Nanomaterials in Skin Regeneration and Rejuvenation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34209468
PubMed Central
PMC8268279
DOI
10.3390/ijms22137095
PII: ijms22137095
Knihovny.cz E-zdroje
- Klíčová slova
- cellular mechanisms, nanomaterials, regenerative medicine, skin, stem cells,
- MeSH
- fyziologie kůže účinky léků MeSH
- kůže metabolismus MeSH
- lékové transportní systémy * MeSH
- lidé MeSH
- nanostruktury terapeutické užití MeSH
- omlazení * MeSH
- regenerace účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its protective function. The recent extension of the average lifespan raises the interest in products capable of counteracting skin related health conditions. However, the skin barrier is not easy to permeate and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an appropriate formulation to enhance the passive penetration, modulate drug solubility and increase the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches to maintain and replace skin homeostasis, with particular attention to nanomaterials applications on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we highlight their main chemical features that are useful in drug delivery and tissue regeneration.
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 B 07100 Sassari Italy
Department of Chemistry and Pharmacy University of Sassari Vienna 2 07100 Sassari Italy
Interuniversity Consortium 1 N B B Viale delle Medaglie d'Oro 305 00136 Roma Italy
UCEEB Czech Technical University Trinecka 1024 27343 Bustehrad Czech Republic
Zobrazit více v PubMed
Lu C., Fuchs E. Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harb. Perspect. Med. 2014;4:a015222. doi: 10.1101/cshperspect.a015222. PubMed DOI PMC
Sen C.K., Gordillo G.M., Roy S., Kirsner R., Lambert L., Hunt T.K., Gottrup F., Gurtner G.C., Longaker M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–771. doi: 10.1111/j.1524-475X.2009.00543.x. PubMed DOI PMC
Kirkwood T.B., Melov S. On the programmed/non-programmed nature of ageing within the life history. Curr. Biol. 2011;21:R701–R707. doi: 10.1016/j.cub.2011.07.020. PubMed DOI
Brink T.C., Demetrius L., Lehrach H., Adjaye J. Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging. Biogerontology. 2009;10:549–564. doi: 10.1007/s10522-008-9197-8. PubMed DOI PMC
Krutmann J., Morita A., Chung J.H. Sun exposure: What molecular photodermatology tells us about its good and bad sides. J. Investig. Derm. 2012;132:976–984. doi: 10.1038/jid.2011.394. PubMed DOI
Stern M.M., Bickenbach J.R. Epidermal stem cells are resistant to cellular aging. Aging Cell. 2007;6:439–452. doi: 10.1111/j.1474-9726.2007.00318.x. PubMed DOI
Quan T., He T., Kang S., Voorhees J.J., Fisher G.J. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am. J. Pathol. 2004;165:741–751. doi: 10.1016/S0002-9440(10)63337-8. PubMed DOI PMC
Mizukoshi K., Nakamura T., Oba A. The relationship between dermal papillary structure and skin surface properties, color, and elasticity. Ski. Res. Technol. 2016;22:295–304. doi: 10.1111/srt.12260. PubMed DOI
Shin J.W., Kwon S.H., Choi J.Y., Na J.I., Huh C.H., Choi H.R., Park K.C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019;20:2126. doi: 10.3390/ijms20092126. PubMed DOI PMC
Kehlet S.N., Willumsen N., Armbrecht G., Dietzel R., Brix S., Henriksen K., Karsdal M.A. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix. PLoS ONE. 2018;13:e0194458. doi: 10.1371/journal.pone.0194458. PubMed DOI PMC
Varani J., Dame M.K., Rittie L., Fligiel S.E., Kang S., Fisher G.J., Voorhees J.J. Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 2006;168:1861–1868. doi: 10.2353/ajpath.2006.051302. PubMed DOI PMC
Yurchenco P.D., Schittny J.C. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–1590. doi: 10.1096/fasebj.4.6.2180767. PubMed DOI
Bellu E., Garroni G., Balzano F., Satta R., Montesu M.A., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI
Stadelmann W.K., Digenis A.G., Tobin G.R. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg. 1998;176:26S–38S. doi: 10.1016/S0002-9610(98)00183-4. PubMed DOI
Ahmed A.S., Sheng M.H., Wasnik S., Baylink D.J., Lau K.W. Effect of aging on stem cells. World J. Exp. Med. 2017;7:1–10. doi: 10.5493/wjem.v7.i1.1. PubMed DOI PMC
Rinaldi S., Maioli M., Pigliaru G., Castagna A., Santaniello S., Basoli V., Fontani V., Ventura C. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci. Rep. 2014;4:6373. doi: 10.1038/srep06373. PubMed DOI PMC
Boukamp P. Non-melanoma skin cancer: What drives tumor development and progression? Carcinogenesis. 2005;26:1657–1667. doi: 10.1093/carcin/bgi123. PubMed DOI
Parrinello S., Coppe J.P., Krtolica A., Campisi J. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 2005;118:485–496. doi: 10.1242/jcs.01635. PubMed DOI PMC
Wang Y., Lauer M.E., Anand S., Mack J.A., Maytin E.V. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J. Biol. Chem. 2014;289:32253–32265. doi: 10.1074/jbc.M114.578377. PubMed DOI PMC
Bellu E., Garroni G., Cruciani S., Balzano F., Serra D., Satta R., Montesu M.A., Fadda A., Mulas M., Sarais G., et al. Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells. 2020;9:2530. doi: 10.3390/cells9122530. PubMed DOI PMC
Kaul S., Gulati N., Verma D., Mukherjee S., Nagaich U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm. 2018;2018:3420204. doi: 10.1155/2018/3420204. PubMed DOI PMC
Whitney J.D. Overview: Acute and chronic wounds. Nurs. Clin. N. Am. 2005;40:191–205. doi: 10.1016/j.cnur.2004.09.002. PubMed DOI
Zare M.R., Khorram M., Barzegar S., Asadian F., Zareshahrabadi Z., Jamal Saharkhiz M., Ahadian S., Zomorodian K. Antimicrobial core-shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing. Int. J. Pharm. 2021;603:120698. doi: 10.1016/j.ijpharm.2021.120698. PubMed DOI
Braund R., Hook S., Medlicott N.J. The role of topical growth factors in chronic wounds. Curr. Drug Deliv. 2007;4:195–204. doi: 10.2174/156720107781023857. PubMed DOI
Gainza G., Villullas S., Pedraz J.L., Hernandez R.M., Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine. 2015;11:1551–1573. doi: 10.1016/j.nano.2015.03.002. PubMed DOI
Addis R., Cruciani S., Santaniello S., Bellu E., Sarais G., Ventura C., Maioli M., Pintore G. Fibroblast Proliferation and Migration in Wound Healing by Phytochemicals: Evidence for a Novel Synergic Outcome. Int. J. Med. Sci. 2020;17:1030–1042. doi: 10.7150/ijms.43986. PubMed DOI PMC
Oda Y., Bikle D.D. Vitamin D and calcium signaling in epidermal stem cells and their regeneration. World J. Stem Cells. 2020;12:604–611. doi: 10.4252/wjsc.v12.i7.604. PubMed DOI PMC
Kim E.K., Kim H.O., Park Y.M., Park C.J., Yu D.S., Lee J.Y. Prevalence and risk factors of depression in geriatric patients with dermatological diseases. Ann. Derm. 2013;25:278–284. doi: 10.5021/ad.2013.25.3.278. PubMed DOI PMC
Bolzinger M.-A., Briançon S., Pelletier J., Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 2012;17:156–165. doi: 10.1016/j.cocis.2012.02.001. DOI
Trommer H., Neubert R.H. Overcoming the stratum corneum: The modulation of skin penetration. A review. Ski. Pharm. Physiol. 2006;19:106–121. doi: 10.1159/000091978. PubMed DOI
Batisse D., Bazin R., Baldeweck T., Querleux B., Leveque J.L. Influence of age on the wrinkling capacities of skin. Ski. Res. Technol. 2002;8:148–154. doi: 10.1034/j.1600-0846.2002.10308.x. PubMed DOI
Rennick J.J., Johnston A.P.R., Parton R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021;16:266–276. doi: 10.1038/s41565-021-00858-8. PubMed DOI
Vitorino C., Almeida J., Goncalves L.M., Almeida A.J., Sousa J.J., Pais A.A. Co-encapsulating nanostructured lipid carriers for transdermal application: From experimental design to the molecular detail. J. Control. Release. 2013;167:301–314. doi: 10.1016/j.jconrel.2013.02.011. PubMed DOI
