Electrospun Nanofibers Encapsulated with Natural Products: A Novel Strategy to Counteract Skin Aging

. 2024 Feb 05 ; 25 (3) : . [epub] 20240205

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38339184

The skin is the primary tissue affected by wounds and aging, significantly impacting its protective function. Natural products are widely used in cosmetics, representing a new approach to preventing age-related damage. Nanomedicine combines nanotechnology and traditional treatments to create innovative drugs. The main targets of nanotechnological approaches are wound healing, regeneration, and rejuvenation of skin tissue. The skin barrier is not easily permeable, and the creation of modern nanodevices is a way to improve the passive penetration of substances. In this study, Helichrysum italicum oil (HO) was combined with different types of electrospun nanofibers to study their protective activity on the skin and to evaluate their future application for topical treatments. In the present research, we used biodegradable polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), which were characterized by a scanning electron microscope (SEM). All results show a positive trend in cell proliferation and viability of human skin stem cells (SSCs) and BJ fibroblasts pre-treated with combined nanofibers and then exposed to UV stress. Gene expression analysis revealed the activation of a molecular rejuvenation program in SSCs treated with functionalized nanofibers before UV exposure. Understanding the mechanisms involved in skin changes during aging allows for the future application of nanomaterials combined with HO directly to the patients.

Zobrazit více v PubMed

Csekes E., Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int. J. Mol. Sci. 2021;22:12641. doi: 10.3390/ijms222312641. PubMed DOI PMC

Farage M.A., Miller K.W., Elsner P., Maibach H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 2008;30:87–95. doi: 10.1111/j.1468-2494.2007.00415.x. PubMed DOI

Vierkötter A., Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Derm.-Endocrinol. 2012;4:227–231. doi: 10.4161/derm.19858. PubMed DOI PMC

Khavkin J., Ellis D.A. Aging skin: Histology, physiology, and pathology. Facial Plast. Surg. Clin. North. Am. 2011;19:229–234. doi: 10.1016/j.fsc.2011.04.003. PubMed DOI

Höhn A., Weber D., Jung T., Ott C., Hugo M., Kochlik B., Kehm R., König J., Grune T., Castro J.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501. doi: 10.1016/j.redox.2016.12.001. PubMed DOI PMC

Campisi J., d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007;8:729–740. doi: 10.1038/nrm2233. PubMed DOI

Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S. The essence of senescence. Genes. Dev. 2010;24:2463–2479. doi: 10.1101/gad.1971610. PubMed DOI PMC

Ahmed A.S.I., Sheng M.H., Wasnik S., Baylink D.J., Lau K.-H.W. Effect of aging on stem cells. World J. Exp. Med. 2017;7:1–10. doi: 10.5493/wjem.v7.i1.1. PubMed DOI PMC

Rinaldi S., Maioli M., Pigliaru G., Castagna A., Santaniello S., Basoli V., Fontani V., Ventura C. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci. Rep. 2014;4:6373. doi: 10.1038/srep06373. PubMed DOI PMC

Lorenz M., Saretzki G., Sitte N., Metzkow S., von Zglinicki T. BJ fibroblasts display high antioxidant capacity and slow telomere shortening independent of hTERT transfection. Free Radic. Biol. Med. 2001;31:824–831. doi: 10.1016/S0891-5849(01)00664-5. PubMed DOI

Bellu E., Medici S., Coradduzza D., Cruciani S., Amler E., Maioli M. Nanomaterials in Skin Regeneration and Rejuvenation. Int. J. Mol. Sci. 2021;22:7095. doi: 10.3390/ijms22137095. PubMed DOI PMC

Bolzinger M.-A., Briançon S., Pelletier J., Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 2012;17:156–165. doi: 10.1016/j.cocis.2012.02.001. DOI

Batisse D., Bazin R., Baldeweck T., Querleux B., Lévêque J. Influence of age on the wrinkling capacities of skin. Ski. Res. Technol. 2002;8:148–154. doi: 10.1034/j.1600-0846.2002.10308.x. PubMed DOI

Benson H.A. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv. 2005;2:23–33. doi: 10.2174/1567201052772915. PubMed DOI

Barry B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI

Salim S.A., Badawi N.M., El-Moslamy S.H., Kamoun E.A., Daihom B.A. Novel long-acting brimonidine tartrate loaded-PCL/PVP nanofibers for versatile biomedical applications: Fabrication, characterization and antimicrobial evaluation. RSC Adv. 2023;13:14943–14957. doi: 10.1039/D3RA02244G. PubMed DOI PMC

Islam M.S., Ang B.C., Andriyana A., Afifi A.M. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 2019;1:1248. doi: 10.1007/s42452-019-1288-4. DOI

Xue J., Wu T., Dai Y., Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC

Niu H., Zhou H., Wang H. Energy Harvesting Properties of Electrospun Nanofibers. IOP Publishing; Bristol, UK: 2019. Electrospinning: An advanced nanofiber production technology; p. 1.

