Electrospun Nanofibers Encapsulated with Natural Products: A Novel Strategy to Counteract Skin Aging
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38339184
PubMed Central
PMC10856659
DOI
10.3390/ijms25031908
PII: ijms25031908
Knihovny.cz E-zdroje
- Klíčová slova
- Helichrysum italicum, bioactive molecules, drug delivery, molecular mechanisms, nanofibers, nanosystem, skin aging, stem cells,
- MeSH
- biologické přípravky * farmakologie MeSH
- hojení ran MeSH
- kůže MeSH
- lidé MeSH
- nanovlákna * MeSH
- polyvinylalkohol MeSH
- stárnutí kůže * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické přípravky * MeSH
- polyvinylalkohol MeSH
The skin is the primary tissue affected by wounds and aging, significantly impacting its protective function. Natural products are widely used in cosmetics, representing a new approach to preventing age-related damage. Nanomedicine combines nanotechnology and traditional treatments to create innovative drugs. The main targets of nanotechnological approaches are wound healing, regeneration, and rejuvenation of skin tissue. The skin barrier is not easily permeable, and the creation of modern nanodevices is a way to improve the passive penetration of substances. In this study, Helichrysum italicum oil (HO) was combined with different types of electrospun nanofibers to study their protective activity on the skin and to evaluate their future application for topical treatments. In the present research, we used biodegradable polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), which were characterized by a scanning electron microscope (SEM). All results show a positive trend in cell proliferation and viability of human skin stem cells (SSCs) and BJ fibroblasts pre-treated with combined nanofibers and then exposed to UV stress. Gene expression analysis revealed the activation of a molecular rejuvenation program in SSCs treated with functionalized nanofibers before UV exposure. Understanding the mechanisms involved in skin changes during aging allows for the future application of nanomaterials combined with HO directly to the patients.
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 B 07100 Sassari Italy
Department of Medical Surgical and Experimental Sciences University of Sassari 07100 Sassari Italy
Department of Medicine Surgery and Pharmacy University of Sassari 07100 Sassari Italy
R and D Laboratory Center InoCure s r o Politických Veziu 935 13 110 00 Prague Czech Republic
Zobrazit více v PubMed
Csekes E., Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int. J. Mol. Sci. 2021;22:12641. doi: 10.3390/ijms222312641. PubMed DOI PMC
Farage M.A., Miller K.W., Elsner P., Maibach H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 2008;30:87–95. doi: 10.1111/j.1468-2494.2007.00415.x. PubMed DOI
Vierkötter A., Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Derm.-Endocrinol. 2012;4:227–231. doi: 10.4161/derm.19858. PubMed DOI PMC
Khavkin J., Ellis D.A. Aging skin: Histology, physiology, and pathology. Facial Plast. Surg. Clin. North. Am. 2011;19:229–234. doi: 10.1016/j.fsc.2011.04.003. PubMed DOI
Höhn A., Weber D., Jung T., Ott C., Hugo M., Kochlik B., Kehm R., König J., Grune T., Castro J.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501. doi: 10.1016/j.redox.2016.12.001. PubMed DOI PMC
Campisi J., d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007;8:729–740. doi: 10.1038/nrm2233. PubMed DOI
Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S. The essence of senescence. Genes. Dev. 2010;24:2463–2479. doi: 10.1101/gad.1971610. PubMed DOI PMC
Ahmed A.S.I., Sheng M.H., Wasnik S., Baylink D.J., Lau K.-H.W. Effect of aging on stem cells. World J. Exp. Med. 2017;7:1–10. doi: 10.5493/wjem.v7.i1.1. PubMed DOI PMC
Rinaldi S., Maioli M., Pigliaru G., Castagna A., Santaniello S., Basoli V., Fontani V., Ventura C. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci. Rep. 2014;4:6373. doi: 10.1038/srep06373. PubMed DOI PMC
Lorenz M., Saretzki G., Sitte N., Metzkow S., von Zglinicki T. BJ fibroblasts display high antioxidant capacity and slow telomere shortening independent of hTERT transfection. Free Radic. Biol. Med. 2001;31:824–831. doi: 10.1016/S0891-5849(01)00664-5. PubMed DOI
Bellu E., Medici S., Coradduzza D., Cruciani S., Amler E., Maioli M. Nanomaterials in Skin Regeneration and Rejuvenation. Int. J. Mol. Sci. 2021;22:7095. doi: 10.3390/ijms22137095. PubMed DOI PMC
Bolzinger M.-A., Briançon S., Pelletier J., Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 2012;17:156–165. doi: 10.1016/j.cocis.2012.02.001. DOI
Batisse D., Bazin R., Baldeweck T., Querleux B., Lévêque J. Influence of age on the wrinkling capacities of skin. Ski. Res. Technol. 2002;8:148–154. doi: 10.1034/j.1600-0846.2002.10308.x. PubMed DOI
Benson H.A. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv. 2005;2:23–33. doi: 10.2174/1567201052772915. PubMed DOI
Barry B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI
Salim S.A., Badawi N.M., El-Moslamy S.H., Kamoun E.A., Daihom B.A. Novel long-acting brimonidine tartrate loaded-PCL/PVP nanofibers for versatile biomedical applications: Fabrication, characterization and antimicrobial evaluation. RSC Adv. 2023;13:14943–14957. doi: 10.1039/D3RA02244G. PubMed DOI PMC
Islam M.S., Ang B.C., Andriyana A., Afifi A.M. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 2019;1:1248. doi: 10.1007/s42452-019-1288-4. DOI
Xue J., Wu T., Dai Y., Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC
Niu H., Zhou H., Wang H. Energy Harvesting Properties of Electrospun Nanofibers. IOP Publishing; Bristol, UK: 2019. Electrospinning: An advanced nanofiber production technology; p. 1.
Coelho J.F., Ferreira P.C., Alves P., Cordeiro R., Fonseca A.C., Góis J.R., Gil M.H. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J. 2010;1:164–209. doi: 10.1007/s13167-010-0001-x. PubMed DOI PMC
Partheniadis I., Stathakis G., Tsalavouti D., Heinämäki J., Nikolakakis I. Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics. 2022;14:1799. doi: 10.3390/pharmaceutics14091799. PubMed DOI PMC
Chakraborty S., Liao I.-C., Adler A., Leong K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev. 2009;61:1043–1054. doi: 10.1016/j.addr.2009.07.013. PubMed DOI PMC
Chew S.Y., Hufnagel T.C., Lim C.T., Leong K.W. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology. 2006;17:3880–3891. doi: 10.1088/0957-4484/17/15/045. PubMed DOI PMC
Tahir R., Albargi H.B., Ahmad A., Qadir M.B., Khaliq Z., Nazir A., Khalid T., Batool M., Arshad S.N., Jalalah M., et al. Development of Sustainable Hydrophilic Azadirachta indica Loaded PVA Nanomembranes for Cosmetic Facemask Applications. Membranes. 2023;13:156. doi: 10.3390/membranes13020156. PubMed DOI PMC
Zhou X., Hou C., Chang T.-L., Zhang Q., Liang J.F. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf. B Biointerfaces. 2020;187:110645. doi: 10.1016/j.colsurfb.2019.110645. PubMed DOI
