Insight into the Mechanism of Action and Peptide-Membrane Interactions of Aib-Rich Peptides: Multitechnique Experimental and Theoretical Analysis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
1600026
STFC Rutherford Appleton Laboratory
1910639
INTER
EP/P027067/1
EPSRC
EP/N009134/1
EPSRC
CZ.02.1.01/0.0/0.0/16_019/0000729
Czech Ministry of Education
ROCOCO
European Research Council - International
PubMed
33411956
PubMed Central
PMC8248331
DOI
10.1002/cbic.202000834
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial peptides, lipid-peptide interactions, membranes, molecular dynamics, peptaibols, transfer of chirality,
- MeSH
- cirkulární dichroismus MeSH
- fosfatidylcholiny chemie MeSH
- kationické antimikrobiální peptidy chemie metabolismus MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- peptaiboly chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-oleoylphosphatidylcholine MeSH Prohlížeč
- fosfatidylcholiny MeSH
- kationické antimikrobiální peptidy MeSH
- lipidové dvojvrstvy MeSH
- peptaiboly MeSH
The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.
Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
Department of Chemistry University of Warwick Coventry CV4 7AL UK
Department of Molecular Sciences Macquarie University Sydney NSW 2109 Australia
ISIS Neutron and Muon Source Rutherford Appleton Laboratory Harwell Didcot Oxford OX11 0QX UK
Manchester Institute of Biotechnology University of Manchester 131 Princess St Manchester M1 7DN UK
School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
School of Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
Zobrazit více v PubMed
Mahlapuu M., Håkansson J., Ringstad L., Björn C., Front. Cell. Infect. Microbiol. 2016, 6, 194; PubMed PMC
Mookherjee N., Anderson M. A., Haagsman H., Davidson D. J., Nat. Rev. Drug Discovery 2020; PubMed
Haney E. F., Straus S. K., Hancock R. E. W., Front. Chem. 2019, 7, DOI: 10.3389/fchem.2019.00043; PubMed
Chen K., Sheng Y., Wang J., Wang W., Int. J. Mol. Sci. 2019, 20, 4760; PubMed PMC
Henriques S. T., Peacock H., Benfield A. H., Wang C. K., Craik D. J., J. Am. Chem. Soc. 2019, 141, 20460–20469; PubMed
Sando L., Henriques S. T., Foley F., Simonsen S. M., Daly N. L., Hall K. N., Gustafson K. R., Aguilar M. I., Craik D. J. A., ChemBioChem, 2011, 12, 2456–2462; PubMed PMC
Wei G., de Leeuw G. E., Pazgier M., Yuan W., Zou G., Wang J., Ericksen B., Lu W. Y., Lehrer R. I., Lu W., J. Biol. Chem. 2009, 284, 29180–29192. PubMed PMC
Tavano R., Malachin G., De Zotti M., Peggion C., Biondi B., Formaggio F., Papini E., Biophys. Biochem. Acta Biomembr. 2015, 1848, 134–144. PubMed
Balázs L., András S., László M., Csaba V., László K., Chem. Biodiversity 2007, 4, 1027–1051.
Qian S., Wang W., Yang L., Huang H. W., Biophs. J. 2008, 94, 3512–3522. PubMed PMC
Bobone S., Gerelli Y., De Zotti M., Bocchinfuso G., Farrotti A., Orioni B., Sebastiani F., Latter E., Penfold J., Senesi R., Formaggio F., Palleschi A., Toniolo C., Fragneto G., Stella L., Biophys. Biochem. Acta Biomembr. 2013, 1828, 1013–1024. PubMed
Bautista A. D., Craig C. J., Harker E. A., Schepartz A., Curr. Opin. Chem. Biol. 2007, 11, 685–692. PubMed PMC
Claudon P., Violette A., Lamour K., Decossas M., Fournel S., Heurtault B., Godet J., Mély Y., Jamart-Grégoire B., Averlant-Petit M. C., Briand J. P., Duportail G., Monteil H., Guichard G., Angew. Chem. Int. Ed. 2010, 49, 333–336; PubMed
Angew. Chem. 2010, 122, 343–346;
Anke H. in Fungal Peptides Containing α-Dialkyl α-Amino Acids (Eds.: Toniolo C., Bruckner H.), Wiley-VCH, Weinheim, 2009.