Coelho J.F., Ferreira P.C., Alves P., Cordeiro R., Fonseca A.C., Góis J.R., Gil M.H. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J. 2010;1:164–209. doi: 10.1007/s13167-010-0001-x. PubMed DOI PMC

Partheniadis I., Stathakis G., Tsalavouti D., Heinämäki J., Nikolakakis I. Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics. 2022;14:1799. doi: 10.3390/pharmaceutics14091799. PubMed DOI PMC

Chakraborty S., Liao I.-C., Adler A., Leong K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev. 2009;61:1043–1054. doi: 10.1016/j.addr.2009.07.013. PubMed DOI PMC

Chew S.Y., Hufnagel T.C., Lim C.T., Leong K.W. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology. 2006;17:3880–3891. doi: 10.1088/0957-4484/17/15/045. PubMed DOI PMC

Tahir R., Albargi H.B., Ahmad A., Qadir M.B., Khaliq Z., Nazir A., Khalid T., Batool M., Arshad S.N., Jalalah M., et al. Development of Sustainable Hydrophilic Azadirachta indica Loaded PVA Nanomembranes for Cosmetic Facemask Applications. Membranes. 2023;13:156. doi: 10.3390/membranes13020156. PubMed DOI PMC

Zhou X., Hou C., Chang T.-L., Zhang Q., Liang J.F. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf. B Biointerfaces. 2020;187:110645. doi: 10.1016/j.colsurfb.2019.110645. PubMed DOI

Chen Y., Li J., Lu J., Ding M., Chen Y. Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 2022;108:107516. doi: 10.1016/j.polymertesting.2022.107516. DOI

Bourke S.L., Al-Khalili M., Briggs T., Michniak B.B., Kohn J., Poole-Warren L.A. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications. Aaps Pharmsci. 2003;5:101–111. doi: 10.1208/ps050433. PubMed DOI PMC

DeMerlis C.C., Schoneker D.R. Review of the oral toxicity of polyvinyl alcohol (PVA) Food Chem. Toxicol. 2003;41:319–326. doi: 10.1016/S0278-6915(02)00258-2. PubMed DOI

Soroory H., Mashak A., Rahimi A. Application of PDMS-based coating in drug delivery systems using PVP as channeling agent. Iran. Polym. J. 2013;22:791–797. doi: 10.1007/s13726-013-0178-7. DOI

Bonan R.F., Bonan P.R.F., Batista A.U.D., Sampaio F.C., Albuquerque A.J.R., Moraes M.C.B., Mattoso L.H.C., Glenn G.M., Medeiros E.S., Oliveira J.E. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater. Sci. Eng. C. 2015;48:372–377. doi: 10.1016/j.msec.2014.12.021. PubMed DOI

Kurakula M., Rao G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020;60:102046. doi: 10.1016/j.jddst.2020.102046. PubMed DOI PMC

Zárybnický T., Boušová I., Ambrož M., Skálová L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol. 2018;92:1–13. doi: 10.1007/s00204-017-2062-2. PubMed DOI

Das R., Wale A., Renani S.A., Ratnam L., Mailli L., Chun J.-Y., Das S., Duggal B., Manyonda I., Belli A.-M. Randomised Controlled Trial of Particles Used in Uterine fibRoid Embolisation (PURE): Non-Spherical Polyvinyl Alcohol Versus Calibrated Microspheres. Cardiovasc. Interv. Radiol. 2022;45:207–215. doi: 10.1007/s00270-021-02977-0. PubMed DOI PMC

Kralovic M., Vjaclovsky M., Tonar Z., Grajciarova M., Lorenzova J., Otahal M., Necas A., Hoch J., Amler E. Nanofiber Fractionalization Stimulates Healing of Large Intestine Anastomoses in Rabbits. Int. J. Nanomed. 2022;17:6335–6345. doi: 10.2147/IJN.S364888. PubMed DOI PMC

Beznoska J., Uhlík J., Kestlerová A., Královič M., Divín R., Fedačko J., Beneš J., Beneš M., Vocetková K., Sovková V., et al. PVA and PCL nanofibers are suitable for tissue covering and regeneration. Physiol. Res. 2019;68:S501–S508. doi: 10.33549/physiolres.934389. PubMed DOI

Filová E., Rampichová M., Litvinec A., Držík M., Míčková A., Buzgo M., Košťáková E., Martinová L., Usvald D., Prosecká E., et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int. J. Pharm. 2013;447:139–149. doi: 10.1016/j.ijpharm.2013.02.056. PubMed DOI