Chen Y., Li J., Lu J., Ding M., Chen Y. Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 2022;108:107516. doi: 10.1016/j.polymertesting.2022.107516. DOI
Bourke S.L., Al-Khalili M., Briggs T., Michniak B.B., Kohn J., Poole-Warren L.A. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications. Aaps Pharmsci. 2003;5:101–111. doi: 10.1208/ps050433. PubMed DOI PMC
DeMerlis C.C., Schoneker D.R. Review of the oral toxicity of polyvinyl alcohol (PVA) Food Chem. Toxicol. 2003;41:319–326. doi: 10.1016/S0278-6915(02)00258-2. PubMed DOI
Soroory H., Mashak A., Rahimi A. Application of PDMS-based coating in drug delivery systems using PVP as channeling agent. Iran. Polym. J. 2013;22:791–797. doi: 10.1007/s13726-013-0178-7. DOI
Bonan R.F., Bonan P.R.F., Batista A.U.D., Sampaio F.C., Albuquerque A.J.R., Moraes M.C.B., Mattoso L.H.C., Glenn G.M., Medeiros E.S., Oliveira J.E. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater. Sci. Eng. C. 2015;48:372–377. doi: 10.1016/j.msec.2014.12.021. PubMed DOI
Kurakula M., Rao G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020;60:102046. doi: 10.1016/j.jddst.2020.102046. PubMed DOI PMC
Zárybnický T., Boušová I., Ambrož M., Skálová L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol. 2018;92:1–13. doi: 10.1007/s00204-017-2062-2. PubMed DOI
Das R., Wale A., Renani S.A., Ratnam L., Mailli L., Chun J.-Y., Das S., Duggal B., Manyonda I., Belli A.-M. Randomised Controlled Trial of Particles Used in Uterine fibRoid Embolisation (PURE): Non-Spherical Polyvinyl Alcohol Versus Calibrated Microspheres. Cardiovasc. Interv. Radiol. 2022;45:207–215. doi: 10.1007/s00270-021-02977-0. PubMed DOI PMC
Kralovic M., Vjaclovsky M., Tonar Z., Grajciarova M., Lorenzova J., Otahal M., Necas A., Hoch J., Amler E. Nanofiber Fractionalization Stimulates Healing of Large Intestine Anastomoses in Rabbits. Int. J. Nanomed. 2022;17:6335–6345. doi: 10.2147/IJN.S364888. PubMed DOI PMC
Beznoska J., Uhlík J., Kestlerová A., Královič M., Divín R., Fedačko J., Beneš J., Beneš M., Vocetková K., Sovková V., et al. PVA and PCL nanofibers are suitable for tissue covering and regeneration. Physiol. Res. 2019;68:S501–S508. doi: 10.33549/physiolres.934389. PubMed DOI
Filová E., Rampichová M., Litvinec A., Držík M., Míčková A., Buzgo M., Košťáková E., Martinová L., Usvald D., Prosecká E., et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int. J. Pharm. 2013;447:139–149. doi: 10.1016/j.ijpharm.2013.02.056. PubMed DOI
Tamilarasi G.P., Krishnan M., Sabarees G., Gouthaman S., Alagarsamy V., Solomon V.R. Emerging Trends in Curcumin Embedded Electrospun Nanofibers for Impaired Diabetic Wound Healing. Appl. Nano. 2022;3:202–232. doi: 10.3390/applnano3040015. DOI
Bezek K., Kramberger K., Barlič-Maganja D. Antioxidant and Antimicrobial Properties of Helichrysum italicum (Roth) G. Don Hydrosol. Antibiotics. 2022;11:1017. doi: 10.3390/antibiotics11081017. PubMed DOI PMC
Ganceviciene R., Liakou A.I., Theodoridis A., Makrantonaki E., Zouboulis C.C. Skin anti-aging strategies. Derm.-Endocrinol. 2012;4:308–319. doi: 10.4161/derm.22804. PubMed DOI PMC
Węglarz Z., Kosakowska O., Pióro-Jabrucka E., Przybył J.L., Gniewosz M., Kraśniewska K., Szyndel M.S., Costa R., Bączek K.B. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals. 2022;15:735. doi: 10.3390/ph15060735. PubMed DOI PMC
Gevrenova R., Kostadinova I., Stefanova A., Balabanova V., Zengin G., Zheleva-Dimitrova D., Momekov G. Phytochemical Profiling, Antioxidant and Cognitive-Enhancing Effect of Helichrysum italicum ssp. italicum (Roth) G. Don (Asteraceae). Plants. 2023;12:2755. doi: 10.3390/plants12152755. PubMed DOI PMC