Naik A., Kalia Y.N., Guy R.H. Transdermal drug delivery: Overcoming the skin’s barrier function. Pharm. Sci. Technol. Today. 2000;3:318–326. doi: 10.1016/S1461-5347(00)00295-9. PubMed DOI
Kurian S.J., Miraj S.S., Benson R., Munisamy M., Saravu K., Rodrigues G.S., Rao M. Vitamin D Supplementation in Diabetic Foot Ulcers: A Current Perspective. Curr. Diabetes Rev. 2021;17:512–521. doi: 10.2174/1573399816999201012195735. PubMed DOI
Cruciani S., Santaniello S., Garroni G., Fadda A., Balzano F., Bellu E., Sarais G., Fais G., Mulas M., Maioli M. Myrtus Polyphenols, from Antioxidants to Anti-Inflammatory Molecules: Exploring a Network Involving Cytochromes P450 and Vitamin D. Molecules. 2019;24:1515. doi: 10.3390/molecules24081515. PubMed DOI PMC
Barry B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI
Benson H.A. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv. 2005;2:23–33. doi: 10.2174/1567201052772915. PubMed DOI
Landsiedel R., Ma-Hock L., Van Ravenzwaay B., Schulz M., Wiench K., Champ S., Schulte S., Wohlleben W., Oesch F. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology. 2010;4:364–381. doi: 10.3109/17435390.2010.506694. PubMed DOI
Nardini M., Perteghella S., Mastracci L., Grillo F., Marrubini G., Bari E., Formica M., Gentili C., Cancedda R., Torre M.L., et al. Growth Factors Delivery System for Skin Regeneration: An Advanced Wound Dressing. Pharmaceutics. 2020;12:120. doi: 10.3390/pharmaceutics12020120. PubMed DOI PMC
Fathi-Azarbayjani A., Qun L., Chan Y.W., Chan S.Y. Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS PharmSciTech. 2010;11:1164–1170. doi: 10.1208/s12249-010-9475-z. PubMed DOI PMC
Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC
Gustafson H.H., Holt-Casper D., Grainger D.W., Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today. 2015;10:487–510. doi: 10.1016/j.nantod.2015.06.006. PubMed DOI PMC
Chou L.Y., Ming K., Chan W.C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 2011;40:233–245. doi: 10.1039/C0CS00003E. PubMed DOI
Li K., Li D., Li C.-H., Zhuang P., Dai C., Hu X., Wang D., Liu Y., Mei X., Rotello V.M. Efficient in vivo wound healing using noble metal nanoclusters. Nanoscale. 2021;13:6531–6537. doi: 10.1039/D0NR07176E. PubMed DOI PMC
Lo S., Fauzi M.B. Current Update of Collagen Nanomaterials—Fabrication, Characterisation and Its Applications: A Review. Pharmaceutics. 2021;13:316. doi: 10.3390/pharmaceutics13030316. PubMed DOI PMC
Ovais M., Ahmad I., Khalil A.T., Mukherjee S., Javed R., Ayaz M., Raza A., Shinwari Z.K. Wound healing applications of biogenic colloidal silver and gold nanoparticles: Recent trends and future prospects. Appl. Microbiol. Biotechnol. 2018;102:4305–4318. doi: 10.1007/s00253-018-8939-z. PubMed DOI
Neema S., Chatterjee M. Nano-silver dressing in toxic epidermal necrolysis. Indian J. Dermatol. Venereol. Leprol. 2017;83 doi: 10.4103/0378-6323.192955. PubMed DOI
Ribeiro F.M., de Oliveira M.M., Singh S., Sakthivel T.S., Neal C.J., Seal S., Ueda-Nakamura T., Lautenschlager S.d.O.S., Nakamura C.V. Ceria Nanoparticles decrease UVA-induced fibroblast death through cell redox regulation leading to cell survival, migration and proliferation. Front. Bioeng. Biotechnol. 2020;8:577557. doi: 10.3389/fbioe.2020.577557. PubMed DOI PMC
Alizadeh S., Seyedalipour B., Shafieyan S., Kheime A., Mohammadi P., Aghdami N. Copper nanoparticles promote rapid wound healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization. Biochem. Biophys. Res. Commun. 2019;517:684–690. doi: 10.1016/j.bbrc.2019.07.110. PubMed DOI
Medici S., Peana M., Nurchi V.M., Zoroddu M.A. Medical uses of silver: History, myths, and scientific evidence. J. Med. Chem. 2019;62:5923–5943. doi: 10.1021/acs.jmedchem.8b01439. PubMed DOI
Akram M., Hussain R. Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications. Wiley Online Library; Hoboken, NJ, USA: 2017. Nanohydrogels: History, development, and applications in drug delivery; pp. 297–330.
