Effect of Helichrysum italicum in Promoting Collagen Deposition and Skin Regeneration in a New Dynamic Model of Skin Wound Healing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38731954
PubMed Central
PMC11083432
DOI
10.3390/ijms25094736
PII: ijms25094736
Knihovny.cz E-zdroje
- Klíčová slova
- Helichrysum italicum, bioreactor, dynamic cultures, fibroblasts, molecular mechanisms, stem cells, tissue regeneration, wound healing,
- MeSH
- fibroblasty metabolismus účinky léků MeSH
- Helichrysum * chemie MeSH
- hojení ran * účinky léků MeSH
- kmenové buňky metabolismus účinky léků cytologie MeSH
- kolagen * metabolismus MeSH
- kultivované buňky MeSH
- kůže * metabolismus účinky léků MeSH
- lidé MeSH
- regenerace * účinky léků MeSH
- rostlinné extrakty * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen * MeSH
- rostlinné extrakty * MeSH
Natural products have many healing effects on the skin with minimal or no adverse effects. In this study, we analyzed the regenerative properties of a waste product (hydrolate) derived from Helichrysum italicum (HH) on scratch-tested skin cell populations seeded on a fluidic culture system. Helichrysum italicum has always been recognized in the traditional medicine of Mediterranean countries for its wide pharmacological activities. We recreated skin physiology with a bioreactor that mimics skin stem cell (SSCs) and fibroblast (HFF1) communication as in vivo skin layers. Dynamic culture models represent an essential instrument for recreating and preserving the complex multicellular organization and interactions of the cellular microenvironment. Both cell types were exposed to two different concentrations of HH after the scratch assay and were compared to untreated control cells. Collagen is the constituent of many wound care products that act directly on the damaged wound environment. We analyzed the role played by HH in stimulating collagen production during tissue repair, both in static and dynamic culture conditions, by a confocal microscopic analysis. In addition, we performed a gene expression analysis that revealed the activation of a molecular program of stemness in treated skin stem cells. Altogether, our results indicate a future translational application of this natural extract to support skin regeneration and define a new protocol to recreate a dynamic process of healing.
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 B 07100 Sassari Italy
Department of Medical Surgical and Experimental Sciences University of Sassari 07100 Sassari Italy
Zobrazit více v PubMed
Takeo M., Lee W., Ito M. Wound Healing and Skin Regeneration. Cold Spring Harb. Perspect. Med. 2015;5:a023267. doi: 10.1101/CSHPERSPECT.A023267. PubMed DOI PMC
Sorg H., Sorg C.G.G. Skin Wound Healing: Of Players, Patterns, and Processes. Eur. Surg. Res. 2023;64:141–157. doi: 10.1159/000528271. PubMed DOI
Stephens P., Thomas D.W. The Cellular Proliferative Phase of the Wound Repair Process. J. Wound Care. 2002;11:253–261. doi: 10.12968/JOWC.2002.11.7.26421. PubMed DOI
