Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34200247
PubMed Central
PMC8227046
DOI
10.3390/cells10061415
PII: cells10061415
Knihovny.cz E-zdroje
- Klíčová slova
- cell senescence, cellular mechanisms, nanofibers, natural extracts, skin aging, stem cells,
- MeSH
- fibroblasty metabolismus MeSH
- fytonutrienty * chemie farmakologie MeSH
- kmenové buňky metabolismus MeSH
- lidé MeSH
- Myrtus chemie MeSH
- nanovlákna chemie MeSH
- rostlinné extrakty * chemie farmakologie MeSH
- stárnutí buněk účinky léků MeSH
- tuková tkáň metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fytonutrienty * MeSH
- rostlinné extrakty * MeSH
Tissue homeostasis mainly depends on the activity of stem cells to replace damaged elements and restore tissue functions. Within this context, mesenchymal stem cells and fibroblasts are essential for maintaining tissue homeostasis in skin, in particular in the dermis. Modifications in collagen fibers are able to affect stem cell features. Skin properties can be significantly reduced after injuries or with aging, and stem cell niches, mainly comprising extracellular matrix (ECM), may be compromised. To this end, specific molecules can be administrated to prevent the aging process induced by UV exposure in the attempt to maintain a youngness phenotype. NanoPCL-M is a novel nanodevice able to control delivery of Mediterranean plant myrtle (Myrtus communis L.) extracts. In particular, we previously described that myrtle extracts, rich in bioactive molecules and nutraceuticals, were able to counteract senescence in adipose derived stem cells. In this study, we analyzed the effect of NanoPCL-M on skin stem cells (SSCs) and dermal fibroblasts in a dynamic cell culture model in order to prevent the effects of UV-induced senescence on proliferation and collagen depot. The BrdU assay results highlight the significantly positive effect of NanoPCL-M on the proliferation of both fibroblasts and SSCs. Our results demonstrate that-M is able to preserve SSCs features and collagen depot after UV-induced senescence, suggesting their capability to retain a young phenotype.
Department of Agriculture University of Sassari Via De Nicola 9 07100 Sassari Italy
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 B 07100 Sassari Italy
Department of Medical Surgical and Experimental Sciences University of Sassari 07100 Sassari Italy
Istituto di Scienze delle Produzioni Alimentari Traversa la Crucca 3 07100 Sassari Italy
UCEEB Czech Technical University Trinecka 1024 273 43 Bustehrad Czech Republic
Zobrazit více v PubMed
Kirkwood T.B., Melov S. On the programmed/non-programmed nature of ageing within the life history. Curr. Biol. 2011;21:R701–R707. doi: 10.1016/j.cub.2011.07.020. PubMed DOI
Stern M.M., Bickenbach J.R. Epidermal stem cells are resistant to cellular aging. Aging Cell. 2007;6:439–452. doi: 10.1111/j.1474-9726.2007.00318.x. PubMed DOI
Brink T.C., Demetrius L., Lehrach H., Adjaye J. Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging. Biogerontology. 2009;10:549–564. doi: 10.1007/s10522-008-9197-8. PubMed DOI PMC
Krutmann J., Morita A., Chung J.H. Sun exposure: What molecular photodermatology tells us about its good and bad sides. J. Investig. Dermatol. 2012;132:976–984. doi: 10.1038/jid.2011.394. PubMed DOI
Yurchenco P.D., Schittny J.C. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–1590. doi: 10.1096/fasebj.4.6.2180767. PubMed DOI
Maioli M., Basoli V., Santaniello S., Cruciani S., Delitala A.P., Pinna R., Milia E., Grillari-Voglauer R., Fontani V., Rinaldi S., et al. Osteogenesis from dental pulp derived stem cells: A novel conditioned medium including melatonin within a mixture of hyaluronic, butyric, and retinoic acids. Stem Cells Int. 2016;2016:2056416. doi: 10.1155/2016/2056416. PubMed DOI PMC