Lizio M. G., Andrushchenko V., Pike S. J., Peters A. D., Whitehead G. F. S., Vitórica-Yrezábal I. J., Mutter S. T., Clayden J., Bouř P., Blanch E. W., Webb S. J., Chem. Eur. J. 2018, 24, 9399–9408. PubMed
Jones J. E., Diemer V., Adam C., Raftery J., Ruscoe R. E., Sengel J. T., Wallace M. I., Bader A., Cockroft S. L., Clayden J., Webb S. J., J. Am. Chem. Soc. 2016, 138, 688–695. PubMed PMC
Toniolo C., Benedetti E., Trends Biochem. Sci. 1991, 16, 350–353. PubMed
Lakowicz J. R., Principles of Fluorescence Spectroscopy , 3rd ed, 2006.
Postupalenko V. Y., Shvadchak V. V., Duportail G., Pivovarenko V., Klymchenko A. S., Mély Y., Biophys. Biochem. Acta Biomembr. 2011, 1808, 424–432. PubMed
Ren J., Lew S., Wang J., London E., Biochemistry 1999, 38, 5905–5912. PubMed
Ren J., Lew S., Wang Z., London E., Biochemistry 1997, 36, 10213–10220. PubMed
Zhao H., Kinnunen P. K. J., J. Biol. Chem. 2002, 277, 25170–25177. PubMed
Henzler Wildman K. A., Lee D. K., Ramamoorthy A., Biochemistry, 2003, 42, 6545–6558; PubMed
Reid K. A., Davis C. M., Dyer R. B., Kindt J. T., Biophys. Biochem. Acta Biomembr. 2018, 1860, 792–800. PubMed PMC
Adam C., Peters A. D., Lizio M. G., Whitehead G. F. S., Diemer V., Cooper J. A., Cockroft S. L., Clayden J., Webb S. J., Chem. Eur. J. 2018, 24, 2249–2256; PubMed
Peters A. D., Borsley S., della Sala F., Cairns-Gibson D. F., Leonidou M., Clayden J., Whitehead G. F. S., Vitórica-Yrezábal I. J., Takano E., Burthem E., Cockroft S. L., Webb S. J., Chem. Sci. 2020, 11, 7023–7030. PubMed PMC
Pike S. J., Jones J. E., Raftery J., Clayden J., Webb S. J., Org. Biomol. Chem. 2015, 13, 9580–9584. PubMed
Rodger A., Dorrington G., Ang D. L., Analyst, 2016, 141, 6490–6498. PubMed
Rodger A., Rajendra J., Marrington R., Ardhammar M., Nordén B., Hirst J. D., Gilbert A. T. B., Dafforn T. R., Halsall J. D., Woolhead C. A., Robinson C., Pinheiro T. J. T., Kazlauskaite J., Seymour M., Perez N., Hannon M. J., Phys. Chem. Chem. Phys. 2002, 4, 4051–4057.