Bian D., Wu Y., Song G., Azizi R., Zamani A. The Application of Mesenchymal Stromal Cells (MSCs) and Their Derivative Exosome in Skin Wound Healing: A Comprehensive Review. Stem Cell Res. Ther. 2022;13:24. doi: 10.1186/S13287-021-02697-9. PubMed DOI PMC
Han G., Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017;34:599–610. doi: 10.1007/S12325-017-0478-Y. PubMed DOI PMC
Hunt T.K. The Physiology of Wound Healing. Ann. Emerg. Med. 1988;17:1265–1273. doi: 10.1016/S0196-0644(88)80351-2. PubMed DOI
Díaz-García D., Filipová A., Garza-Veloz I., Martinez-Fierro M.L. A Beginner’s Introduction to Skin Stem Cells and Wound Healing. Int. J. Mol. Sci. 2021;22:1030. doi: 10.3390/ijms222011030. PubMed DOI PMC
Leung Y., Kandyba E., Chen Y.B., Ruffins S., Chuong C.M., Kobielak K. Bifunctional Ectodermal Stem Cells around the Nail Display Dual Fate Homeostasis and Adaptive Wounding Response toward Nail Regeneration. Proc. Natl. Acad. Sci. USA. 2014;111:15114–15119. doi: 10.1073/PNAS.1318848111. PubMed DOI PMC
Blanpain C., Fuchs E. Epidermal Stem Cells of the Skin. Annu. Rev. Cell Dev. Biol. 2006;22:339. doi: 10.1146/ANNUREV.CELLBIO.22.010305.104357. PubMed DOI PMC
Tsiapalis D., O’Driscoll L. Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells. 2020;9:991. doi: 10.3390/cells9040991. PubMed DOI PMC
Khayambashi P., Iyer J., Pillai S., Upadhyay A., Zhang Y., Tran S.D. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021;22:684. doi: 10.3390/ijms22020684. PubMed DOI PMC
Kou M., Huang L., Yang J., Chiang Z., Chen S., Liu J., Guo L., Zhang X., Zhou X., Xu X., et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Immunomodulation and Regeneration: A next Generation Therapeutic Tool? Cell Death Dis. 2022;13:7. doi: 10.1038/s41419-022-05034-x. PubMed DOI PMC
Wang Y., Chen X., Cao W., Shi Y. Plasticity of Mesenchymal Stem Cells in Immunomodulation: Pathological and Therapeutic Implications. Nat. Immunol. 2014;15:1009–1016. doi: 10.1038/ni.3002. PubMed DOI
Hocking A.M., Gibran N.S. Mesenchymal Stem Cells: Paracrine Signaling and Differentiation during Cutaneous Wound Repair. Exp. Cell Res. 2010;316:2213. doi: 10.1016/J.YEXCR.2010.05.009. PubMed DOI PMC
Maioli M., Rinaldi S., Pigliaru G., Santaniello S., Basoli V., Castagna A., Fontani V., Ventura C. REAC Technology and Hyaluron Synthase 2, an Interesting Network to Slow down Stem Cell Senescence. Sci. Rep. 2016;6:28682. doi: 10.1038/SREP28682. PubMed DOI PMC
Zahorec P., Koller J., Danisovic L., Bohac M. Mesenchymal Stem Cells for Chronic Wounds Therapy. Cell Tissue Bank. 2015;16:19–26. doi: 10.1007/S10561-014-9440-2. PubMed DOI
Yao B., Huang S., Gao D., Xie J., Liu N., Fu X. Age-associated Changes in Regenerative Capabilities of Mesenchymal Stem Cell: Impact on Chronic Wounds Repair. Int. Wound J. 2016;13:1252. doi: 10.1111/IWJ.12491. PubMed DOI PMC
Bellu E., Garroni G., Cruciani S., Balzano F., Serra D., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., et al. Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells. 2020;9:2530. doi: 10.3390/CELLS9122530. PubMed DOI PMC
Pikuła M., Langa P., Kosikowska P., Trzonkowski P. Stem Cells and Growth Factors in Wound Healing. Postepy Hig. Med. Dosw. 2015;69:874–885. doi: 10.5604/17322693.1162989. PubMed DOI