Gismondi A., Di Marco G., Canini A. Helichrysum italicum (Roth) G. Don essential oil: Composition and potential antineoplastic effect. S. Afr. J. Bot. 2020;133:222–226. doi: 10.1016/j.sajb.2020.07.031. DOI
Maioli M., Rinaldi S., Santaniello S., Castagna A., Pigliaru G., Delitala A., Margotti M.L., Bagella L., Fontani V., Ventura C. Anti-senescence efficacy of radio-electric asymmetric conveyer technology. Age. 2014;36:9–20. doi: 10.1007/s11357-013-9537-8. PubMed DOI PMC
Ho C.Y., Dreesen O. Faces of cellular senescence in skin aging. Mech. Ageing Dev. 2021;198:111525. doi: 10.1016/j.mad.2021.111525. PubMed DOI
Kehlet S.N., Willumsen N., Armbrecht G., Dietzel R., Brix S., Henriksen K., Karsdal M.A. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix. PLoS ONE. 2018;13:e0194458. doi: 10.1371/journal.pone.0194458. PubMed DOI PMC
Yurchenco P.D., Schittny J.C. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–1590. doi: 10.1096/fasebj.4.6.2180767. PubMed DOI
Varani J., Dame M.K., Rittie L., Fligiel S.E., Kang S., Fisher G.J., Voorhees J.J. Decreased Collagen Production in Chronologically Aged Skin: Roles of Age-Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation. Am. J. Pathol. 2006;168:1861–1868. doi: 10.2353/ajpath.2006.051302. PubMed DOI PMC
Krutmann J., Morita A., Chung J.H. Sun Exposure: What Molecular Photodermatology Tells Us About Its Good and Bad Sides. J. Investig. Dermatol. 2012;132:976–984. doi: 10.1038/jid.2011.394. PubMed DOI
Chen C.-C., Plikus M.V., Tang P.-C., Widelitz R.B., Chuong C.M. The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. J. Mol. Biol. 2016;428:1423–1440. doi: 10.1016/j.jmb.2015.07.009. PubMed DOI PMC
Granger C., Brown A., Aladren S., Narda M. Night Cream Containing Melatonin, Carnosine and Helichrysum italicum Extract Helps Reduce Skin Reactivity and Signs of Photodamage: Ex Vivo and Clinical Studies. Dermatol. Ther. 2020;10:1315–1329. doi: 10.1007/s13555-020-00443-2. PubMed DOI PMC
Andjić M., Božin B., Draginić N., Kočović A., Jeremić J.N., Tomović M., Milojević Šamanović A., Kladar N., Čapo I., Jakovljević V., et al. Formulation and Evaluation of Helichrysum italicum Essential Oil-Based Topical Formulations for Wound Healing in Diabetic Rats. Pharmaceuticals. 2021;14:813. doi: 10.3390/ph14080813. PubMed DOI PMC
Khorshidi S., Solouk A., Mirzadeh H., Mazinani S., Lagaron J.M., Sharifi S., Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J. Tissue Eng. Regen. Med. 2016;10:715–738. doi: 10.1002/term.1978. PubMed DOI
Morita R., Honda R., Takahashi Y. Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS). I. Design of SCRS and its release controlling factor. J. Control. Release. 2000;63:297–304. doi: 10.1016/S0168-3659(99)00203-5. PubMed DOI
Shaheen S., Ukai K., Dai L., Yamaura K. Properties of hydrogels of atactic poly(vinyl alcohol)/NaCl/H2O system and their application to drug release. Polym. Int. 2002;51:1390–1397. doi: 10.1002/pi.1061. DOI
Seal B.L., Otero T.C., Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R Rep. 2001;34:147–230. doi: 10.1016/S0927-796X(01)00035-3. DOI
Wang Q., Hikima T., Tojo K. Skin Penetration Enhancement by the Synergistic Effect of Supersaturated Dissolution and Chemical Enhancers. J. Chem. Eng. Jpn. 2003;36:92–97. doi: 10.1252/jcej.36.92. DOI
Teodorescu M., Bercea M., Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol. Adv. 2019;37:109–131. doi: 10.1016/j.biotechadv.2018.11.008. PubMed DOI
