In vivo fluorescent cercariae reveal the entry portals of Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Strigeidae) into the gilthead seabream Sparus aurata L
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MSM200961706
Akademie Věd České Republiky
AGL2015-68405-R
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Prometeo/2015/018
Conselleria d'Educació, Investigació, Cultura i Esport
Revidpaqua ISIC/2012/003
Conselleria d'Educació, Investigació, Cultura i Esport
P505/12/G112
ECIP (European Centre of Ichthyoparasitology); Centre of excellence program of the Czech Science Foundation
PubMed
30867029
PubMed Central
PMC6417200
DOI
10.1186/s13071-019-3351-9
PII: 10.1186/s13071-019-3351-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiocephaloides longicollis, Cercarial penetration pattern, Cercarial survival and activity, Digenea, Metacercarial encystment,
- MeSH
- benzimidazoly MeSH
- cerkárie MeSH
- fluoresceiny MeSH
- fluorescenční barviva * MeSH
- infekce červy třídy Trematoda přenos veterinární MeSH
- interakce hostitele a parazita * MeSH
- larva MeSH
- metacerkárie MeSH
- mořan zlatý parazitologie MeSH
- nemoci ryb parazitologie MeSH
- stadia vývoje MeSH
- sukcinimidy MeSH
- Trematoda růst a vývoj fyziologie MeSH
- vodní hospodářství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5-(6)-carboxyfluorescein diacetate succinimidyl ester MeSH Prohlížeč
- benzimidazoly MeSH
- bisbenzimide ethoxide trihydrochloride MeSH Prohlížeč
- fluoresceiny MeSH
- fluorescenční barviva * MeSH
- sukcinimidy MeSH
BACKGROUND: Despite their complex life-cycles involving various types of hosts and free-living stages, digenean trematodes are becoming recurrent model systems. The infection and penetration strategy of the larval stages, i.e. cercariae, into the fish host is poorly understood and information regarding their entry portals is not well-known for most species. Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Digenea, Strigeidae) uses the gilthead seabream (Sparus aurata L.), an important marine fish in Mediterranean aquaculture, as a second intermediate host, where they encyst in the brain as metacercariae. Labelling the cercariae with in vivo fluorescent dyes helped us to track their entry into the fish, revealing the penetration pattern that C. longicollis uses to infect S. aurata. METHODS: Two different fluorescent dyes were used: carboxyfluorescein diacetate succinimidyl ester (CFSE) and Hoechst 33342 (NB). Three ascending concentrations of each dye were tested to detect any effect on labelled cercarial performance, by recording their survival for the first 5 h post-labelling (hpl) and 24 hpl, as well as their activity for 5 hpl. Labelled cercariae were used to track the penetration points into fish, and cercarial infectivity and later encystment were analysed by recording brain-encysted metacercariae in fish infected with labelled and control cercariae after 20 days of infection. RESULTS: Although the different dye concentrations showed diverse effects on both survival and activity, intermediate doses of CFSE did not show any short-term effect on survival, permitting a brighter and longer recognition of cercariae on the host body surface. Therefore, CFSE helped to determine the penetration points of C. longicollis into the fish, denoting their aggregation on the head, eye and gills region, as well as on the dorsal fin and the lower side. Only CFSE-labelled cercariae showed a decreased number of encysted metacercariae when compared to control. CONCLUSIONS: Our study suggests that CFSE is an adequate labelling method for short-term in vivo studies, whereas NB would better suit in vivo studies on long-term performance. Cardiocephaloides longicollis cercariae seem to be attracted to areas near to the brain or those that are likely to be connected to migration routes to neuronal canals.