Darby I.A., Hewitson T.D. Fibroblast Differentiation in Wound Healing and Fibrosis. Int. Rev. Cytol. 2007;257:143–179. doi: 10.1016/S0074-7696(07)57004-X. PubMed DOI
Nourian Dehkordi A., Mirahmadi Babaheydari F., Chehelgerdi M., Raeisi Dehkordi S. Skin Tissue Engineering: Wound Healing Based on Stem-Cell-Based Therapeutic Strategies. Stem Cell Res. Ther. 2019;10:111. doi: 10.1186/S13287-019-1212-2. PubMed DOI PMC
Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in Fibrosis: Novel Roles and Mediators. Front. Pharmacol. 2014;5:91491. doi: 10.3389/FPHAR.2014.00123. PubMed DOI PMC
Ryall C., Duarah S., Chen S., Yu H., Wen J. Advancements in Skin Delivery of Natural Bioactive Products for Wound Management: A Brief Review of Two Decades. Pharmaceutics. 2022;14:1072. doi: 10.3390/PHARMACEUTICS14051072. PubMed DOI PMC
Avila Rodríguez M.I., Rodríguez Barroso L.G., Sánchez M.L. Collagen: A Review on Its Sources and Potential Cosmetic Applications. J. Cosmet. Dermatol. 2018;17:20–26. doi: 10.1111/JOCD.12450. PubMed DOI
Sharma S., Rai V.K., Narang R.K., Markandeywar T.S. Collagen-Based Formulations for Wound Healing: A Literature Review. Life Sci. 2022;290:120096. doi: 10.1016/J.LFS.2021.120096. PubMed DOI
Kallis P.J., Friedman A.J. Collagen Powder in Wound Healing. J. Drugs Dermatol. 2018;17:403–408. PubMed
Vunjak-Novakovic G., Meinel L., Altman G., Kaplan D. Bioreactor Cultivation of Osteochondral Grafts. Orthod. Craniofac. Res. 2005;8:209–218. doi: 10.1111/J.1601-6343.2005.00334.X. PubMed DOI
Duval K., Grover H., Han L.H., Mou Y., Pegoraro A.F., Fredberg J., Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32:266–277. doi: 10.1152/PHYSIOL.00036.2016. PubMed DOI PMC
Gabetti S., Masante B., Cochis A., Putame G., Sanginario A., Armando I., Fiume E., Scalia A.C., Daou F., Baino F., et al. An Automated 3D-Printed Perfusion Bioreactor Combinable with Pulsed Electromagnetic Field Stimulators for Bone Tissue Investigations. Sci. Rep. 2022;12:13859. doi: 10.1038/s41598-022-18075-1. PubMed DOI PMC
Manokawinchoke J., Pavasant P., Limjeerajarus C.N., Limjeerajarus N., Osathanon T., Egusa H. Mechanical Loading and the Control of Stem Cell Behavior. Arch. Oral. Biol. 2021;125:105092. doi: 10.1016/J.ARCHORALBIO.2021.105092. PubMed DOI
Wan X., Liu Z., Li L. Manipulation of Stem Cells Fates: The Master and Multifaceted Roles of Biophysical Cues of Biomaterials. Adv. Funct. Mater. 2021;31:2010626. doi: 10.1002/ADFM.202010626. DOI
Fragomeni G., De Napoli L., De Gregorio V., Genovese V., Barbato V., Serratore G., Morrone G., Travaglione A., Candela A., Gualtieri R., et al. Enhanced Solute Transport and Steady Mechanical Stimulation in a Novel Dynamic Perifusion Bioreactor Increase the Efficiency of the in Vitro Culture of Ovarian Cortical Tissue Strips. Front. Bioeng. Biotechnol. 2024;12:1310696. doi: 10.3389/FBIOE.2024.1310696. PubMed DOI PMC
Ahmed A.S.I., Sheng M.H., Wasnik S., Baylink D.J., Lau K.-H.W. Effect of Aging on Stem Cells. World J. Exp. Med. 2017;7:1. doi: 10.5493/WJEM.V7.I1.1. PubMed DOI PMC
