 PubMed DOI

Revendova K, Zeman D, Kusnierova P, Bunganic R, Hanzlikova P, Karasova K, Volny O, Bar M. Prognostic value of intrathecal IgM synthesis determined by various laboratory methods in patients with early multiple sclerosis - a prospective observational study. Mult Scler Relat Disord 2022;63:103847. doi: 10.1016/j.msard.2022.103847 PubMed DOI

Abolhasani Foroughi A, Salahi R, Nikseresht A, Heidari H, Nazeri M, Khorsand A. Comparison of diffusion-weighted imaging and enhanced T1-weighted sequencing in patients with multiple sclerosis. Neuroradiol J 2017;30(4):347-51. doi: 10.1177/1971400916678224 PubMed DOI

Osborn AG. Essentials of Osborn's Brain E-Book: A Fundamental Guide for Residents and Fellows. Elsevier Health Sciences; 2019.

Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, MAGNIMS Study Group. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 2016;15(3):292-303. PubMed DOI

Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis. Clin Immunol 2015;161(1):51-8. PubMed DOI

Verbeek MM, De Jong D, Kremer HPH. Brain-specific proteins in cerebrospinal fluid for the diagnosis of neurodegenerative diseases. Ann Clin Biochem 2003;40(1):25-40. PubMed DOI

Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, Vehoff J. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol 2017;81(6):857-70. PubMed DOI

Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Compston DA. Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology 2005;64(7):1144-51. PubMed DOI

Salzer J, Svenningsson A, Sundström P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler 2010;16(3):287-92. PubMed DOI

Modvig S, Degn M, Roed H, Sørensen TL, Larsson HB, Langkilde AR, Sellebjerg F. Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Mult Scler 2015;21(14):1761-70. PubMed DOI

Martínez MA, Olsson B, Bau L, Matas E, Calvo ÁC, Andreasson U, Zetterberg H. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler 2015;21(5):550-61. PubMed DOI

Gunnarsson M, Malmeström C, Axelsson M, Sundström P, Dahle C, Vrethem M, Lycke J. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol 2011;69(1):83-9. PubMed DOI

Kuhle J, Disanto G, Lorscheider J, Stites T, Chen Y, Dahlke F, Francis G, Shrinivasan A, Radue EW, Giovannoni G, Kappos L. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology 2015;84(16):1639-43. PubMed DOI

Romme Christensen J, Ratzer R, Börnsen L, Lyksborg M, Garde E, Dyrby TB, Siebner HR, Sorensen PS, Sellebjerg F. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology 2014;82(17):1499-507. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...