Zobrazit více v PubMed
Esch GW, Fernandez J. Snail-trematode interactions and parasite community dynamics in aquatic systems: a review. Am Midland Nat. 1994;131:209–237. doi: 10.2307/2426248. DOI
Esch GW, Barger MA, Fellis KJ. The transmission of digenetic trematodes: style, elegance, complexity. Integr Comp Biol. 2002;42:304–312. doi: 10.1093/icb/42.2.304. PubMed DOI
Poulin R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology. 2006;132:143–151. doi: 10.1017/S0031182005008693. PubMed DOI
Keeney DB, Lagrue C, Bryan-Walker K, Khan N, Leung TLF, Poulin R. The use of fluorescent fatty acid analogs as labels in trematode experimental infections. Exp Parasitol. 2008;120:15–20. doi: 10.1016/j.exppara.2008.04.010. PubMed DOI
Jephcott TG, Sime-Ngando T, Gleason FH, Macarthur DJ. Host-parasite interactions in food webs: diversity, stability, and coevolution. Food Webs. 2016;6:1–8. doi: 10.1016/j.fooweb.2015.12.001. DOI
Galaktionov KV, Dobrovolskij AA. The biology and evolution of trematodes. Dordrecht: Kluwer Academic Publishers; 2003.
Poulin R. Are there general laws in parasite ecology? Parasitology. 2007;134:763–776. doi: 10.1017/S0031182006002150. PubMed DOI
Combes C, Fournier A, Moné H, Théron A. Behaviours in trematode cercariae that enhance parasite transmission: patterns and processes. Parasitology. 1994;109(Suppl. 1):3–13. doi: 10.1017/S0031182000085048. PubMed DOI
Williams HH, Jones A. Parasitic worms of fish. London: Taylor and Francis; 1994.
Anderson RM, Whitfield PJ. Survival characteristics of the free-living cercarial population of the ectoparasitic digenean Transversotrema patialensis (Soparker, 1924) Parasitology. 1975;70:295–310. doi: 10.1017/S0031182000052082. DOI
Haas W, Haberl B, Schmalfuss G, Khayyal MT. Schistosoma haematobium cercarial host-finding and host-recognition differs from that of S. mansoni. J Parasitol. 1994;80:345–353. doi: 10.2307/3283401. PubMed DOI
Haas W, van de Roemer A. Invasion of the vertebrate skin by cercariae of Trichobilharzia ocellata: penetration processes and stimulating host signals. Parasitol Res. 1998;84:787–795. doi: 10.1007/s004360050489. PubMed DOI
Rohde K, Rohde PP. Chapter 7 Ecology. In: Rohde K, editor. Marine parasitology. Collingwood: CSIRO Publishing; 2005. p. 286–325.
Paller VGV, Uga S. Attachment and penetration of Centrocestus armatus (Digenea: Heterophyidae) cercariae to gills of secondary intermediate fish hosts. J Parasitol. 2008;94:578–583. doi: 10.1645/GE-1402.1. PubMed DOI
Karvonen A, Seppälä O, Valtonen ET. Eye fluke-induced cataract formation in fish: quantitative analysis using an ophthalmological microscope. Parasitology. 2004;129:473–478. doi: 10.1017/S0031182004006006. PubMed DOI
Curwen RS, Ashton PD, Sundaralingam S, Wilson RA. Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Mol Cell Prot. 2006;5:835–844. doi: 10.1074/mcp.M500313-MCP200. PubMed DOI
Paveley RA, Aynsley SA, Cook PC, Turner JD, Mountford AP. Fluorescent imaging of antigen released by a skin-invading helminth reveals differential uptake and activation profiles by antigen presenting cells. PLoS Negl Trop Dis. 2009;3:e528. doi: 10.1371/journal.pntd.0000528. PubMed DOI PMC
Furlong ST, Thibault KS, Morbelli LM, Quinn JJ, Rogers RA. Uptake and compartmentalization of fluorescent lipid analogs in larval Schistosoma mansoni. J Lipid Res. 1995;36:1–12. PubMed