Rinaldi S., Maioli M., Pigliaru G., Castagna A., Santaniello S., Basoli V., Fontani V., Ventura C. Stem Cell Senescence. Effects of REAC Technology on Telomerase-Independent and Telomerase-Dependent Pathways. Sci. Rep. 2014;4:6373. doi: 10.1038/SREP06373. PubMed DOI PMC
Berlanga-Acosta J.A., Guillén-Nieto G.E., Rodríguez-Rodríguez N., Mendoza-Mari Y., Bringas-Vega M.L., Berlanga-Saez J.O., García del Barco Herrera D., Martinez-Jimenez I., Hernandez-Gutierrez S., Valdés-Sosa P.A. Cellular Senescence as the Pathogenic Hub of Diabetes-Related Wound Chronicity. Front. Endocrinol. 2020;11:573032. doi: 10.3389/FENDO.2020.573032. PubMed DOI PMC
Park I.-K., Morrison S.J., Clarke M.F. Bmi1, Stem Cells, and Senescence Regulation. J. Clin. Investig. 2004;113:175. doi: 10.1172/JCI20800. PubMed DOI PMC
Mihara K., Imai C., Coustan-Smith E., Dome J.S., Dominici M., Vanin E., Campana D. Development and Functional Characterization of Human Bone Marrow Mesenchymal Cells Immortalized by Enforced Expression of Telomerase. Br. J. Haematol. 2003;120:846–849. doi: 10.1046/J.1365-2141.2003.04217.X. PubMed DOI
Barsov E.V. Telomerase and Primary T Cells: Biology and Immortalization for Adoptive Immunotherapy. Immunotherapy. 2011;3:407. doi: 10.2217/IMT.10.107. PubMed DOI PMC
Dantas M.G.B., Reis S.A.G.B., Damasceno C.M.D., Rolim L.A., Rolim-Neto P.J., Carvalho F.O., Quintans-Junior L.J., Da Silva Almeida J.R.G. Development and Evaluation of Stability of a Gel Formulation Containing the Monoterpene Borneol. Sci. World J. 2016;2016:7394685. doi: 10.1155/2016/7394685. PubMed DOI PMC
Kazemi M., Mohammadifar M., Aghadavoud E., Vakili Z., Aarabi M.H., Talaei S.A. Deep Skin Wound Healing Potential of Lavender Essential Oil and Licorice Extract in a Nanoemulsion Form: Biochemical, Histopathological and Gene Expression Evidences. J. Tissue Viability. 2020;29:116–124. doi: 10.1016/J.JTV.2020.03.004. PubMed DOI
Katiyar S., Singh D., Kumari S., Srivastava P., Mishra A. Novel Strategies for Designing Regenerative Skin Products for Accelerated Wound Healing. 3 Biotech. 2022;12:316. doi: 10.1007/S13205-022-03331-Y. PubMed DOI PMC
Lin T.K., Zhong L., Santiago J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017;19:70. doi: 10.3390/IJMS19010070. PubMed DOI PMC
Maksimovic S., Tadic V., Skala D., Zizovic I. Separation of Phytochemicals from Helichrysum Italicum: An Analysis of Different Isolation Techniques and Biological Activity of Prepared Extracts. Phytochemistry. 2017;138:9–28. doi: 10.1016/J.PHYTOCHEM.2017.01.001. PubMed DOI
Serra D., Bellu E., Garroni G., Cruciani S., Sarais G., Dessì D., Pashchenko A., Satta R., Montesu M.A., Nečas A., et al. Hydrolat of Helichrysum Italicum Promotes Tissue Regeneration during Wound Healing. Physiol. Res. 2023;72:809–818. doi: 10.33549/PHYSIOLRES.935101. PubMed DOI PMC
Smiljanić K., Prodić I., Trifunovic S., Krstić Ristivojević M., Aćimović M., Stanković Jeremić J., Lončar B., Tešević V. Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts. Antioxidants. 2023;12:1988. doi: 10.3390/ANTIOX12111988. PubMed DOI PMC
