Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation

. 2022 Jun 15 ; 11 (12) : . [epub] 20220615

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35736728

Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.

Zobrazit více v PubMed

Pendergrass P.B., Belovicz M.W., Reeves C.A. Surface area of the human vagina as measured from vinyl polysiloxane casts. Gynecol. Obstet. Investig. 2003;55:110–113. doi: 10.1159/000070184. PubMed DOI

Egedal J.H., Xie G., Packard T.A., Laustsen A., Neidleman J., Georgiou K., Pillai S.K., Greene W.C., Jakobsen M.R., Roan N.R. Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunol. 2021;14:1203–1213. doi: 10.1038/s41385-021-00409-3. PubMed DOI PMC

Ali A., Syed S., Jamaluddin M.F., Colino-Sanguino Y., Gallego-Ortega D., Tanwar P.S. Cell Lineage Tracing Identifies Hormone-Regulated and Wnt-Responsive Vaginal Epithelial Stem Cells. Cell Rep. 2020;30:1463–1477.e7. doi: 10.1016/j.celrep.2020.01.003. PubMed DOI

Chung H.S., Lee H.-S., Kim M.E., Lee J.S., Park K. Identification and localization of epithelial progenitor cells in the vagina. Int. J. Impot. Res. 2018;31:46–49. doi: 10.1038/s41443-018-0079-6. PubMed DOI

Bellu E., Cruciani S., Garroni G., Balzano F., Satta R., Montesu M., Fadda A., Mulas M., Sarais G., Bandiera P., et al. Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells. 2021;10:1415. doi: 10.3390/cells10061415. PubMed DOI PMC

O’Hanlon D.E., Gajer P., Brotman R.M., Ravel J. Asymptomatic Bacterial Vaginosis Is Associated with Depletion of Mature Superficial Cells Shed from the Vaginal Epithelium. Front. Cell. Infect. Microbiol. 2020;10:106. doi: 10.3389/fcimb.2020.00106. PubMed DOI PMC

Mårdh P.-A., Rodrigues A.G., Genç M., Novikova N., de Oliveira J.M., Guaschino S. Facts and myths on recurrent vulvovaginal candidosis—a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int. J. STD AIDS. 2002;13:522–539. doi: 10.1258/095646202760159639. PubMed DOI

Palmeira-De-Oliveira R., Duarte P., Palmeira-De-Oliveira A., Das Neves J., Amaral M.H., Breitenfeld L., Martinez-De-Oliveira J. Women’s experiences, preferences and perceptions regarding vaginal products: Results from a cross-sectional web-based survey in Portugal. Eur. J. Contracept. Reprod. Health Care. 2015;20:259–271. doi: 10.3109/13625187.2014.980501. PubMed DOI

Hashemi H., Varshosaz J., Fazeli H., Sharafi S.M., Mirhendi H., Chadeganipour M., Yousefi H., Manoochehri K., Chermahini Z.A., Jafarzadeh L., et al. Rapid differential diagnosis of vaginal infections using gold nanoparticles coated with specific antibodies. Med. Microbiol. Immunol. 2019;208:773–780. doi: 10.1007/s00430-019-00622-9. PubMed DOI

Paladine H.L., Desai U.A. Vaginitis: Diagnosis and treatment. Am. Fam. Physician. 2018;97:321–329. PubMed

Ma X., Wu M., Wang C., Li H., Fan A., Wang Y., Han C., Xue F. The pathogenesis of prevalent aerobic bacteria in aerobic vaginitis and adverse pregnancy outcomes: A narrative review. Reprod. Health. 2022;19:21. doi: 10.1186/s12978-021-01292-8. PubMed DOI PMC

Donders G.G. Definition and classification of abnormal vaginal flora. Best Pract. Res. Clin. Obstet. Gynaecol. 2007;21:355–373. doi: 10.1016/j.bpobgyn.2007.01.002. PubMed DOI

Tansarli G.S., Kostaras E.K., Athanasiou S., Falagas M.E. Prevalence and treatment of aerobic vaginitis among non-pregnant women: Evaluation of the evidence for an underestimated clinical entity. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:977–984. doi: 10.1007/s10096-013-1846-4. PubMed DOI

Donders G.G., Vereecken A., Bosmans E., Dekeersmaecker A., Salembier G., Spitz B. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: Aerobic vaginitis. BJOG Int. J. Obstet. Gynaecol. 2002;109:34–43. doi: 10.1111/j.1471-0528.2002.00432.x. PubMed DOI

