Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence

. 2021 Jun 07 ; 10 (6) : . [epub] 20210607

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34200247

Tissue homeostasis mainly depends on the activity of stem cells to replace damaged elements and restore tissue functions. Within this context, mesenchymal stem cells and fibroblasts are essential for maintaining tissue homeostasis in skin, in particular in the dermis. Modifications in collagen fibers are able to affect stem cell features. Skin properties can be significantly reduced after injuries or with aging, and stem cell niches, mainly comprising extracellular matrix (ECM), may be compromised. To this end, specific molecules can be administrated to prevent the aging process induced by UV exposure in the attempt to maintain a youngness phenotype. NanoPCL-M is a novel nanodevice able to control delivery of Mediterranean plant myrtle (Myrtus communis L.) extracts. In particular, we previously described that myrtle extracts, rich in bioactive molecules and nutraceuticals, were able to counteract senescence in adipose derived stem cells. In this study, we analyzed the effect of NanoPCL-M on skin stem cells (SSCs) and dermal fibroblasts in a dynamic cell culture model in order to prevent the effects of UV-induced senescence on proliferation and collagen depot. The BrdU assay results highlight the significantly positive effect of NanoPCL-M on the proliferation of both fibroblasts and SSCs. Our results demonstrate that-M is able to preserve SSCs features and collagen depot after UV-induced senescence, suggesting their capability to retain a young phenotype.

Zobrazit více v PubMed

Kirkwood T.B., Melov S. On the programmed/non-programmed nature of ageing within the life history. Curr. Biol. 2011;21:R701–R707. doi: 10.1016/j.cub.2011.07.020. PubMed DOI

Stern M.M., Bickenbach J.R. Epidermal stem cells are resistant to cellular aging. Aging Cell. 2007;6:439–452. doi: 10.1111/j.1474-9726.2007.00318.x. PubMed DOI

Brink T.C., Demetrius L., Lehrach H., Adjaye J. Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging. Biogerontology. 2009;10:549–564. doi: 10.1007/s10522-008-9197-8. PubMed DOI PMC

Krutmann J., Morita A., Chung J.H. Sun exposure: What molecular photodermatology tells us about its good and bad sides. J. Investig. Dermatol. 2012;132:976–984. doi: 10.1038/jid.2011.394. PubMed DOI

Yurchenco P.D., Schittny J.C. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–1590. doi: 10.1096/fasebj.4.6.2180767. PubMed DOI

Maioli M., Basoli V., Santaniello S., Cruciani S., Delitala A.P., Pinna R., Milia E., Grillari-Voglauer R., Fontani V., Rinaldi S., et al. Osteogenesis from dental pulp derived stem cells: A novel conditioned medium including melatonin within a mixture of hyaluronic, butyric, and retinoic acids. Stem Cells Int. 2016;2016:2056416. doi: 10.1155/2016/2056416. PubMed DOI PMC

Balzano F., Cruciani S., Basoli V., Santaniello S., Facchin F., Ventura C., Maioli M. Mir200 and mir302: Two big families influencing stem cell behavior. Molecules. 2018;23:282. doi: 10.3390/molecules23020282. PubMed DOI PMC

Cruciani S., Santaniello S., Garroni G., Fadda A., Balzano F., Bellu E., Sarais G., Fais G., Mulas M., Maioli M. Myrtus polyphenols, from antioxidants to anti-inflammatory molecules: Exploring a network involving cytochromes p450 and vitamin d. Molecules. 2019;24:1515. doi: 10.3390/molecules24081515. PubMed DOI PMC

Cruciani S., Garroni G., Ventura C., Danani A., Necas A., Maioli M. Stem cells and physical energies: Can we really drive stem cell fate? Physiol. Res. 2019;68:S375–S384. doi: 10.33549/physiolres.934388. PubMed DOI

Cruciani S., Santaniello S., Fadda A., Sale L., Sarais G., Sanna D., Mulas M., Ginesu G.C., Cossu M.L., Serra P.A., et al. Extracts from myrtle liqueur processing waste modulate stem cells pluripotency under stressing conditions. Biomed. Res. Int. 2019;2019:5641034. doi: 10.1155/2019/5641034. PubMed DOI PMC