Aćimović M., Tešević V., Smiljanić K., Cvetković M., Stanković J., Kiprovski B., Sikora V. Hydrolates: By-Products of Essential Oil Distillation: Chemical Composition, Biological Activity and Potential Uses. Adv. Technol. 2020;9:54–70. doi: 10.5937/SAVTEH2002054A. DOI
Andjić M., Draginić N., Kočović A., Jeremić J., Vučićević K., Jeremić N., Krstonošić V., Božin B., Kladar N., Čapo I., et al. Immortelle Essential Oil-Based Ointment Improves Wound Healing in a Diabetic Rat Model. Biomed. Pharmacother. 2022;150:112941. doi: 10.1016/J.BIOPHA.2022.112941. PubMed DOI
Moretti L., Stalfort J., Barker T.H., Abebayehu D. The Interplay of Fibroblasts, the Extracellular Matrix, and Inflammation in Scar Formation. J. Biol. Chem. 2022;298:101530. doi: 10.1016/J.JBC.2021.101530. PubMed DOI PMC
Martinotti S., Ranzato E. Scratch Wound Healing Assay. Methods Mol. Biol. 2020;2109:225–229. doi: 10.1007/7651_2019_259. PubMed DOI
Mallis P., Michalopoulos E., Sarri E.F., Papadopoulou E., Theodoropoulou V., Katsimpoulas M., Stavropoulos-Giokas C. Evaluation of the Regenerative Potential of Platelet-Lysate and Platelet-Poor Plasma Derived from the Cord Blood Units in Corneal Wound Healing Applications: An In Vitro Comparative Study on Corneal Epithelial Cells. Curr. Issues Mol. Biol. 2022;44:4415–4438. doi: 10.3390/CIMB44100303. PubMed DOI PMC
Mallis P., Michalopoulos E., Balampanis K., Sarri E.F., Papadopoulou E., Theodoropoulou V., Georgiou E., Kountouri A., Lambadiari V., Stavropoulos-Giokas C. Investigating the Production of Platelet Lysate Obtained from Low Volume Cord Blood Units: Focus on Growth Factor Content and Regenerative Potential. Transfus. Apher. Sci. 2022;61:103465. doi: 10.1016/J.TRANSCI.2022.103465. PubMed DOI
Ghayempour S., Montazer M., Mahmoudi Rad M. Encapsulation of Aloe Vera Extract into Natural Tragacanth Gum as a Novel Green Wound Healing Product. Int. J. Biol. Macromol. 2016;93:344–349. doi: 10.1016/J.IJBIOMAC.2016.08.076. PubMed DOI
Uto K., Tsui J.H., DeForest C.A., Kim D.H. Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology. Prog. Polym. Sci. 2017;65:53–82. doi: 10.1016/j.progpolymsci.2016.09.004. PubMed DOI PMC
Barron V., Lyons E., Stenson-Cox C., McHugh P.E., Pandit A. Bioreactors for Cardiovascular Cell and Tissue Growth: A Review. Ann. Biomed. Eng. 2003;31:1017–1030. doi: 10.1114/1.1603260. PubMed DOI
Pörtner R., Nagel-Heyer S., Goepfert C., Adamietz P., Meenen N.M. Bioreactor Design for Tissue Engineering. J. Biosci. Bioeng. 2005;100:235–245. doi: 10.1263/JBB.100.235. PubMed DOI
Kumar S., Wittmann C., Heinzle E. Minibioreactors. Biotechnol. Lett. 2004;26:1–10. doi: 10.1023/B:BILE.0000009469.69116.03. PubMed DOI
Singh H., Hutmacher D.W. Bioreactor Studies and Computational Fluid Dynamics. Adv. Biochem. Eng. Biotechnol. 2009;112:231–249. doi: 10.1007/978-3-540-69357-4_10. PubMed DOI
Bellu E., Cruciani S., Garroni G., Balzano F., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., Bandiera P., et al. Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells. 2021;10:1415. doi: 10.3390/cells10061415. PubMed DOI PMC
