PVA and PVP nanofibers combined with Helichrysum italicum oil preserve skin cell interactions, elasticity and proliferation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
40158043
PubMed Central
PMC11954863
DOI
10.1038/s41598-025-95788-z
PII: 10.1038/s41598-025-95788-z
Knihovny.cz E-zdroje
- Klíčová slova
- Bioactive molecules, Cellular mechanism, Keratinocytes, Nanofibers, Regenerative medicine, Tissue regeneration, Wound healing,
- MeSH
- buněčné linie MeSH
- hojení ran účinky léků MeSH
- keratinocyty * účinky léků metabolismus cytologie MeSH
- kůže účinky léků metabolismus MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- nanovlákna * chemie MeSH
- okludin metabolismus genetika MeSH
- oleje rostlin farmakologie chemie MeSH
- polyvinylalkohol chemie MeSH
- povidon * chemie farmakologie MeSH
- proliferace buněk * účinky léků MeSH
- pružnost účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- okludin MeSH
- oleje rostlin MeSH
- polyvinylalkohol MeSH
- povidon * MeSH
Development of electrospun nanofibers with suitable properties to promote wound healing is an advantage in developing non-invasive skin treatments. We showed the potential application of Polyvinyl acetate (PVA) and Polyvinylpyrrolidone (PVP) combined with Helichrysum italicum oil (HO) in wound healing. During this process, Tight junctions (TJs) play a crucial role in maintaining skin integrity. TJs are intercellular junctions composed of a variety of transmembrane proteins, including Occludin (OCLN), observed also in migrating epithelial cells. Changes in OCLN expression affect epidermal permeability, indicating an active role in the healing process. Within this context, we studied the OCLN expression during healing after scratch assay on Keratinocytes (HaCaT), by a confocal microscopic analysis. In addition, we evaluated the effect of treatment after scratch on cell elasticity by Atomic Force Microscopy (AFM) analysis. All results show a positive trend in cell proliferation and viability on HaCaT treated with functionalized nanofibers. These results were confirmed by the expression of genes involved in the early stages of the regenerative process. Understanding the cell mechanisms involved in skin changes during repair process would allow future application of nanomaterials combined with HO in vivo.
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 B 07100 Sassari Italy
Department of Medical Sciences University of Ferrara Ferrara Italy
Department of Medicine Surgery and Pharmacy University of Sassari 07100 Sassari Italy
Institute of Materials Area Science Park 34149 Basovizza Trieste Italy
R and D Laboratory Center InoCure s r o Politických Veziu 935 13 110 00 Prague Czech Republic
Student Science Národních hrdinů 279 190 12 Praha 9 Czech Republic
Zobrazit více v PubMed
Lopez-Ojeda, W., Pandey, A., Alhajj, M. & Oakley, A. M. Anatomy, Skin (Integument) (StatPearls, 2022). PubMed
Pazyar, N., Yaghoobi, R., Rafiee, E., Mehrabian, A. & Feily, A. Skin wound healing and phytomedicine: A review. Skin Pharmacol. Physiol.27, 303–310. 10.1159/000357477 (2014). PubMed
Mahmoud, N. N. et al. Investigating inflammatory markers in wound healing: Understanding implications and identifying artifacts. ACS Pharmacol. Transl. Sci.7, 18–27. 10.1021/ACSPTSCI.3C00336/ASSET/IMAGES/LARGE/PT3C00336_0002.JPEG (2024). PubMed PMC
Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med.10.1126/SCITRANSLMED.3009337 (2014). PubMed PMC
Cruciani, S. et al. Myrtus polyphenols, from antioxidants to anti-inflammatory molecules: Exploring a network involving cytochromes P450 and vitamin D. Molecules24, 1515. 10.3390/MOLECULES24081515 (2019). PubMed PMC