Tamilarasi G.P., Krishnan M., Sabarees G., Gouthaman S., Alagarsamy V., Solomon V.R. Emerging Trends in Curcumin Embedded Electrospun Nanofibers for Impaired Diabetic Wound Healing. Appl. Nano. 2022;3:202–232. doi: 10.3390/applnano3040015. DOI

Bezek K., Kramberger K., Barlič-Maganja D. Antioxidant and Antimicrobial Properties of Helichrysum italicum (Roth) G. Don Hydrosol. Antibiotics. 2022;11:1017. doi: 10.3390/antibiotics11081017. PubMed DOI PMC

Ganceviciene R., Liakou A.I., Theodoridis A., Makrantonaki E., Zouboulis C.C. Skin anti-aging strategies. Derm.-Endocrinol. 2012;4:308–319. doi: 10.4161/derm.22804. PubMed DOI PMC

Węglarz Z., Kosakowska O., Pióro-Jabrucka E., Przybył J.L., Gniewosz M., Kraśniewska K., Szyndel M.S., Costa R., Bączek K.B. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals. 2022;15:735. doi: 10.3390/ph15060735. PubMed DOI PMC

Gevrenova R., Kostadinova I., Stefanova A., Balabanova V., Zengin G., Zheleva-Dimitrova D., Momekov G. Phytochemical Profiling, Antioxidant and Cognitive-Enhancing Effect of Helichrysum italicum ssp. italicum (Roth) G. Don (Asteraceae). Plants. 2023;12:2755. doi: 10.3390/plants12152755. PubMed DOI PMC

Gismondi A., Di Marco G., Canini A. Helichrysum italicum (Roth) G. Don essential oil: Composition and potential antineoplastic effect. S. Afr. J. Bot. 2020;133:222–226. doi: 10.1016/j.sajb.2020.07.031. DOI

Maioli M., Rinaldi S., Santaniello S., Castagna A., Pigliaru G., Delitala A., Margotti M.L., Bagella L., Fontani V., Ventura C. Anti-senescence efficacy of radio-electric asymmetric conveyer technology. Age. 2014;36:9–20. doi: 10.1007/s11357-013-9537-8. PubMed DOI PMC

Ho C.Y., Dreesen O. Faces of cellular senescence in skin aging. Mech. Ageing Dev. 2021;198:111525. doi: 10.1016/j.mad.2021.111525. PubMed DOI

Kehlet S.N., Willumsen N., Armbrecht G., Dietzel R., Brix S., Henriksen K., Karsdal M.A. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix. PLoS ONE. 2018;13:e0194458. doi: 10.1371/journal.pone.0194458. PubMed DOI PMC

Yurchenco P.D., Schittny J.C. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–1590. doi: 10.1096/fasebj.4.6.2180767. PubMed DOI

Varani J., Dame M.K., Rittie L., Fligiel S.E., Kang S., Fisher G.J., Voorhees J.J. Decreased Collagen Production in Chronologically Aged Skin: Roles of Age-Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation. Am. J. Pathol. 2006;168:1861–1868. doi: 10.2353/ajpath.2006.051302. PubMed DOI PMC

Krutmann J., Morita A., Chung J.H. Sun Exposure: What Molecular Photodermatology Tells Us About Its Good and Bad Sides. J. Investig. Dermatol. 2012;132:976–984. doi: 10.1038/jid.2011.394. PubMed DOI

Chen C.-C., Plikus M.V., Tang P.-C., Widelitz R.B., Chuong C.M. The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. J. Mol. Biol. 2016;428:1423–1440. doi: 10.1016/j.jmb.2015.07.009. PubMed DOI PMC

Granger C., Brown A., Aladren S., Narda M. Night Cream Containing Melatonin, Carnosine and Helichrysum italicum Extract Helps Reduce Skin Reactivity and Signs of Photodamage: Ex Vivo and Clinical Studies. Dermatol. Ther. 2020;10:1315–1329. doi: 10.1007/s13555-020-00443-2. PubMed DOI PMC

Andjić M., Božin B., Draginić N., Kočović A., Jeremić J.N., Tomović M., Milojević Šamanović A., Kladar N., Čapo I., Jakovljević V., et al. Formulation and Evaluation of Helichrysum italicum Essential Oil-Based Topical Formulations for Wound Healing in Diabetic Rats. Pharmaceuticals. 2021;14:813. doi: 10.3390/ph14080813. PubMed DOI PMC

Khorshidi S., Solouk A., Mirzadeh H., Mazinani S., Lagaron J.M., Sharifi S., Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J. Tissue Eng. Regen. Med. 2016;10:715–738. doi: 10.1002/term.1978. PubMed DOI