Balzano F., Cruciani S., Basoli V., Santaniello S., Facchin F., Ventura C., Maioli M. Mir200 and mir302: Two big families influencing stem cell behavior. Molecules. 2018;23:282. doi: 10.3390/molecules23020282. PubMed DOI PMC
Cruciani S., Santaniello S., Garroni G., Fadda A., Balzano F., Bellu E., Sarais G., Fais G., Mulas M., Maioli M. Myrtus polyphenols, from antioxidants to anti-inflammatory molecules: Exploring a network involving cytochromes p450 and vitamin d. Molecules. 2019;24:1515. doi: 10.3390/molecules24081515. PubMed DOI PMC
Cruciani S., Garroni G., Ventura C., Danani A., Necas A., Maioli M. Stem cells and physical energies: Can we really drive stem cell fate? Physiol. Res. 2019;68:S375–S384. doi: 10.33549/physiolres.934388. PubMed DOI
Cruciani S., Santaniello S., Fadda A., Sale L., Sarais G., Sanna D., Mulas M., Ginesu G.C., Cossu M.L., Serra P.A., et al. Extracts from myrtle liqueur processing waste modulate stem cells pluripotency under stressing conditions. Biomed. Res. Int. 2019;2019:5641034. doi: 10.1155/2019/5641034. PubMed DOI PMC
Balzano F., Bellu E., Basoli V., Giudici S.D., Santaniello S., Cruciani S., Facchin F., Oggiano A., Capobianco G., Dessole F., et al. Lessons from human umbilical cord: Gender differences in stem cells from wharton’s jelly. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;234:143–148. doi: 10.1016/j.ejogrb.2018.12.028. PubMed DOI
Bellu E., Garroni G., Balzano F., Satta R., Montesu M.A., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI
Maioli M., Contini G., Santaniello S., Bandiera P., Pigliaru G., Sanna R., Rinaldi S., Delitala A.P., Montella A., Bagella L., et al. Amniotic fluid stem cells morph into a cardiovascular lineage: Analysis of a chemically induced cardiac and vascular commitment. Drug Des. Dev. Ther. 2013;7:1063–1073. PubMed PMC
Chunmeng S., Tianmin C. Skin: A promising reservoir for adult stem cell populations. Med. Hypotheses. 2004;62:683–688. doi: 10.1016/j.mehy.2003.12.022. PubMed DOI
Riekstina U., Muceniece R., Cakstina I., Muiznieks I., Ancans J. Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology. 2008;58:153–162. doi: 10.1007/s10616-009-9183-2. PubMed DOI PMC
Castro-Manrreza M.E., Bonifaz L., Castro-Escamilla O., Monroy-Garcia A., Cortes-Morales A., Hernandez-Estevez E., Hernandez-Cristino J., Mayani H., Montesinos J.J. Mesenchymal stromal cells from the epidermis and dermis of psoriasis patients: Morphology, immunophenotype, differentiation patterns, and regulation of t cell proliferation. Stem Cells Int. 2019;2019:4541797. doi: 10.1155/2019/4541797. PubMed DOI PMC
Chen C.C., Plikus M.V., Tang P.C., Widelitz R.B., Chuong C.M. The modulatable stem cell niche: Tissue interactions during hair and feather follicle regeneration. J. Mol. Biol. 2016;428:1423–1440. doi: 10.1016/j.jmb.2015.07.009. PubMed DOI PMC
Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC
Boukamp P. Non-melanoma skin cancer: What drives tumor development and progression? Carcinogenesis. 2005;26:1657–1667. doi: 10.1093/carcin/bgi123. PubMed DOI
Parrinello S., Coppe J.P., Krtolica A., Campisi J. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 2005;118:485–496. doi: 10.1242/jcs.01635. PubMed DOI PMC
Ahmed A.S., Sheng M.H., Wasnik S., Baylink D.J., Lau K.W. Effect of aging on stem cells. World J. Exp. Med. 2017;7:1–10. doi: 10.5493/wjem.v7.i1.1. PubMed DOI PMC
Mizukoshi K., Nakamura T., Oba A. The relationship between dermal papillary structure and skin surface properties, color, and elasticity. Skin Res. Technol. 2016;22:295–304. doi: 10.1111/srt.12260. PubMed DOI
Varani J., Dame M.K., Rittie L., Fligiel S.E., Kang S., Fisher G.J., Voorhees J.J. Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 2006;168:1861–1868. doi: 10.2353/ajpath.2006.051302. PubMed DOI PMC