Paiva-Santos A.C., Herdade A.M., Guerra C., Peixoto D., Pereira-Silva M., Zeinali M., Mascarenhas-Melo F., Paranhos A., Veiga F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int. J. Pharm. 2021;597:120311. doi: 10.1016/j.ijpharm.2021.120311. PubMed DOI
Kong Y., Hou Z., Zhou L., Zhang P., Ouyang Y., Wang P., Chen Y., Luo X. Injectable Self-Healing Hydrogels Containing CuS Nanoparticles with Abilities of Hemostasis, Antibacterial activity, and Promoting Wound Healing. ACS Biomater. Sci. Eng. 2021;7:335–349. doi: 10.1021/acsbiomaterials.0c01473. PubMed DOI
Manatunga D., Godakanda V., Herath H., de Silva R.M., Yeh C.-Y., Chen J.-Y., Akshitha de Silva A., Rajapaksha S., Nilmini R., Nalin de Silva K. Nanofibrous cosmetic face mask for transdermal delivery of nano gold: Synthesis, characterization, release and zebra fish employed toxicity studies. R. Soc. Open Sci. 2020;7:201266. doi: 10.1098/rsos.201266. PubMed DOI PMC
Jiménez-Pérez Z.E., Singh P., Kim Y.-J., Mathiyalagan R., Kim D.-H., Lee M.H., Yang D.C. Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. J. Ginseng Res. 2018;42:327–333. doi: 10.1016/j.jgr.2017.04.003. PubMed DOI PMC
Taufikurohmah T., Sanjaya I.G.M., Syahrani A. Nanogold synthesis using matrix mono glyceryl stearate as antiaging compounds in modern cosmetics. J. Mater. Sci. Eng. A. 2011;1:857.
Arafa M.G., El-Kased R.F., Elmazar M. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci. Rep. 2018;8:13674. doi: 10.1038/s41598-018-31895-4. PubMed DOI PMC
Stefan L.M., Iosageanu A., Ilie D., Stanciuc A.M., Matei C., Berger D., Craciunescu O. Extracellular matrix biomimetic polymeric membranes enriched with silver nanoparticles for wound healing. Biomed. Mater. 2021;16:035010. doi: 10.1088/1748-605X/abe55d. PubMed DOI
Bundjaja V., Santoso S.P., Angkawijaya A.E., Yuliana M., Soetaredjo F.E., Ismadji S., Ayucitra A., Gunarto C., Ju Y.-H., Ho M.-H. Fabrication of cellulose carbamate hydrogel-dressing with rarasaponin surfactant for enhancing adsorption of silver nanoparticles and antibacterial activity. Mater. Sci. Eng. C. 2021;118:111542. doi: 10.1016/j.msec.2020.111542. PubMed DOI
Amer S., Attia N., Nouh S., El-Kammar M., Korittum A., Abu-Ahmed H. Fabrication of sliver nanoparticles/polyvinyl alcohol/gelatin ternary nanofiber mats for wound healing application. J. Biomater. Appl. 2020;35:287–298. doi: 10.1177/0885328220927317. PubMed DOI
Rahman M.A., Islam M.S., Haque P., Khan M.N., Takafuji M., Begum M., Chowdhury G.W., Khan M., Rahman M.M. Calcium ion mediated rapid wound healing by nano-ZnO doped calcium phosphate-chitosan-alginate biocomposites. Materialia. 2020;13:100839. doi: 10.1016/j.mtla.2020.100839. DOI
Zhou L., Chen F., Hou Z., Chen Y., Luo X. Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties. Chem. Eng. J. 2021;409:128224. doi: 10.1016/j.cej.2020.128224. DOI
Ahmed K.B.A., Anbazhagan V. Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish. RSC Adv. 2017;7:36644–36652. doi: 10.1039/C7RA05636B. DOI
Haghniaz R., Rabbani A., Vajhadin F., Khan T., Kousar R., Khan A.R., Montazerian H., Iqbal J., Libanori A., Kim H.J., et al. Anti-bacterial and wound healing-promoting effects of zinc ferrite nanoparticles. J. Nanobiotechnol. 2021;19:38. doi: 10.1186/s12951-021-00776-w. PubMed DOI PMC
Patel K.K., Surekha D.B., Tripathi M., Anjum M.M., Muthu M., Tilak R., Agrawal A.K., Singh S. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: A study on the effect of DNase-I on microbial biofilm and wound healing activity. Mol. Pharm. 2019;16:3916–3925. doi: 10.1021/acs.molpharmaceut.9b00527. PubMed DOI
Singh S.K., Dhyani A., Juyal D. Hydrogel: Preparation, characterization and applications. Pharma Innov. 2017;6:25.