Tyavambiza, C., Meyer, M. & Meyer, S. Cellular and molecular events of wound healing and the potential of silver based nanoformulations as wound healing agents. Bioengineering10.3390/BIOENGINEERING9110712 (2022). PubMed PMC
Pastar, I. et al. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care (New Rochelle)3, 445. 10.1089/WOUND.2013.0473 (2014). PubMed PMC
Tottoli, E. M. et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics12, 735. 10.3390/PHARMACEUTICS12080735 (2020). PubMed PMC
Yuki, T. et al. Tight Junction proteins in Keratinocytes: Localization and contribution to barrier function. Exp. Dermatol.16, 324–330. 10.1111/J.1600-0625.2006.00539.X (2007). PubMed
Förster, C. Tight junctions and the modulation of barrier function in disease. Histochem. Cell Biol.130, 55. 10.1007/S00418-008-0424-9 (2008). PubMed PMC
Espinosa-Riquer, Z. P. et al. Signal transduction pathways activated by innate immunity in mast cells: Translating sensing of changes into specific responses. Cells9, 1–39. 10.3390/CELLS9112411 (2020). PubMed PMC
Anderson, J. M. & Van Itallie, C. M. Physiology and function of the tight junction. Cold Spring Harb. Perspect. Biol.1, a002584. 10.1101/CSHPERSPECT.A002584 (2009). PubMed PMC
Al-Sadi, R. et al. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol.10.1152/AJPGI.00055.2011 (2011). PubMed PMC
Volksdorf, T. et al. Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing. Am. J. Pathol.187, 1301–1312. 10.1016/J.AJPATH.2017.02.006 (2017). PubMed
Elsner, P., Wilhelm, D. & Maibach, H. I. Mechanical properties of human forearm and vulvar skin. Br. J. Dermatol.122, 607–614. 10.1111/j.1365-2133.1990.tb07282.x (1990). PubMed
Clark, J. A., Cheng, J. C. Y. & Leung, K. S. Mechanical properties of normal skin and hypertrophic scars. Burns22, 443–446. 10.1016/0305-4179(96)00038-1 (1996). PubMed
Schillers, H. Measuring the elastic properties of living cells. Methods Mol. Biol.1886, 291–313. 10.1007/978-1-4939-8894-5_17 (2019). PubMed
Humbert, P., Maibach, H.I., Fanian, F., Agache, P. Agache’s Measuring the Skin: Non-Invasive Investigations, Physiology, Normal Constants: Second Edition. (2017). 10.1007/978-3-319-32383-1/COVER.
Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A. & Zhdanov, R. I. Atomic force microscopy probing of cell elasticity. Micron38, 824–833. 10.1016/J.MICRON.2007.06.011 (2007). PubMed
Serra, D. et al. Electrospun nanofibers encapsulated with natural products: a novel strategy to counteract skin aging. Int. J. Mol. Sci.2024, 25. 10.3390/IJMS25031908 (1908). PubMed PMC
Kant, V., Kumari, P., Jitendra, D. K., Ahuja, M. & Kumar, V. Nanomaterials of natural bioactive compounds for wound healing: Novel drug delivery approach. Curr. Drug. Deliv.18, 1406–1425. 10.2174/1567201818666210729103712 (2021). PubMed
Xu, R. et al. Recent advances in biodegradable and biocompatible synthetic polymers used in skin wound healing. Materials16(15), 5459. 10.3390/ma16155459 (2023). PubMed PMC
Council of Europe. European Pharmacopoeia. 2416. (2001).
van Den Dool, H. & Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr.11, 463–471. 10.1016/S0021-9673(01)80947-X (1963). PubMed
Sparkman, O. D. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Robert P. Adams. J. Am. Soc. Mass Spectrom16, 1902–1903. 10.1016/J.JASMS.2005.07.008 (2005).
Torreggiani, E. et al. Protocol for the long-term culture of human primary keratinocytes from the normal colorectal mucosa. J. Cell Physiol.234, 9895–9905. 10.1002/JCP.28300 (2019). PubMed
Garroni, G. et al. Adipo-derived stem cell features and Mcf-7. Cells10, 1754. 10.3390/CELLS10071754/S1 (2021). PubMed PMC
Schilling, A. F. Biomaterials for promoting wound healing in diabetes. J. Tissue Sci. Eng10.4172/2157-7552.1000193 (2017).
