Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35736728
PubMed Central
PMC9227804
DOI
10.3390/plants11121577
PII: plants11121577
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, bioactive compounds, cell behavior, health promoting, myrtle, nanomaterials, plant extracts, vaginal infections,
- Publikační typ
- časopisecké články MeSH
Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.
Ambis College Lindnerova 575 1 18000 Prague Czech Republic
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 B 07100 Sassari Italy
Department of Chemistry and Pharmacy University of Sassari 07100 Sassari Italy
Department of Medical Surgical and Experimental Sciences University of Sassari 07100 Sassari Italy
Faculty of Biomedical Engineering Czech Technical University Prague 27201 Prague Czech Republic
Health and Biological Sciences Department Federal University of Amapà Macapa 68902280 Brazil
Istituto di Scienze delle Produzioni Alimentari Traversa la Crucca 3 07100 Sassari Italy
UCEEB Czech Technical University Trinecka 1024 27343 Bustehrad Czech Republic
Zobrazit více v PubMed
Pendergrass P.B., Belovicz M.W., Reeves C.A. Surface area of the human vagina as measured from vinyl polysiloxane casts. Gynecol. Obstet. Investig. 2003;55:110–113. doi: 10.1159/000070184. PubMed DOI
Egedal J.H., Xie G., Packard T.A., Laustsen A., Neidleman J., Georgiou K., Pillai S.K., Greene W.C., Jakobsen M.R., Roan N.R. Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunol. 2021;14:1203–1213. doi: 10.1038/s41385-021-00409-3. PubMed DOI PMC
Ali A., Syed S., Jamaluddin M.F., Colino-Sanguino Y., Gallego-Ortega D., Tanwar P.S. Cell Lineage Tracing Identifies Hormone-Regulated and Wnt-Responsive Vaginal Epithelial Stem Cells. Cell Rep. 2020;30:1463–1477.e7. doi: 10.1016/j.celrep.2020.01.003. PubMed DOI
Chung H.S., Lee H.-S., Kim M.E., Lee J.S., Park K. Identification and localization of epithelial progenitor cells in the vagina. Int. J. Impot. Res. 2018;31:46–49. doi: 10.1038/s41443-018-0079-6. PubMed DOI
Bellu E., Cruciani S., Garroni G., Balzano F., Satta R., Montesu M., Fadda A., Mulas M., Sarais G., Bandiera P., et al. Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells. 2021;10:1415. doi: 10.3390/cells10061415. PubMed DOI PMC
O’Hanlon D.E., Gajer P., Brotman R.M., Ravel J. Asymptomatic Bacterial Vaginosis Is Associated with Depletion of Mature Superficial Cells Shed from the Vaginal Epithelium. Front. Cell. Infect. Microbiol. 2020;10:106. doi: 10.3389/fcimb.2020.00106. PubMed DOI PMC
Mårdh P.-A., Rodrigues A.G., Genç M., Novikova N., de Oliveira J.M., Guaschino S. Facts and myths on recurrent vulvovaginal candidosis—a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int. J. STD AIDS. 2002;13:522–539. doi: 10.1258/095646202760159639. PubMed DOI
Palmeira-De-Oliveira R., Duarte P., Palmeira-De-Oliveira A., Das Neves J., Amaral M.H., Breitenfeld L., Martinez-De-Oliveira J. Women’s experiences, preferences and perceptions regarding vaginal products: Results from a cross-sectional web-based survey in Portugal. Eur. J. Contracept. Reprod. Health Care. 2015;20:259–271. doi: 10.3109/13625187.2014.980501. PubMed DOI
Hashemi H., Varshosaz J., Fazeli H., Sharafi S.M., Mirhendi H., Chadeganipour M., Yousefi H., Manoochehri K., Chermahini Z.A., Jafarzadeh L., et al. Rapid differential diagnosis of vaginal infections using gold nanoparticles coated with specific antibodies. Med. Microbiol. Immunol. 2019;208:773–780. doi: 10.1007/s00430-019-00622-9. PubMed DOI
Paladine H.L., Desai U.A. Vaginitis: Diagnosis and treatment. Am. Fam. Physician. 2018;97:321–329. PubMed
Ma X., Wu M., Wang C., Li H., Fan A., Wang Y., Han C., Xue F. The pathogenesis of prevalent aerobic bacteria in aerobic vaginitis and adverse pregnancy outcomes: A narrative review. Reprod. Health. 2022;19:21. doi: 10.1186/s12978-021-01292-8. PubMed DOI PMC
Donders G.G. Definition and classification of abnormal vaginal flora. Best Pract. Res. Clin. Obstet. Gynaecol. 2007;21:355–373. doi: 10.1016/j.bpobgyn.2007.01.002. PubMed DOI