Kurtz J, van der Veen IT, Christen M. Fluorescent vital labelling to track cestodes in a copepod intermediate host. Exp Parasitol. 2002;100:36–43. doi: 10.1006/expr.2001.4681. PubMed DOI
LaFonte BE, Raffel TR, Monk IN, Johnson PT. Quantifying larval trematode infections in hosts: a comparison of method validity and implications for infection success. Exp Parasitol. 2015;154:155–162. doi: 10.1016/j.exppara.2015.04.003. PubMed DOI
Trujillo-González A, Constantinoiu CC, Rowe R, Hutson KS. Tracking transparent monogenean parasites on fish from infection to maturity. Int J Parasitol Parasites Wildl. 2015;4:316–322. doi: 10.1016/j.ijppaw.2015.06.002. PubMed DOI PMC
Glennon V, Chisholm LA, Whittington ID. Experimental infections, using a fluorescent marker, of two elasmobranch species by unciliated larvae of Branchotenthes octohamatus (Monogenea: Hexabothriidae): invasion route, host specificity and post-larval development. Parasitology. 2007;134:1243–1252. doi: 10.1017/S0031182007002545. PubMed DOI
Ressurreição M, Kirk RS, Rollinson D, Emery AM, Page NM, Walker AJ. Sensory protein kinase signaling in Schistosoma mansoni cercariae: host location and invasion. J Infect Dis. 2015;212:1787–1797. doi: 10.1093/infdis/jiv464. PubMed DOI PMC
Sarvel AK, Kusel JR, Araújo N, Coelho PMZ, Katz N. Comparison between morphological and staining characteristics of live and dead eggs of Schistosoma mansoni. Mem Inst Oswaldo Cruz. 2006;101:289–292. doi: 10.1590/S0074-02762006000900045. PubMed DOI
Da’dara AA, Krautz-Peterson G. New insights into the reaction of Schistosoma mansoni cercaria to the human complement system. Parasitol Res. 2014;113:3685–3696. doi: 10.1007/s00436-014-4033-3. PubMed DOI PMC
Osset EA, Fernández M, Raga JA, Kostadinova A. Mediterranean Diplodus annularis (Teleostei: Sparidae) and its brain parasite: unforeseen outcome. Parasitol Int. 2005;54:201–206. doi: 10.1016/j.parint.2005.05.002. PubMed DOI
Born-Torrijos A, Poulin R, Pérez-del-Olmo A, Culurgioni J, Raga JA, Holzer AS. An optimised multi-host trematode life cycle: fishery discards enhance trophic parasite transmission to scavenging birds. Int J Parasitol. 2016;46:745–753. doi: 10.1016/j.ijpara.2016.06.005. PubMed DOI
Dubois G. Monographie des Strigeida (Trematoda) Mém Soc Neuchâtel des Sci Nat. 1938;6:1–535.
Born-Torrijos A, Holzer AS, Raga JA, van Beest GS, Yoneva A. Description of embryonic development and ultrastructure in miracidia of Cardiocephaloides longicollis (Digenea, Strigeidae) in relation to active host finding strategy in a marine environment. J Morphol. 2017;278:1137–1148. doi: 10.1002/jmor.20700. PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Therneau TM. coxme: mixed effects Cox models. R package version 2.2-10. 2018. https://cran.r-project.org/web/packages/coxme/index.html. Accessed 13 May 2018.
Therneau TM, Lumley T. survival: survival analysis. R package version 2.38-3. 2015. https://cran.r-project.org/web/packages/survival/index.html. Accessed 27 Oct 2015.
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Baddeley A, Turner RD. spatstat: An R package for analyzing spatial point patterns. J Stat Softw. 2005;12:1–42. doi: 10.18637/jss.v012.i06. DOI
Fox J, Weisberg S. Multivariate linear models in R. 2. Thousand Oaks, CA: Sage Publications; 2011.
Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S. multcomp: simultaneous inference in general parametric models. R package version 1.4-8. 2017. https://cran.r-project.org/web/packages/multcomp/index.html. Accessed 8 Nov 2017.