Brown T.D., Dalton P.D., Hutmacher D.W. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci. 2016;56:116–166. doi: 10.1016/j.progpolymsci.2016.01.001. DOI
Agarwal S., Greiner A., Wendorff J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013;38:963–991. doi: 10.1016/j.progpolymsci.2013.02.001. DOI
Abdullah M.F., Nuge T., Andriyana A., Ang B.C., Muhamad F. Core–Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers. 2019;11:2008. doi: 10.3390/polym11122008. PubMed DOI PMC
Puhl D.L., Mohanraj D., Nelson D.W., Gilbert R.J. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv. Drug Deliv. Rev. 2022;183:114161. doi: 10.1016/j.addr.2022.114161. PubMed DOI PMC
Backes C., Meese E., Keller A. Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol. Diagn. Ther. 2016;20:509–518. doi: 10.1007/s40291-016-0221-4. PubMed DOI
Sinha A., Simnani F.Z., Singh D., Nandi A., Choudhury A., Patel P., Jha E., Chouhan R.S., Kaushik N.K., Mishra Y.K., et al. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater. Today Bio. 2022;17:100463. doi: 10.1016/j.mtbio.2022.100463. PubMed DOI PMC
Sridhar R., Ravanan S., Venugopal J.R., Sundarrajan S., Pliszka D., Sivasubramanian S., Gunasekaran P., Prabhakaran M., Madhaiyan K., Sahayaraj A., et al. Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: In vitro efficacy evaluation. J. Biomater. Sci. Polym. Ed. 2014;25:985–998. doi: 10.1080/09205063.2014.917039. PubMed DOI
Park I.K., Morrison S.J., Clarke M.F. Bmi1, stem cells, and senescence regulation. J. Clin. Investig. 2004;113:175–179. doi: 10.1172/JCI200420800. PubMed DOI PMC
Klapper W., Parwaresch R., Krupp G. Telomere biology in human aging and aging syndromes. Mech. Ageing Dev. 2001;122:695–712. doi: 10.1016/S0047-6374(01)00223-8. PubMed DOI
Cruciani S., Santaniello S., Montella A., Ventura C., Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J. Stem Cells. 2019;11:464–475. doi: 10.4252/wjsc.v11.i8.464. PubMed DOI PMC
Maioli M., Basoli V., Santaniello S., Cruciani S., Delitala A.P., Pinna R., Milia E., Grillari-Voglauer R., Fontani V., Rinaldi S., et al. Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids. Stem Cells Int. 2016;2016:2056416. doi: 10.1155/2016/2056416. PubMed DOI PMC
Council of Europe . European Pharmacopeia. 4th ed. Council of Europe; Strasbourg, France: 2002. pp. 183–184.
Adams R.P. Identification of Essential oils by Gas Chromatography Quadrupole Mass Spectrometry. 1st ed. Allured Publishing Co.; Carol Steam, IL, USA: 2001.
Van del Dool H., Kartz P.D.A. Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI
Joulain D. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. 1st ed. EB-Verlag; Hamburg, Germany: 1998.
Bellu E., Garroni G., Balzano F., Satta R., Montesu M., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI
Maioli M., Rinaldi S., Pigliaru G., Santaniello S., Basoli V., Castagna A., Fontani V., Ventura C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci. Rep. 2016;6:28682. doi: 10.1038/srep28682. PubMed DOI PMC
Cruciani S., Garroni G., Ginesu G.C., Fadda A., Ventura C., Maioli M. Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. Biology. 2020;9:57. doi: 10.3390/biology9030057. PubMed DOI PMC
Bellu E., Cruciani S., Garroni G., Balzano F., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., Bandiera P., et al. Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells. 2021;10:1415. doi: 10.3390/cells10061415. PubMed DOI PMC