Tansarli G.S., Kostaras E.K., Athanasiou S., Falagas M.E. Prevalence and treatment of aerobic vaginitis among non-pregnant women: Evaluation of the evidence for an underestimated clinical entity. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:977–984. doi: 10.1007/s10096-013-1846-4. PubMed DOI
Donders G.G., Vereecken A., Bosmans E., Dekeersmaecker A., Salembier G., Spitz B. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: Aerobic vaginitis. BJOG Int. J. Obstet. Gynaecol. 2002;109:34–43. doi: 10.1111/j.1471-0528.2002.00432.x. PubMed DOI
Ibrahim S.M., Bukar M., Mohammed Y., Mohammed B., Yahaya M., Audu B.M., Ibrahim H.M. Prevalence of vaginal candidiasis among pregnant women with abnormal vaginal discharge in Maiduguri. Niger. J. Med. 2013;22:138–142. PubMed
Diaz N., Lico C., Capodicasa C., Baschieri S., Dessì D., Benvenuto E., Fiori P.L., Rappelli P. Production and Functional Characterization of a Recombinant Predicted Pore-Forming Protein (TVSAPLIP12) of Trichomonas vaginalis in Nicotiana benthamiana Plants. Front. Cell. Infect. Microbiol. 2020;10:581066. doi: 10.3389/fcimb.2020.581066. PubMed DOI PMC
Kissinger P. Trichomonas vaginalis: A review of epidemiologic, clinical and treatment issues. BMC Infect. Dis. 2015;15:307. doi: 10.1186/s12879-015-1055-0. PubMed DOI PMC
Diaz N., Dessi D., Dessole S., Fiori P.L., Rappelli P. Rapid detection of coinfections by Trichomonas vaginalis, Mycoplasma hominis, and Ureaplasma urealyticum by a new multiplex polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 2010;67:30–36. doi: 10.1016/j.diagmicrobio.2009.12.022. PubMed DOI
Smith J.D., Garber G.E. Trichomonas vaginalis Infection Induces Vaginal CD4+T-Cell Infiltration in a Mouse Model: A Vaccine Strategy to Reduce Vaginal Infection and HIV Transmission. J. Infect. Dis. 2015;212:285–293. doi: 10.1093/infdis/jiv036. PubMed DOI
Palmeira-De-Oliveira R., Palmeira-De-Oliveira A., Martinez-De-Oliveira J. New strategies for local treatment of vaginal infections. Adv. Drug Deliv. Rev. 2015;92:105–122. doi: 10.1016/j.addr.2015.06.008. PubMed DOI
Brocklehurst P., Gordon A., Heatley E., Milan S.J. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst. Rev. 2013;1:CD000262. doi: 10.1002/14651858.CD000262.pub4. PubMed DOI PMC
Bogavac M., Karaman M., Janjušević L., Sudji J., Radovanović B., Novaković Z., Simeunović J., Bozin B. Alternative treatment of vaginal infections—In vitro antimicrobial and toxic effects of Coriandrum sativum L. and Thymus vulgaris L. essential oils. J. Appl. Microbiol. 2015;119:697–710. doi: 10.1111/jam.12883. PubMed DOI
Workowski K.A., Bachmann L.H., Chan P.A., Johnston C.M., Muzny C.A., Park I., Reno H., Zenilman J.M., Bolan G.A. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR. Recomm. Rep. 2021;70:1–187. doi: 10.15585/mmwr.rr7004a1. PubMed DOI PMC
Karaman M., Bogavac M., Radovanović B., Sudji J., Tešanović K., Janjušević L. Origanum vulgare essential oil affects pathogens causing vaginal infections. J. Appl. Microbiol. 2017;122:1177–1185. doi: 10.1111/jam.13413. PubMed DOI
Martínez-Tomé M., Jiménez A.M., Ruggieri S., Frega N., Strabbioli R., Murcia M.A. Antioxidant Properties of Mediterranean Spices Compared with Common Food Additives. J. Food Prot. 2001;64:1412–1419. doi: 10.4315/0362-028X-64.9.1412. PubMed DOI
Bellu E., Garroni G., Cruciani S., Balzano F., Serra D., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., et al. Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells. 2020;9:2530. doi: 10.3390/cells9122530. PubMed DOI PMC
Gosecka M., Gosecki M. Antimicrobial Polymer-Based Hydrogels for the Intravaginal Therapies—Engineering Considerations. Pharmaceutics. 2021;13:1393. doi: 10.3390/pharmaceutics13091393. PubMed DOI PMC
das Neves J., Nunes R., Machado A., Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv. Drug Deliv. Rev. 2014;92:53–70. doi: 10.1016/j.addr.2014.12.004. PubMed DOI
Franco A.M., Tocci N., Guella G., Dell’Agli M., Sangiovanni E., Perenzoni D., Vrhovsek U., Mattivi F., Manca G. Myrtle Seeds (Myrtus communis L.) as a Rich Source of the Bioactive Ellagitannins Oenothein B and Eugeniflorin D2. ACS Omega. 2019;4:15966–15974. doi: 10.1021/acsomega.9b02010. PubMed DOI PMC