Ibrahim S.M., Bukar M., Mohammed Y., Mohammed B., Yahaya M., Audu B.M., Ibrahim H.M. Prevalence of vaginal candidiasis among pregnant women with abnormal vaginal discharge in Maiduguri. Niger. J. Med. 2013;22:138–142. PubMed

Diaz N., Lico C., Capodicasa C., Baschieri S., Dessì D., Benvenuto E., Fiori P.L., Rappelli P. Production and Functional Characterization of a Recombinant Predicted Pore-Forming Protein (TVSAPLIP12) of Trichomonas vaginalis in Nicotiana benthamiana Plants. Front. Cell. Infect. Microbiol. 2020;10:581066. doi: 10.3389/fcimb.2020.581066. PubMed DOI PMC

Kissinger P. Trichomonas vaginalis: A review of epidemiologic, clinical and treatment issues. BMC Infect. Dis. 2015;15:307. doi: 10.1186/s12879-015-1055-0. PubMed DOI PMC

Diaz N., Dessi D., Dessole S., Fiori P.L., Rappelli P. Rapid detection of coinfections by Trichomonas vaginalis, Mycoplasma hominis, and Ureaplasma urealyticum by a new multiplex polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 2010;67:30–36. doi: 10.1016/j.diagmicrobio.2009.12.022. PubMed DOI

Smith J.D., Garber G.E. Trichomonas vaginalis Infection Induces Vaginal CD4+T-Cell Infiltration in a Mouse Model: A Vaccine Strategy to Reduce Vaginal Infection and HIV Transmission. J. Infect. Dis. 2015;212:285–293. doi: 10.1093/infdis/jiv036. PubMed DOI

Palmeira-De-Oliveira R., Palmeira-De-Oliveira A., Martinez-De-Oliveira J. New strategies for local treatment of vaginal infections. Adv. Drug Deliv. Rev. 2015;92:105–122. doi: 10.1016/j.addr.2015.06.008. PubMed DOI

Brocklehurst P., Gordon A., Heatley E., Milan S.J. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst. Rev. 2013;1:CD000262. doi: 10.1002/14651858.CD000262.pub4. PubMed DOI PMC

Bogavac M., Karaman M., Janjušević L., Sudji J., Radovanović B., Novaković Z., Simeunović J., Bozin B. Alternative treatment of vaginal infections—In vitro antimicrobial and toxic effects of Coriandrum sativum L. and Thymus vulgaris L. essential oils. J. Appl. Microbiol. 2015;119:697–710. doi: 10.1111/jam.12883. PubMed DOI

Workowski K.A., Bachmann L.H., Chan P.A., Johnston C.M., Muzny C.A., Park I., Reno H., Zenilman J.M., Bolan G.A. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR. Recomm. Rep. 2021;70:1–187. doi: 10.15585/mmwr.rr7004a1. PubMed DOI PMC

Karaman M., Bogavac M., Radovanović B., Sudji J., Tešanović K., Janjušević L. Origanum vulgare essential oil affects pathogens causing vaginal infections. J. Appl. Microbiol. 2017;122:1177–1185. doi: 10.1111/jam.13413. PubMed DOI

Martínez-Tomé M., Jiménez A.M., Ruggieri S., Frega N., Strabbioli R., Murcia M.A. Antioxidant Properties of Mediterranean Spices Compared with Common Food Additives. J. Food Prot. 2001;64:1412–1419. doi: 10.4315/0362-028X-64.9.1412. PubMed DOI

Bellu E., Garroni G., Cruciani S., Balzano F., Serra D., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., et al. Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells. 2020;9:2530. doi: 10.3390/cells9122530. PubMed DOI PMC

Gosecka M., Gosecki M. Antimicrobial Polymer-Based Hydrogels for the Intravaginal Therapies—Engineering Considerations. Pharmaceutics. 2021;13:1393. doi: 10.3390/pharmaceutics13091393. PubMed DOI PMC

das Neves J., Nunes R., Machado A., Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv. Drug Deliv. Rev. 2014;92:53–70. doi: 10.1016/j.addr.2014.12.004. PubMed DOI

Franco A.M., Tocci N., Guella G., Dell’Agli M., Sangiovanni E., Perenzoni D., Vrhovsek U., Mattivi F., Manca G. Myrtle Seeds (Myrtus communis L.) as a Rich Source of the Bioactive Ellagitannins Oenothein B and Eugeniflorin D2. ACS Omega. 2019;4:15966–15974. doi: 10.1021/acsomega.9b02010. PubMed DOI PMC

Usai M., Marchetti M., Culeddu N., Mulas M. Chemical Composition of Myrtle (Myrtus communis L.) Berries Essential Oils as Observed in a Collection of Genotypes. Molecules. 2018;23:2502. doi: 10.3390/molecules23102502. PubMed DOI PMC