Kehlet S.N., Willumsen N., Armbrecht G., Dietzel R., Brix S., Henriksen K., Karsdal M.A. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix. PLoS ONE. 2018;13:e0194458. doi: 10.1371/journal.pone.0194458. PubMed DOI PMC
Wang Y., Lauer M.E., Anand S., Mack J.A., Maytin E.V. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J. Biol. Chem. 2014;289:32253–32265. doi: 10.1074/jbc.M114.578377. PubMed DOI PMC
Klapper W., Parwaresch R., Krupp G. Telomere biology in human aging and aging syndromes. Mech. Ageing Dev. 2001;122:695–712. doi: 10.1016/S0047-6374(01)00223-8. PubMed DOI
Kupis W., Palyga J., Tomal E., Niewiadomska E. The role of sirtuins in cellular homeostasis. J. Physiol. Biochem. 2016;72:371–380. doi: 10.1007/s13105-016-0492-6. PubMed DOI PMC
Benavente C.A., Schnell S.A., Jacobson E.L. Effects of niacin restriction on sirtuin and parp responses to photodamage in human skin. PLoS ONE. 2012;7:e42276. PubMed PMC
Kammeyer A., Luiten R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015;21:16–29. doi: 10.1016/j.arr.2015.01.001. PubMed DOI
Baron E.D., Suggs A.K. Introduction to photobiology. Dermatol. Clin. 2014;32:255–266. doi: 10.1016/j.det.2014.03.002. PubMed DOI
Niu T., Tian Y., Ren Q., Wei L., Li X., Cai Q. Red light interferes in uva-induced photoaging of human skin fibroblast cells. Photochem. Photobiol. 2014;90:1349–1358. doi: 10.1111/php.12316. PubMed DOI
Tian Y., Liu W., Niu T., Dai C., Li X., Cui C., Zhao X., E Y., Lu H. The injury and cumulative effects on human skin by uv exposure from artificial fluorescence emission. Photochem. Photobiol. 2014;90:1433–1438. doi: 10.1111/php.12315. PubMed DOI
Wahedi H.M., Lee T.H., Moon E.Y., Kim S.Y. Juglone up-regulates sirt1 in skin cells under normal and uvb irradiated conditions. J. Dermatol. Sci. 2016;81:210–212. doi: 10.1016/j.jdermsci.2015.12.005. PubMed DOI
Kim K.S., Park H.-K., Lee J.-W., Kim Y.I., Shin M.K. Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microscopy Res. Tech. 2015;78:277–282. doi: 10.1002/jemt.22472. PubMed DOI
Poulose N., Raju R. Sirtuin regulation in aging and injury. Biochim. Biophys. Acta. 2015;1852:2442–2455. doi: 10.1016/j.bbadis.2015.08.017. PubMed DOI PMC
Bajpe P.K., Prahallad A., Horlings H., Nagtegaal I., Beijersbergen R., Bernards R. A chromatin modifier genetic screen identifies sirt2 as a modulator of response to targeted therapies through the regulation of mek kinase activity. Oncogene. 2015;34:531–536. doi: 10.1038/onc.2013.588. PubMed DOI
Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A. Role for human sirt2 nad-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell Biol. 2003;23:3173–3185. doi: 10.1128/MCB.23.9.3173-3185.2003. PubMed DOI PMC
Grabowska W., Sikora E., Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18:447–476. doi: 10.1007/s10522-017-9685-9. PubMed DOI PMC
Barry B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI
Cao M., Li J., Tang J., Chen C., Zhao Y. Gold nanomaterials in consumer cosmetics nanoproducts: Analyses, characterization, and dermal safety assessment. Small. 2016;12:5488–5496. doi: 10.1002/smll.201601574. PubMed DOI
Ben Haddada M., Gerometta E., Chawech R., Sorres J., Bialecki A., Pesnel S., Spadavecchia J., Morel A.-L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces. 2020;189:110855. doi: 10.1016/j.colsurfb.2020.110855. PubMed DOI
Wang Y., Li M., Rong J., Nie G., Qiao J., Wang H., Wu D., Su Z., Niu Z., Huang Y. Enhanced orientation of peo polymer chains induced by nanoclays in electrospun peo/clay composite nanofibers. Colloid Polym. Sci. 2013;291:1541–1546. doi: 10.1007/s00396-012-2875-8. DOI
Righi T.M., Almeida R.S., d’Ávila M.A. Electrospinning of gelatin/peo blends: Influence of process parameters in the nanofiber properties. Macromol. Symp. 2012;319:230–234. doi: 10.1002/masy.201100137. DOI