Neri S., Borzì R.M. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules. 2020;10:340. doi: 10.3390/biom10020340. PubMed DOI PMC
Siddique H.R., Saleem M. Role of BMI1, a Stem Cell Factor, in Cancer Recurrence and Chemoresistance: Preclinical and Clinical Evidences. Stem Cells. 2012;30:372–378. doi: 10.1002/STEM.1035. PubMed DOI
Lu C., Fu W., Mattson M.P. Telomerase Protects Developing Neurons against DNA Damage-Induced Cell Death. Dev. Brain Res. 2001;131:167–171. doi: 10.1016/S0165-3806(01)00237-1. PubMed DOI
Genčić M.S., Aksić J.M., Živković Stošić M.Z., Randjelović P.J., Stojanović N.M., Stojanović-Radić Z.Z., Radulović N.S. Linking the Antimicrobial and Anti-Inflammatory Effects of Immortelle Essential Oil with Its Chemical Composition—The Interplay between the Major and Minor Constituents. Food Chem. Toxicol. 2021;158:112666. doi: 10.1016/J.FCT.2021.112666. PubMed DOI
Moghadam S.E., Ebrahimi S.N., Salehi P., Farimani M.M., Hamburger M., Jabbarzadeh E. Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia Persica. Molecules. 2017;22:1501. doi: 10.3390/molecules22091501. PubMed DOI PMC
Politeo O., Ćurlin P., Brzović P., Auzende K., Magné C., Generalić Mekinić I. Volatiles from French and Croatian Sea Fennel Ecotypes: Chemical Profiles and the Antioxidant, Antimicrobial and Antiageing Activity of Essential Oils and Hydrolates. Foods. 2024;13:695. doi: 10.3390/foods13050695. PubMed DOI PMC
Shafie M.H., Kamal M.L., Razak N.A.A., Hasan S., Uyup N.H., Rashid N.F.A., Zafarina Z. Antioxidant and Antimicrobial Activity of Plant Hydrosol and Its Potential Application in Cosmeceutical Products. Jundishapur J. Nat. Pharm. Prod. 2022;17:124018. doi: 10.5812/JJNPP-124018. DOI
Sun R., Liu C., Liu J., Yin S., Song R., Ma J., Cao G., Lu Y., Zhang G., Wu Z., et al. Integrated Network Pharmacology and Experimental Validation to Explore the Mechanisms Underlying Naringenin Treatment of Chronic Wounds. Sci. Rep. 2023;13:132. doi: 10.1038/S41598-022-26043-Y. PubMed DOI PMC
Huang H., Chen L., Hou Y., He W., Wang X., Zhang D., Hu J. Self-Assembly of Chlorogenic Acid into Hydrogel for Accelerating Wound Healing. Colloids Surf. B Biointerfaces. 2023;228:113440. doi: 10.1016/J.COLSURFB.2023.113440. PubMed DOI
Rivoira M.A., Rodriguez V., Talamoni G., Tolosa de Talamoni N. New Perspectives in the Pharmacological Potential of Naringin in Medicine. Curr. Med. Chem. 2021;28:1987–2007. doi: 10.2174/0929867327666200604171351. PubMed DOI
Jurnal Kedokteran Syiah Kuala The Use of Helichrysum Italicum Essential Oil in Virgin Coconut Oil for Wound Healing: Serial Case Reports. [(accessed on 12 April 2024)]. Available online: https://jurnal.usk.ac.id/JKS/article/view/25160.
Bellu E., Garroni G., Balzano F., Satta R., Montesu M.A., Kralovič M., Fedačko J., Cruciani S., Maioli M. Isolating Stem Cells from Skin: Designing a Novel Highly Efficient Non-Enzymatic Approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/PHYSIOLRES.934373. PubMed DOI
Plunkett N., O’Brien F.J. Bioreactors in Tissue Engineering. Technol. Health Care. 2011;19:55–69. doi: 10.3233/THC-2011-0605. PubMed DOI