Asadi N., Pazoki-Toroudi H., Del Bakhshayesh A.R., Akbarzadeh A., Davaran S., Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int. J. Biol. Macromol. 2021;170:728–750. doi: 10.1016/j.ijbiomac.2020.12.202. PubMed DOI
Jiang Y., Krishnan N., Heo J., Fang R.H., Zhang L. Nanoparticle–hydrogel superstructures for biomedical applications. J. Control. Release. 2020;324:505–521. doi: 10.1016/j.jconrel.2020.05.041. PubMed DOI PMC
Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010. PubMed DOI
Qiu L., Wang C., Lan M., Guo Q., Du X., Zhou S., Cui P., Hong T., Jiang P., Wang J. Antibacterial Photodynamic Gold Nanoparticles for Skin Infection. ACS Appl. Bio Mater. 2021;4:3124–3132. doi: 10.1021/acsabm.0c01505. PubMed DOI
Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008;279:71–76. doi: 10.1111/j.1574-6968.2007.01012.x. PubMed DOI
Li S., Dong S., Xu W., Tu S., Yan L., Zhao C., Ding J., Chen X. Antibacterial Hydrogels. Adv. Sci. 2018;5:1700527. doi: 10.1002/advs.201700527. PubMed DOI PMC
Zhao X., Li P., Guo B., Ma P.X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236–248. doi: 10.1016/j.actbio.2015.08.006. PubMed DOI
Atefyekta S., Blomstrand E., Rajasekharan A.K., Svensson S., Trobos M., Hong J., Webster T.J., Thomsen P., Andersson M. Antimicrobial Peptide-Functionalized Mesoporous Hydrogels. ACS Biomater. Sci. Eng. 2021;7:1693–1702. doi: 10.1021/acsbiomaterials.1c00029. PubMed DOI PMC
Azoulay Z., Aibinder P., Gancz A., Moran-Gilad J., Navon-Venezia S., Rapaport H. Assembly of cationic and amphiphilic beta-sheet FKF tripeptide confers antibacterial activity. Acta Biomater. 2021;125:231–241. doi: 10.1016/j.actbio.2021.02.015. PubMed DOI
Xu M., Li Q., Fang Z., Jin M., Zeng Q., Huang G., Jia Y.G., Wang L., Chen Y. Conductive and antimicrobial macroporous nanocomposite hydrogels generated from air-in-water Pickering emulsions for neural stem cell differentiation and skin wound healing. Biomater. Sci. 2020;8:6957–6968. doi: 10.1039/D0BM01466D. PubMed DOI
Lei J., Sun L., Huang S., Zhu C., Li P., He J., Mackey V., Coy D.H., He Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019;11:3919. PubMed PMC
Sadidi H., Hooshmand S., Ahmadabadi A., Javad Hosseini S., Baino F., Vatanpour M., Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules. 2020;25:4559. doi: 10.3390/molecules25194559. PubMed DOI PMC
Yu R., Yang Y., He J., Li M., Guo B. Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 2021;417:128278. doi: 10.1016/j.cej.2020.128278. DOI
Contardi M., Kossyvaki D., Picone P., Summa M., Guo X., Heredia-Guerrero J.A., Giacomazza D., Carzino R., Goldoni L., Scoponi G. Electrospun Polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem. Eng. J. 2021;409:128144. doi: 10.1016/j.cej.2020.128144. DOI
Ahmadian Z., Correia A., Hasany M., Figueiredo P., Dobakhti F., Eskandari M.R., Hosseini S.H., Abiri R., Khorshid S., Hirvonen J., et al. A Hydrogen-Bonded Extracellular Matrix-Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pH-Responsive Wound Healing Acceleration. Adv. Healthc. Mater. 2021;10:e2001122. doi: 10.1002/adhm.202001122. PubMed DOI
Silva V.C., Silva A.M., Basílio J.A., Xavier J.A., do Nascimento T.G., Naal R.M., Del Lama M.P., Leonelo L.A., Mergulhão N.L., Maranhão F.C. New Insights for Red Propolis of Alagoas—Chemical Constituents, Topical Membrane Formulations and Their Physicochemical and Biological Properties. Molecules. 2020;25:5811. doi: 10.3390/molecules25245811. PubMed DOI PMC