Panzavolta S., Gioffrè M., Focarete M.L., Gualandi C., Foroni L., Bigi A. Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater. 2011;7:1702–1709. doi: 10.1016/j.actbio.2010.11.021. PubMed DOI
Malikmammadov E., Tanir T.E., Kiziltay A., Hasirci V., Hasirci N. Pcl and pcl-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018;29:863–893. doi: 10.1080/09205063.2017.1394711. PubMed DOI
Amler E., Filova E., Buzgo M., Prosecka E., Rampichova M., Necas A., Nooeaid P., Boccaccini A.R. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine. 2014;9:1083–1094. doi: 10.2217/nnm.14.57. PubMed DOI
Mendes M.M., Gazarini L.C., Rodrigues M.L. Acclimation of myrtus communis to contrasting mediterranean light environments—Effects on structure and chemical composition of foliage and plant water relations. Environ. Exp. Bot. 2001;45:165–178. doi: 10.1016/S0098-8472(01)00073-9. PubMed DOI
Elfellah M.S., Akhter M.H., Khan M.T. Anti-hyperglycaemic effect of an extract of myrtus communis in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 1984;11:275–281. doi: 10.1016/0378-8741(84)90073-4. PubMed DOI
Rossi A., di Paola R., Mazzon E., Genovese T., Caminiti R., Bramanti P., Pergola C., Koeberle A., Werz O., Sautebin L., et al. Myrtucommulone from myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J. Pharmacol. Exp. Ther. 2009;329:76–86. doi: 10.1124/jpet.108.143214. PubMed DOI
Franco A.M., Tocci N., Guella G., Dell’Agli M., Sangiovanni E., Perenzoni D., Vrhovsek U., Mattivi F., Manca G. Myrtle seeds (Myrtus communis L.) as a rich source of the bioactive ellagitannins oenothein b and eugeniflorin d2. ACS Omega. 2019;4:15966–15974. doi: 10.1021/acsomega.9b02010. PubMed DOI PMC
D’Urso G., Sarais G., Lai C., Pizza C., Montoro P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (italy) J. Berry Res. 2017;7:217–229. doi: 10.3233/JBR-170158. DOI
Fiorini-Puybaret C., Aries M.-F., Fabre B., Mamatas S., Luc J., Degouy A., Ambonati M., Mejean C., Poli F. Pharmacological properties of myrtacine® and its potential value in acne treatment. Planta Med. 2011;77:1582–1589. doi: 10.1055/s-0030-1270955. PubMed DOI
Bellu E., Garroni G., Cruciani S., Balzano F., Serra D., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., et al. Smart nanofibers with natural extracts prevent senescence patterning in a dynamic cell culture model of human skin. Cells. 2020;9:2530. doi: 10.3390/cells9122530. PubMed DOI PMC
Park K., Jeong H., Tanum J., Yoo J.C., Hong J. Developing regulatory property of gelatin-tannic acid multilayer films for coating-based nitric oxide gas delivery system. Sci. Rep. 2019;9:8308. doi: 10.1038/s41598-019-44678-2. PubMed DOI PMC
Addis R., Cruciani S., Santaniello S., Bellu E., Sarais G., Ventura C., Maioli M., Pintore G. Fibroblast proliferation and migration in wound healing by phytochemicals: Evidence for a novel synergic outcome. Int. J. Med. Sci. 2020;17:1030–1042. doi: 10.7150/ijms.43986. PubMed DOI PMC
Santaniello S., Cruciani S., Basoli V., Balzano F., Bellu E., Garroni G., Ginesu G.C., Cossu M.L., Facchin F., Delitala A.P., et al. Melatonin and vitamin d orchestrate adipose derived stem cell fate by modulating epigenetic regulatory genes. Int. J. Med. Sci. 2018;15:1631–1639. doi: 10.7150/ijms.27669. PubMed DOI PMC
Maioli M., Rinaldi S., Pigliaru G., Santaniello S., Basoli V., Castagna A., Fontani V., Ventura C. Reac technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci. Rep. 2016;6:28682. doi: 10.1038/srep28682. PubMed DOI PMC
Pirmoradi S., Fathi E., Farahzadi R., Pilehvar-Soltanahmadi Y., Zarghami N. Curcumin affects adipose tissue-derived mesenchymal stem cell aging through tert gene expression. Drug Res. 2018;68:213–221. doi: 10.1055/s-0043-119635. PubMed DOI
Electrospun Nanofibers Encapsulated with Natural Products: A Novel Strategy to Counteract Skin Aging