Rajendra J., Damianoglou A., Hicks M., Booth P., Rodger P. M., Rodger A., Chem. Phys. 2006, 326, 210–220;
Kelly S. M., Nicholas T. J. J., Price C., Biophys. Biochem. Acta Protein Proteomics 2005, 2, 119–139. PubMed
Hicks M. R., Damianoglou A., Rodger A., Dafforn T. R., J. Mol. Biol. 2008, 383, 358–366. PubMed
Hicks M. R., Dafforn T. R., Damianoglou A., Wormell P., Rodger A., Hoffmann S. V., Analyst 2009, 134, 1623–1628. PubMed
Pike S. J., Raftery J., Webb S. J., Clayden J., Org. Biomol. Chem. 2014, 12, 4124–4131; PubMed
Crawford J. L., Lipscomb W. N., Schellman C. G., Proc. Natl. Acad. Sci. USA 1973, 70, 538–542. PubMed PMC
Pike S. J., Diemer V., Raftery J., Webb S. J., Clayden J., Chem. Eur. J. 2014, 20, 15981–15990. PubMed
De Poli M., Zawodny W., Quinonero O., Lorch M., Webb S. J., Clayden J., Science 2016, 352, 575–580. PubMed
Pike S. J., Boddaert T., Raftery J., Webb S. J., Clayden J., New J. Chem. 2015, 39, 3288–3294.
Brown R., Marcelli T., De Poli M., Solà J., Clayden J., Angew. Chem. Int. Ed. 2012, 51, 1395–1399; PubMed
Angew. Chem. 2012, 124, 1424–1428.
De Poli M., De Zotti M., Raftery J., Aguilar J. A., Morris G. A., Clayden J., J. Org. Chem. 2013, 78, 2248–2255. PubMed
Ardhammar M., Lincoln P., Rodger A., Nordén B., Chem. Phys. Lett. 2002, 354, 44–50.
Sanderson J. M., Ward A. D., Chem. Commun. 2004, 1120–1121; PubMed
Kapitán J., Johannessen C., Bouř P., Hecht L., Barron L. D., Chirality, 2009, 21, E4–E12; PubMed
Fernandes R. F., Maia L. F., Couri M. R. C., Costa M. R. L. A. S., de Oliveira L. F. C., Spectrochim. Acta Part A 2015, 134, 434–441. PubMed
Lister F. G. A., Le Bailly B. A. F., Webb S. J., Clayden J., Nat. Chem. 2017, 9, 420–425;
Lister F. G. A., Eccles N., Pike S. J., Brown R. A., Whitehead G. F. S., Raftery J., Webb S. J., Clayden J., Chem. Sci. 2018, 9, 6860–6870. PubMed PMC
Kučerka N., Tristram-Nagle S., Nagle J. F., J. Membr. Biol. 2006, 208, 193–202. PubMed
Mabrey S., Sturtevant J. M., Proc. Natl. Acad. Sci. USA 1976, 73, 3862–3866. PubMed PMC
Lewis B. A., Engelman D. M., J. Mol. Biol. 1983, 166, 211–217. PubMed
Kucerka N., Kiselev M. A., Balgavý P., Eur. Biophys. J. 2004. 33, 328–334. PubMed
Ardhammar M., Mikati N., Nordén B., J. Am. Chem. Soc. 1998, 120, 9957–9958.
Penfold J., Richardson R. M., Zarbakhsh A., Webster J. R. P., Bucknall D. G., Rennie A. R., Jones R. A. L., Cosgrove T., Thomas R. K., Higgins J. S., Fletcher P. D. I., Dickinson E., Roser S. J., McLure I. A., Hillman A. R., Richards R. W., Staples E. J., Burgess A. N., Simister E. A., White J. W., J. Chem. Soc. Faraday Trans. 1997, 93, 3899–3917.
Webster J. R. P., Langridge S., Dalgliesh R. M., Charlton T. R., Eur. Phys. J. Plus, 2011, 126, 112.
Marrington R., Dafforn T. R., Halsall D. J., MacDonald J. I., Hicks M., Rodger A., Analyst 2005, 130, 1608–1616. PubMed
Marrington R., Dafforn T. R., Halsall D. J., Rodger A., Biophys. J. 2004, 87, 2002–2012. PubMed PMC
Damianoglou A., Rodger A., Pridmore C., Dafforn T. R., Mosely J. A., Sanderson J. M., Hicks M. R., Protein Pept. Lett. 2010, 17, 1351–1362. PubMed
P. H. C. Eilers, H. F. M. Boelens, Leiden University Medical Centre Report, 2005.