Balzano F., Bellu E., Basoli V., Giudici S.D., Santaniello S., Cruciani S., Facchin F., Oggiano A., Capobianco G., Dessole F., et al. Lessons from human umbilical cord: Gender differences in stem cells from wharton’s jelly. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;234:143–148. doi: 10.1016/j.ejogrb.2018.12.028. PubMed DOI

Bellu E., Garroni G., Balzano F., Satta R., Montesu M.A., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI

Maioli M., Contini G., Santaniello S., Bandiera P., Pigliaru G., Sanna R., Rinaldi S., Delitala A.P., Montella A., Bagella L., et al. Amniotic fluid stem cells morph into a cardiovascular lineage: Analysis of a chemically induced cardiac and vascular commitment. Drug Des. Dev. Ther. 2013;7:1063–1073. PubMed PMC

Chunmeng S., Tianmin C. Skin: A promising reservoir for adult stem cell populations. Med. Hypotheses. 2004;62:683–688. doi: 10.1016/j.mehy.2003.12.022. PubMed DOI

Riekstina U., Muceniece R., Cakstina I., Muiznieks I., Ancans J. Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology. 2008;58:153–162. doi: 10.1007/s10616-009-9183-2. PubMed DOI PMC

Castro-Manrreza M.E., Bonifaz L., Castro-Escamilla O., Monroy-Garcia A., Cortes-Morales A., Hernandez-Estevez E., Hernandez-Cristino J., Mayani H., Montesinos J.J. Mesenchymal stromal cells from the epidermis and dermis of psoriasis patients: Morphology, immunophenotype, differentiation patterns, and regulation of t cell proliferation. Stem Cells Int. 2019;2019:4541797. doi: 10.1155/2019/4541797. PubMed DOI PMC

Chen C.C., Plikus M.V., Tang P.C., Widelitz R.B., Chuong C.M. The modulatable stem cell niche: Tissue interactions during hair and feather follicle regeneration. J. Mol. Biol. 2016;428:1423–1440. doi: 10.1016/j.jmb.2015.07.009. PubMed DOI PMC

Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC

Boukamp P. Non-melanoma skin cancer: What drives tumor development and progression? Carcinogenesis. 2005;26:1657–1667. doi: 10.1093/carcin/bgi123. PubMed DOI

Parrinello S., Coppe J.P., Krtolica A., Campisi J. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 2005;118:485–496. doi: 10.1242/jcs.01635. PubMed DOI PMC

Ahmed A.S., Sheng M.H., Wasnik S., Baylink D.J., Lau K.W. Effect of aging on stem cells. World J. Exp. Med. 2017;7:1–10. doi: 10.5493/wjem.v7.i1.1. PubMed DOI PMC

Mizukoshi K., Nakamura T., Oba A. The relationship between dermal papillary structure and skin surface properties, color, and elasticity. Skin Res. Technol. 2016;22:295–304. doi: 10.1111/srt.12260. PubMed DOI

Varani J., Dame M.K., Rittie L., Fligiel S.E., Kang S., Fisher G.J., Voorhees J.J. Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 2006;168:1861–1868. doi: 10.2353/ajpath.2006.051302. PubMed DOI PMC

Kehlet S.N., Willumsen N., Armbrecht G., Dietzel R., Brix S., Henriksen K., Karsdal M.A. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix. PLoS ONE. 2018;13:e0194458. doi: 10.1371/journal.pone.0194458. PubMed DOI PMC

Wang Y., Lauer M.E., Anand S., Mack J.A., Maytin E.V. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J. Biol. Chem. 2014;289:32253–32265. doi: 10.1074/jbc.M114.578377. PubMed DOI PMC

Klapper W., Parwaresch R., Krupp G. Telomere biology in human aging and aging syndromes. Mech. Ageing Dev. 2001;122:695–712. doi: 10.1016/S0047-6374(01)00223-8. PubMed DOI