Morita R., Honda R., Takahashi Y. Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS). I. Design of SCRS and its release controlling factor. J. Control. Release. 2000;63:297–304. doi: 10.1016/S0168-3659(99)00203-5. PubMed DOI

Shaheen S., Ukai K., Dai L., Yamaura K. Properties of hydrogels of atactic poly(vinyl alcohol)/NaCl/H2O system and their application to drug release. Polym. Int. 2002;51:1390–1397. doi: 10.1002/pi.1061. DOI

Seal B.L., Otero T.C., Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R Rep. 2001;34:147–230. doi: 10.1016/S0927-796X(01)00035-3. DOI

Wang Q., Hikima T., Tojo K. Skin Penetration Enhancement by the Synergistic Effect of Supersaturated Dissolution and Chemical Enhancers. J. Chem. Eng. Jpn. 2003;36:92–97. doi: 10.1252/jcej.36.92. DOI

Teodorescu M., Bercea M., Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol. Adv. 2019;37:109–131. doi: 10.1016/j.biotechadv.2018.11.008. PubMed DOI

Brown T.D., Dalton P.D., Hutmacher D.W. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci. 2016;56:116–166. doi: 10.1016/j.progpolymsci.2016.01.001. DOI

Agarwal S., Greiner A., Wendorff J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013;38:963–991. doi: 10.1016/j.progpolymsci.2013.02.001. DOI

Abdullah M.F., Nuge T., Andriyana A., Ang B.C., Muhamad F. Core–Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers. 2019;11:2008. doi: 10.3390/polym11122008. PubMed DOI PMC

Puhl D.L., Mohanraj D., Nelson D.W., Gilbert R.J. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv. Drug Deliv. Rev. 2022;183:114161. doi: 10.1016/j.addr.2022.114161. PubMed DOI PMC

Backes C., Meese E., Keller A. Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol. Diagn. Ther. 2016;20:509–518. doi: 10.1007/s40291-016-0221-4. PubMed DOI

Sinha A., Simnani F.Z., Singh D., Nandi A., Choudhury A., Patel P., Jha E., Chouhan R.S., Kaushik N.K., Mishra Y.K., et al. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater. Today Bio. 2022;17:100463. doi: 10.1016/j.mtbio.2022.100463. PubMed DOI PMC

Sridhar R., Ravanan S., Venugopal J.R., Sundarrajan S., Pliszka D., Sivasubramanian S., Gunasekaran P., Prabhakaran M., Madhaiyan K., Sahayaraj A., et al. Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: In vitro efficacy evaluation. J. Biomater. Sci. Polym. Ed. 2014;25:985–998. doi: 10.1080/09205063.2014.917039. PubMed DOI

Park I.K., Morrison S.J., Clarke M.F. Bmi1, stem cells, and senescence regulation. J. Clin. Investig. 2004;113:175–179. doi: 10.1172/JCI200420800. PubMed DOI PMC

Klapper W., Parwaresch R., Krupp G. Telomere biology in human aging and aging syndromes. Mech. Ageing Dev. 2001;122:695–712. doi: 10.1016/S0047-6374(01)00223-8. PubMed DOI

Cruciani S., Santaniello S., Montella A., Ventura C., Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J. Stem Cells. 2019;11:464–475. doi: 10.4252/wjsc.v11.i8.464. PubMed DOI PMC

Maioli M., Basoli V., Santaniello S., Cruciani S., Delitala A.P., Pinna R., Milia E., Grillari-Voglauer R., Fontani V., Rinaldi S., et al. Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids. Stem Cells Int. 2016;2016:2056416. doi: 10.1155/2016/2056416. PubMed DOI PMC

Council of Europe . European Pharmacopeia. 4th ed. Council of Europe; Strasbourg, France: 2002. pp. 183–184.

Adams R.P. Identification of Essential oils by Gas Chromatography Quadrupole Mass Spectrometry. 1st ed. Allured Publishing Co.; Carol Steam, IL, USA: 2001.

Van del Dool H., Kartz P.D.A. Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI

Joulain D. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. 1st ed. EB-Verlag; Hamburg, Germany: 1998.

Bellu E., Garroni G., Balzano F., Satta R., Montesu M., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI

Maioli M., Rinaldi S., Pigliaru G., Santaniello S., Basoli V., Castagna A., Fontani V., Ventura C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci. Rep. 2016;6:28682. doi: 10.1038/srep28682. PubMed DOI PMC

Cruciani S., Garroni G., Ginesu G.C., Fadda A., Ventura C., Maioli M. Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. Biology. 2020;9:57. doi: 10.3390/biology9030057. PubMed DOI PMC

Bellu E., Cruciani S., Garroni G., Balzano F., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., Bandiera P., et al. Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells. 2021;10:1415. doi: 10.3390/cells10061415. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...