Ditta L.A., Rao E., Provenzano F., Sanchez J.L., Santonocito R., Passantino R., Costa M.A., Sabatino M.A., Dispenza C., Giacomazza D., et al. Agarose/kappa-carrageenan-based hydrogel film enriched with natural plant extracts for the treatment of cutaneous wounds. Int. J. Biol. Macromol. 2020;164:2818–2830. doi: 10.1016/j.ijbiomac.2020.08.170. PubMed DOI
Back P.I., Balestrin L.A., Fachel F.N.S., Nemitz M.C., Falkembach M., Soares G., Marques M.D.S., Silveira T., Dal Pra M., Horn A.P., et al. Hydrogels containing soybean isoflavone aglycones-rich fraction-loaded nanoemulsions for wound healing treatment—In vitro and in vivo studies. Colloids Surf. B Biointerfaces. 2020;196:111301. doi: 10.1016/j.colsurfb.2020.111301. PubMed DOI
Sami D.G., Abdellatif A., Azzazy H.M.E. Turmeric/oregano formulations for treatment of diabetic ulcer wounds. Drug Dev. Ind. Pharm. 2020;46:1613–1621. doi: 10.1080/03639045.2020.1811305. PubMed DOI
Zhang W., Qi X., Zhao Y., Liu Y., Xu L., Song X., Xiao C., Yuan X., Zhang J., Hou M. Study of injectable Blueberry anthocyanins-loaded hydrogel for promoting full-thickness wound healing. Int. J. Pharm. 2020;586:119543. doi: 10.1016/j.ijpharm.2020.119543. PubMed DOI
Zhu Y., Hoshi R., Chen S., Yi J., Duan C., Galiano R.D., Zhang H.F., Ameer G.A. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J. Control. Release. 2016;238:114–122. doi: 10.1016/j.jconrel.2016.07.043. PubMed DOI
Sánchez-Abella L., Ruiz V., Pérez-San Vicente A., Grande H.-J., Loinaz I., Dupin D. Reactive oxygen species (ROS)-responsive biocompatible polyethylene glycol nanocomposite hydrogels with different graphene derivatives. J. Mater. Sci. 2021;56:10041–10052. doi: 10.1007/s10853-021-05919-w. DOI
Gallelli G., Cione E., Serra R., Leo A., Citraro R., Matricardi P., Di Meo C., Bisceglia F., Caroleo M.C., Basile S. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int. Wound J. 2020;17:485–490. doi: 10.1111/iwj.13299. PubMed DOI PMC
Zhang J., Zheng Y., Lee J., Hua J., Li S., Panchamukhi A., Yue J., Gou X., Xia Z., Zhu L., et al. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat. Commun. 2021;12:1670. doi: 10.1038/s41467-021-21964-0. PubMed DOI PMC
Gugerell A., Gouya-Lechner G., Hofbauer H., Laggner M., Trautinger F., Almer G., Peterbauer-Scherb A., Seibold M., Hoetzenecker W., Dreschl C., et al. Safety and clinical efficacy of the secretome of stressed peripheral blood mononuclear cells in patients with diabetic foot ulcer-study protocol of the randomized, placebo-controlled, double-blind, multicenter, international phase II clinical trial MARSYAS II. Trials. 2021;22:10. doi: 10.1186/s13063-020-04948-1. PubMed DOI PMC
Hu C., Long L., Cao J., Zhang S., Wang Y. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. J. 2021;411:128564. doi: 10.1016/j.cej.2021.128564. DOI
Li H., Yin D., Li W., Tang Q., Zou L., Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf. B. 2020;199:111502. doi: 10.1016/j.colsurfb.2020.111502. PubMed DOI
Cao M., Li J., Tang J., Chen C., Zhao Y. Gold Nanomaterials in Consumer Cosmetics Nanoproducts: Analyses, Characterization, and Dermal Safety Assessment. Small. 2016;12:5488–5496. doi: 10.1002/smll.201601574. PubMed DOI