Kupis W., Palyga J., Tomal E., Niewiadomska E. The role of sirtuins in cellular homeostasis. J. Physiol. Biochem. 2016;72:371–380. doi: 10.1007/s13105-016-0492-6. PubMed DOI PMC

Benavente C.A., Schnell S.A., Jacobson E.L. Effects of niacin restriction on sirtuin and parp responses to photodamage in human skin. PLoS ONE. 2012;7:e42276. PubMed PMC

Kammeyer A., Luiten R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015;21:16–29. doi: 10.1016/j.arr.2015.01.001. PubMed DOI

Baron E.D., Suggs A.K. Introduction to photobiology. Dermatol. Clin. 2014;32:255–266. doi: 10.1016/j.det.2014.03.002. PubMed DOI

Niu T., Tian Y., Ren Q., Wei L., Li X., Cai Q. Red light interferes in uva-induced photoaging of human skin fibroblast cells. Photochem. Photobiol. 2014;90:1349–1358. doi: 10.1111/php.12316. PubMed DOI

Tian Y., Liu W., Niu T., Dai C., Li X., Cui C., Zhao X., E Y., Lu H. The injury and cumulative effects on human skin by uv exposure from artificial fluorescence emission. Photochem. Photobiol. 2014;90:1433–1438. doi: 10.1111/php.12315. PubMed DOI

Wahedi H.M., Lee T.H., Moon E.Y., Kim S.Y. Juglone up-regulates sirt1 in skin cells under normal and uvb irradiated conditions. J. Dermatol. Sci. 2016;81:210–212. doi: 10.1016/j.jdermsci.2015.12.005. PubMed DOI

Kim K.S., Park H.-K., Lee J.-W., Kim Y.I., Shin M.K. Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microscopy Res. Tech. 2015;78:277–282. doi: 10.1002/jemt.22472. PubMed DOI

Poulose N., Raju R. Sirtuin regulation in aging and injury. Biochim. Biophys. Acta. 2015;1852:2442–2455. doi: 10.1016/j.bbadis.2015.08.017. PubMed DOI PMC

Bajpe P.K., Prahallad A., Horlings H., Nagtegaal I., Beijersbergen R., Bernards R. A chromatin modifier genetic screen identifies sirt2 as a modulator of response to targeted therapies through the regulation of mek kinase activity. Oncogene. 2015;34:531–536. doi: 10.1038/onc.2013.588. PubMed DOI

Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A. Role for human sirt2 nad-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell Biol. 2003;23:3173–3185. doi: 10.1128/MCB.23.9.3173-3185.2003. PubMed DOI PMC

Grabowska W., Sikora E., Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18:447–476. doi: 10.1007/s10522-017-9685-9. PubMed DOI PMC

Barry B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI

Cao M., Li J., Tang J., Chen C., Zhao Y. Gold nanomaterials in consumer cosmetics nanoproducts: Analyses, characterization, and dermal safety assessment. Small. 2016;12:5488–5496. doi: 10.1002/smll.201601574. PubMed DOI

Ben Haddada M., Gerometta E., Chawech R., Sorres J., Bialecki A., Pesnel S., Spadavecchia J., Morel A.-L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces. 2020;189:110855. doi: 10.1016/j.colsurfb.2020.110855. PubMed DOI

Wang Y., Li M., Rong J., Nie G., Qiao J., Wang H., Wu D., Su Z., Niu Z., Huang Y. Enhanced orientation of peo polymer chains induced by nanoclays in electrospun peo/clay composite nanofibers. Colloid Polym. Sci. 2013;291:1541–1546. doi: 10.1007/s00396-012-2875-8. DOI

Righi T.M., Almeida R.S., d’Ávila M.A. Electrospinning of gelatin/peo blends: Influence of process parameters in the nanofiber properties. Macromol. Symp. 2012;319:230–234. doi: 10.1002/masy.201100137. DOI

Panzavolta S., Gioffrè M., Focarete M.L., Gualandi C., Foroni L., Bigi A. Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater. 2011;7:1702–1709. doi: 10.1016/j.actbio.2010.11.021. PubMed DOI