Safaeijavan R., Soleimani M., Divsalar A., Eidi A., Ardeshirylajimi A. Biological behavior study of gelatin coated PCL nanofiberous electrospun scaffolds using fibroblasts. Arch. Adv. Biosci. 2013;5 doi: 10.22037/JPS.V5I1.5467. DOI

Subramani R., Narayanasamy M., Feussner K.-D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 2017;7:172. doi: 10.1007/s13205-017-0848-9. PubMed DOI PMC

Pandey M., Choudhury H., Abdul-Aziz A., Bhattamisra S.K., Gorain B., Carine T., Wee Toong T., Yi N.J., Win Yi L. Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers. 2020;13:26. doi: 10.3390/polym13010026. PubMed DOI PMC

Takada K., Komine-Aizawa S., Kuramochi T., Ito S., Trinh Q.D., Pham N.T.K., Sasano M., Hayakawa S. Lactobacillus crispatusaccelerates re-epithelialization in vaginal epithelial cell line MS74. Am. J. Reprod. Immunol. 2018;80:e13027. doi: 10.1111/aji.13027. PubMed DOI

Berendika M., Drozdek S.D., Odeh D., Oršolić N., Dragičević P., Sokolović M., Garofulić I.E., Đikić D., Jurčević I.L. Beneficial Effects of Laurel (Laurus nobilis L.) and Myrtle (Myrtus communis L.) Extract on Rat Health. Molecules. 2022;27:581. doi: 10.3390/molecules27020581. PubMed DOI PMC

Taheri A., Seyfan A., Jalalinezhad S., Nasery F. Antibacterial effect of myrtus communis hydro-alcoholic extract on pathogenic bacteria. Zahedan J. Res. Med. Sci. 2013;15:19–24.

Koohsari H., Ghaemi E., Sheshpoli M.S., Jahedi M., Zahiri M. The investigation of antibacterial activity of selected native plants from North of Iran. J. Med. Life. 2015;8:38–42. PubMed PMC

Le N.T., Ho D.V., Doan T.Q., Le A.T., Raal A., Usai D., Sanna G., Carta A., Rappelli P., Diaz N., et al. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics. 2020;9:207. doi: 10.3390/antibiotics9040207. PubMed DOI PMC

Donadu M.G., Le N.T., Ho D.V., Doan T.Q., Le A.T., Raal A., Usai M., Marchetti M., Sanna G., Madeddu S., et al. Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics. 2020;9:334. doi: 10.3390/antibiotics9060334. PubMed DOI PMC

Dessì D., Rappelli P., Diaz N., Cappuccinelli P., Fiori P.L. Mycoplasma hominis and Trichomonas vaginalis: A unique case of symbiotic relationship between two obligate human parasites. Front. Biosci. 2006;11:2028–2034. doi: 10.2741/1944. PubMed DOI

Margarita V., Fiori P.L., Rappelli P. Impact of Symbiosis Between Trichomonas vaginalis and Mycoplasma hominis on Vaginal Dysbiosis: A Mini Review. Front. Cell. Infect. Microbiol. 2020;10:179. doi: 10.3389/fcimb.2020.00179. PubMed DOI PMC

Aleksic V., Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res. 2014;169:240–254. doi: 10.1016/j.micres.2013.10.003. PubMed DOI

Ferrari M., Cirisano F., Morán M.C. Mammalian cell behavior on hydrophobic substrates: Influence of surface properties. Colloids Interfaces. 2019;3:48. doi: 10.3390/colloids3020048. DOI

Fadda A., Sarais G., Lai C., Sale L., Mulas M. Control of postharvest diseases caused by Penicillium spp. with myrtle leaf phenolic extracts: In vitro and in vivo study on mandarin fruit during storage. J. Sci. Food Agric. 2021;101:4229–4240. doi: 10.1002/jsfa.11062. PubMed DOI

Sarais G., D’Urso G., Lai C., Pirisi F.M., Pizza C., Montoro P. Targeted and untargeted mass spectrometric approaches in discrimination betweenMyrtus communiscultivars from Sardinia region. J. Mass Spectrom. 2016;51:704–715. doi: 10.1002/jms.3811. PubMed DOI

Bellu E., Garroni G., Balzano F., Satta R., Montesu M., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI

Reker D., Blum S.M., Steiger C., Anger K.E., Sommer J.M., Fanikos J., Traverso G. “Inactive” ingredients in oral medications. Sci. Transl. Med. 2019;11:eaau6753. doi: 10.1126/scitranslmed.aau6753. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...