Karvonen A, Paukku S, Valtonen ET, Hudson PJ. Transmission, infectivity and survival of Diplostomum spathaceum cercariae. Parasitology. 2003;127:217–224. doi: 10.1017/S0031182003003561. PubMed DOI
Whitfield PJ, Bartlett A, Khammo N, Clothier RH. Age-dependent survival and infectivity of Schistosoma mansoni cercariae. Parasitology. 2003;127:29–35. doi: 10.1017/S0031182003003263. PubMed DOI
Morley NJ, Crane M, Lewis JW. Toxicity of cadmium and zinc mixtures to Diplostomum spathaceum (Trematoda: Diplostomidae) cercarial survival. Arch Environ Contam Toxicol. 2002;43:28–33. doi: 10.1007/s00244-002-1244-x. PubMed DOI
Morley NJ, Crane M, Lewis JW. Toxicity of cadmium and zinc to the cercarial activity of Diplostomum spathaceum (Trematoda: Diplostomidae) Folia Parasitol. 2003;50:57–60. doi: 10.14411/fp.2003.011. PubMed DOI
Pietrock M, Meinelt T, Marcogliese DJ, Steinberg CEW. Influence of aqueous sediment extracts from the Oder River (Germany/Poland) on survival of Diplostomum sp. (Trematoda: Diplostomidae) cercariae. Arch Environ Contam Toxicol. 2001;40:327–332. doi: 10.1007/s002440010179. PubMed DOI
Koprivnikar J, Forbes MR, Baker RL. Effects of atrazine on cercarial longevity, activity, and infectivity. J Parasitol. 2006;92:306–311. doi: 10.1645/GE-624R.1. PubMed DOI
Griggs JL, Belden LK. Effects of atrazine and metolachlor on the survivorship and infectivity of Echinostoma trivolvis trematode cercariae. Arch Environ Contam Toxicol. 2008;54:195–202. doi: 10.1007/s00244-007-9029-x. PubMed DOI
Hua J, Buss N, Kim J, Orlofske SA, Hoverman JT. Population-specific toxicity of six insecticides to the trematode Echinoparyphium sp. Parasitology. 2016;143:542–550. doi: 10.1017/S0031182015001894. PubMed DOI
Uglem GL, Prior DJ. Control of swimming in cercariae of Proterometra macrostoma (Digenea) J Parasitol. 1983;69:866–870. doi: 10.2307/3281048. PubMed DOI
Fried J, Doblin J, Takamoto S, Perez A, Hansen H, Clarkson B. Effects of Hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically normal bone marrow cells. Cytometry. 1982;3:42–47. doi: 10.1002/cyto.990030110. PubMed DOI
Yokoyama H, Urawa S. Fluorescent labelling of actinospores for determining the portals of entry into fish. Dis Aquat Organ. 1997;30:165–169. doi: 10.3354/dao030165. DOI
Haas W, Stiegeler P, Keating A, Kullmann B, Rabenau H, Schönamsgruber E, Haberl B. Diplostomum spathaceum cercariae respond to a unique profile of cues during recognition of their fish host. Int J Parasitol. 2002;32:1145–1154. doi: 10.1016/S0020-7519(02)00089-9. PubMed DOI
Haas W, Granzer M, Brockelman CR. Opisthorchis viverrini: finding and recognition of the fish host by the cercariae. Exp Parasitol. 1990;71:422–431. doi: 10.1016/0014-4894(90)90068-N. PubMed DOI
Poulin R. Evolutionary ecology of parasites. 2. Princeton: Princeton University Press; 2007.
Conn DB, Goater CP, Bray D. Developmental and functional ultrastructure of Ornithodiplostomum ptychocheilus diplostomula (Trematoda: Strigeoidea) during invasion of the brain of the fish intermediate host, Pimephales promelas. J Parasitol. 2008;94:635–642. doi: 10.1645/GE-1421.1. PubMed DOI
Hendrickson GL. Ornithodiplostomum ptychocheilus: migration to the brain of the fish intermediate host, Pimephales promelas. Exp Parasitol. 1979;48:245–258. doi: 10.1016/0014-4894(79)90106-1. PubMed DOI
Höglund J. Ultrastructural observations and radiometric assay on cercarial penetration and migration of the digenean Diplostomum spathaceum in the rainbow trout Oncorhynchus mykiss. Parasitol Res. 1991;77:283–289. doi: 10.1007/BF00930902. PubMed DOI
Matisz C, Goater C, Bray D. Migration and site selection of Ornithodiplostomum ptychocheilus (Trematoda: Digenea) metacercariae in the brain of fathead minnows (Pimephales promelas) Parasitology. 2010;137:719–731. doi: 10.1017/S0031182009991545. PubMed DOI
Mapping a brain parasite: occurrence and spatial distribution in fish encephalon