Malikmammadov E., Tanir T.E., Kiziltay A., Hasirci V., Hasirci N. Pcl and pcl-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018;29:863–893. doi: 10.1080/09205063.2017.1394711. PubMed DOI

Amler E., Filova E., Buzgo M., Prosecka E., Rampichova M., Necas A., Nooeaid P., Boccaccini A.R. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine. 2014;9:1083–1094. doi: 10.2217/nnm.14.57. PubMed DOI

Mendes M.M., Gazarini L.C., Rodrigues M.L. Acclimation of myrtus communis to contrasting mediterranean light environments—Effects on structure and chemical composition of foliage and plant water relations. Environ. Exp. Bot. 2001;45:165–178. doi: 10.1016/S0098-8472(01)00073-9. PubMed DOI

Elfellah M.S., Akhter M.H., Khan M.T. Anti-hyperglycaemic effect of an extract of myrtus communis in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 1984;11:275–281. doi: 10.1016/0378-8741(84)90073-4. PubMed DOI

Rossi A., di Paola R., Mazzon E., Genovese T., Caminiti R., Bramanti P., Pergola C., Koeberle A., Werz O., Sautebin L., et al. Myrtucommulone from myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J. Pharmacol. Exp. Ther. 2009;329:76–86. doi: 10.1124/jpet.108.143214. PubMed DOI

Franco A.M., Tocci N., Guella G., Dell’Agli M., Sangiovanni E., Perenzoni D., Vrhovsek U., Mattivi F., Manca G. Myrtle seeds (Myrtus communis L.) as a rich source of the bioactive ellagitannins oenothein b and eugeniflorin d2. ACS Omega. 2019;4:15966–15974. doi: 10.1021/acsomega.9b02010. PubMed DOI PMC

D’Urso G., Sarais G., Lai C., Pizza C., Montoro P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (italy) J. Berry Res. 2017;7:217–229. doi: 10.3233/JBR-170158. DOI

Fiorini-Puybaret C., Aries M.-F., Fabre B., Mamatas S., Luc J., Degouy A., Ambonati M., Mejean C., Poli F. Pharmacological properties of myrtacine® and its potential value in acne treatment. Planta Med. 2011;77:1582–1589. doi: 10.1055/s-0030-1270955. PubMed DOI

Bellu E., Garroni G., Cruciani S., Balzano F., Serra D., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., et al. Smart nanofibers with natural extracts prevent senescence patterning in a dynamic cell culture model of human skin. Cells. 2020;9:2530. doi: 10.3390/cells9122530. PubMed DOI PMC

Park K., Jeong H., Tanum J., Yoo J.C., Hong J. Developing regulatory property of gelatin-tannic acid multilayer films for coating-based nitric oxide gas delivery system. Sci. Rep. 2019;9:8308. doi: 10.1038/s41598-019-44678-2. PubMed DOI PMC

Addis R., Cruciani S., Santaniello S., Bellu E., Sarais G., Ventura C., Maioli M., Pintore G. Fibroblast proliferation and migration in wound healing by phytochemicals: Evidence for a novel synergic outcome. Int. J. Med. Sci. 2020;17:1030–1042. doi: 10.7150/ijms.43986. PubMed DOI PMC

Santaniello S., Cruciani S., Basoli V., Balzano F., Bellu E., Garroni G., Ginesu G.C., Cossu M.L., Facchin F., Delitala A.P., et al. Melatonin and vitamin d orchestrate adipose derived stem cell fate by modulating epigenetic regulatory genes. Int. J. Med. Sci. 2018;15:1631–1639. doi: 10.7150/ijms.27669. PubMed DOI PMC

Maioli M., Rinaldi S., Pigliaru G., Santaniello S., Basoli V., Castagna A., Fontani V., Ventura C. Reac technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci. Rep. 2016;6:28682. doi: 10.1038/srep28682. PubMed DOI PMC

Pirmoradi S., Fathi E., Farahzadi R., Pilehvar-Soltanahmadi Y., Zarghami N. Curcumin affects adipose tissue-derived mesenchymal stem cell aging through tert gene expression. Drug Res. 2018;68:213–221. doi: 10.1055/s-0043-119635. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...