Hosty, L., Heatherington, T., Quondamatteo, F. & Browne, S. Extracellular matrix-inspired biomaterials for wound healing. Mol. Biol. Rep.51, 1–23. 10.1007/S11033-024-09750-9 (2024). PubMed PMC
Guo, S. & DiPietro, L. A. Factors affecting wound healing. J. Dent Res.89, 219. 10.1177/0022034509359125 (2010). PubMed PMC
Shi, J., Barakat, M., Chen, D. & Chen, L. Bicellular tight junctions and wound healing. Int. J. Mol. Sci.19, 3862. 10.3390/IJMS19123862 (2018). PubMed PMC
Yuki, T. et al. Impaired tight junctions obstruct stratum corneum formation by altering polar lipid and profilaggrin processing. J. Dermatol. Sci.69, 148–158. 10.1016/J.JDERMSCI.2012.11.595 (2013). PubMed
Haftek, M. et al. The fate of epidermal tight junctions in the stratum corneum: Their involvement in the regulation of desquamation and phenotypic expression of certain skin conditions. Int. J. Mol. Sci.10.3390/IJMS23137486/S1 (2022). PubMed PMC
Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell28, 3134. 10.1091/MBC.E17-04-0228 (2017). PubMed PMC
Rosińczuk, J., Taradaj, J., Dymarek, R. & Sopel, M. Mechanoregulation of wound healing and skin homeostasis. Biomed. Res. Int.2016, 3943481. 10.1155/2016/3943481 (2016). PubMed PMC
Leonardo, T. R., Shi, J., Chen, D., Trivedi, H. M. & Chen, L. Differential expression and function of bicellular tight junctions in skin and oral wound healing. Int. J. Mol. Sci.21, 2966. 10.3390/IJMS21082966 (2020). PubMed PMC
Jia, Z. et al. OCLN as a novel biomarker for prognosis and immune infiltrates in kidney renal clear cell carcinoma: An integrative computational and experimental characterization. Front. Immunol.14, 1224904. 10.3389/FIMMU.2023.1224904/FULL (2023). PubMed PMC
Grady, M. E., Composto, R. J. & Eckmann, D. M. Cell elasticity with altered cytoskeletal architectures across multiple cell types. J. Mech. Behav. Biomed. Mater.61, 197–207. 10.1016/J.JMBBM.2016.01.022 (2016). PubMed
Tarrant, J. M. Blood cytokines as biomarkers of in vivo toxicity in preclinical safety assessment: Considerations for their use. Toxicol. Sci.117, 4. 10.1093/TOXSCI/KFQ134 (2010). PubMed PMC
Lopez-Castejon, G. & Brough, D. Understanding the mechanism of IL-1β Secretion. Cytokine Growth Factor Rev.22, 189. 10.1016/J.CYTOGFR.2011.10.001 (2011). PubMed PMC
Kondo, T. & Ohshima, T. The dynamics of inflammatory cytokines in the healing process of mouse skin wound: A preliminary study for possible wound age determination. Int. J. Legal. Med.108, 231–236. 10.1007/BF01369816/METRICS (1996). PubMed
Makaremi, S. et al. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm. Res.71, 923. 10.1007/S00011-022-01596-W (2022). PubMed PMC
Pradhan Nabzdyk, L. et al. Expression of neuropeptides and cytokines in a rabbit model of diabetic neuroischemic wound-healing. J. Vasc. Surg.58, 766. 10.1016/J.JVS.2012.11.095 (2013). PubMed PMC
Zhao, R., Zhou, H. & Su, S. B. A critical role for interleukin-1β in the progression of autoimmune diseases. Int. Immunopharmacol.17, 658–669. 10.1016/J.INTIMP.2013.08.012 (2013). PubMed
Yi, B., Xu, Q. & Liu, W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact. Mater.15, 82. 10.1016/J.BIOACTMAT.2021.12.005 (2022). PubMed PMC