Usai M., Marchetti M., Culeddu N., Mulas M. Chemical Composition of Myrtle (Myrtus communis L.) Berries Essential Oils as Observed in a Collection of Genotypes. Molecules. 2018;23:2502. doi: 10.3390/molecules23102502. PubMed DOI PMC
Safaeijavan R., Soleimani M., Divsalar A., Eidi A., Ardeshirylajimi A. Biological behavior study of gelatin coated PCL nanofiberous electrospun scaffolds using fibroblasts. Arch. Adv. Biosci. 2013;5 doi: 10.22037/JPS.V5I1.5467. DOI
Subramani R., Narayanasamy M., Feussner K.-D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 2017;7:172. doi: 10.1007/s13205-017-0848-9. PubMed DOI PMC
Pandey M., Choudhury H., Abdul-Aziz A., Bhattamisra S.K., Gorain B., Carine T., Wee Toong T., Yi N.J., Win Yi L. Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers. 2020;13:26. doi: 10.3390/polym13010026. PubMed DOI PMC
Takada K., Komine-Aizawa S., Kuramochi T., Ito S., Trinh Q.D., Pham N.T.K., Sasano M., Hayakawa S. Lactobacillus crispatusaccelerates re-epithelialization in vaginal epithelial cell line MS74. Am. J. Reprod. Immunol. 2018;80:e13027. doi: 10.1111/aji.13027. PubMed DOI
Berendika M., Drozdek S.D., Odeh D., Oršolić N., Dragičević P., Sokolović M., Garofulić I.E., Đikić D., Jurčević I.L. Beneficial Effects of Laurel (Laurus nobilis L.) and Myrtle (Myrtus communis L.) Extract on Rat Health. Molecules. 2022;27:581. doi: 10.3390/molecules27020581. PubMed DOI PMC
Taheri A., Seyfan A., Jalalinezhad S., Nasery F. Antibacterial effect of myrtus communis hydro-alcoholic extract on pathogenic bacteria. Zahedan J. Res. Med. Sci. 2013;15:19–24.
Koohsari H., Ghaemi E., Sheshpoli M.S., Jahedi M., Zahiri M. The investigation of antibacterial activity of selected native plants from North of Iran. J. Med. Life. 2015;8:38–42. PubMed PMC
Le N.T., Ho D.V., Doan T.Q., Le A.T., Raal A., Usai D., Sanna G., Carta A., Rappelli P., Diaz N., et al. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics. 2020;9:207. doi: 10.3390/antibiotics9040207. PubMed DOI PMC
Donadu M.G., Le N.T., Ho D.V., Doan T.Q., Le A.T., Raal A., Usai M., Marchetti M., Sanna G., Madeddu S., et al. Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics. 2020;9:334. doi: 10.3390/antibiotics9060334. PubMed DOI PMC
Dessì D., Rappelli P., Diaz N., Cappuccinelli P., Fiori P.L. Mycoplasma hominis and Trichomonas vaginalis: A unique case of symbiotic relationship between two obligate human parasites. Front. Biosci. 2006;11:2028–2034. doi: 10.2741/1944. PubMed DOI
Margarita V., Fiori P.L., Rappelli P. Impact of Symbiosis Between Trichomonas vaginalis and Mycoplasma hominis on Vaginal Dysbiosis: A Mini Review. Front. Cell. Infect. Microbiol. 2020;10:179. doi: 10.3389/fcimb.2020.00179. PubMed DOI PMC
Aleksic V., Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res. 2014;169:240–254. doi: 10.1016/j.micres.2013.10.003. PubMed DOI
Ferrari M., Cirisano F., Morán M.C. Mammalian cell behavior on hydrophobic substrates: Influence of surface properties. Colloids Interfaces. 2019;3:48. doi: 10.3390/colloids3020048. DOI
Fadda A., Sarais G., Lai C., Sale L., Mulas M. Control of postharvest diseases caused by Penicillium spp. with myrtle leaf phenolic extracts: In vitro and in vivo study on mandarin fruit during storage. J. Sci. Food Agric. 2021;101:4229–4240. doi: 10.1002/jsfa.11062. PubMed DOI
Sarais G., D’Urso G., Lai C., Pirisi F.M., Pizza C., Montoro P. Targeted and untargeted mass spectrometric approaches in discrimination betweenMyrtus communiscultivars from Sardinia region. J. Mass Spectrom. 2016;51:704–715. doi: 10.1002/jms.3811. PubMed DOI
Bellu E., Garroni G., Balzano F., Satta R., Montesu M., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI
Reker D., Blum S.M., Steiger C., Anger K.E., Sommer J.M., Fanikos J., Traverso G. “Inactive” ingredients in oral medications. Sci. Transl. Med. 2019;11:eaau6753. doi: 10.1126/scitranslmed.aau6753. PubMed DOI PMC