Ben Haddada M., Gerometta E., Chawech R., Sorres J., Bialecki A., Pesnel S., Spadavecchia J., Morel A.-L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B. 2020;189:110855. doi: 10.1016/j.colsurfb.2020.110855. PubMed DOI
Wang Y., Li M., Rong J., Nie G., Qiao J., Wang H., Wu D., Su Z., Niu Z., Huang Y. Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid. Polym. Sci. 2013;291:1541–1546. doi: 10.1007/s00396-012-2875-8. DOI
Righi T.M., Almeida R.S., d’Ávila M.A. Electrospinning of Gelatin/PEO Blends: Influence of Process Parameters in the Nanofiber Properties. Macromol. Symp. 2012;319:230–234. doi: 10.1002/masy.201100137. DOI
Panzavolta S., Gioffrè M., Focarete M.L., Gualandi C., Foroni L., Bigi A. Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater. 2011;7:1702–1709. doi: 10.1016/j.actbio.2010.11.021. PubMed DOI
Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. PubMed DOI
Sylvester M.A., Amini F., Tan C.K. Electrospun nanofibers in wound healing. Mater. Today Proc. 2020;29:1–6. doi: 10.1016/j.matpr.2020.05.686. DOI
Sahana T., Rekha P. Biopolymers: Applications in wound healing and skin tissue engineering. Mol. Biol. Rep. 2018;45:2857–2867. doi: 10.1007/s11033-018-4296-3. PubMed DOI
Mir M., Ali M.N., Barakullah A., Gulzar A., Arshad M., Fatima S., Asad M. Synthetic polymeric biomaterials for wound healing: A review. Prog. Biomater. 2018;7:1–21. doi: 10.1007/s40204-018-0083-4. PubMed DOI PMC
Andreu V., Mendoza G., Arruebo M., Irusta S. Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials. 2015;8:5154–5193. doi: 10.3390/ma8085154. PubMed DOI PMC
Gao C., Zhang L., Wang J., Jin M., Tang Q., Chen Z., Cheng Y., Yang R., Zhao G. Electrospun nanofibers promote wound healing: Theories, techniques, and perspectives. J. Mater. Chem. B. 2021;9:3106–3130. doi: 10.1039/D1TB00067E. PubMed DOI
Lanno G.-M., Ramos C., Preem L., Putrinš M., Laidmäe I., Tenson T., Kogermann K. Antibacterial Porous Electrospun Fibers as Skin Scaffolds for Wound Healing Applications. ACS Omega. 2020;5:30011–30022. doi: 10.1021/acsomega.0c04402. PubMed DOI PMC
Coelho D.S., Veleirinho B., Alberti T., Maestri A., Yunes R., Dias P.F., Maraschin M. Nanomaterials: Toxicity, Human Health and Environment. BoD—Books on Demand; Norderstedt, Germany: 2018. Electrospinning technology: Designing nanofibers toward wound healing application; pp. 1–19.
Beznoska J., Uhlik J., Kestlerova A., Kralovic M., Divin R., Fedacko J., Benes J., Benes M., Vocetkova K., Sovkova V., et al. PVA and PCL nanofibers are suitable for tissue covering and regeneration. Physiol. Res. 2019;68:S501–S508. doi: 10.33549/physiolres.934389. PubMed DOI
Vocetkova K., Sovkova V., Buzgo M., Lukasova V., Divin R., Rampichova M., Blazek P., Zikmund T., Kaiser J., Karpisek Z., et al. A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. Nanomaterials. 2020;10:1801. doi: 10.3390/nano10091801. PubMed DOI PMC
Vocetkova K., Buzgo M., Sovkova V., Bezdekova D., Kneppo P., Amler E. Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Prolif. 2016;49:568–578. doi: 10.1111/cpr.12276. PubMed DOI PMC
Liu Y., Zhou S., Gao Y., Zhai Y. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J. Pharm. Sci. 2019;14:130–143. doi: 10.1016/j.ajps.2018.04.004. PubMed DOI PMC
Hivechi A., Milan P.B., Modabberi K., Amoupour M., Ebrahimzadeh K., Gholipour A.R., Sedighi F., Amini N., Bahrami S.H., Rezapour A., et al. Synthesis and Characterization of Exopolysaccharide Encapsulated PCL/Gelatin Skin Substitute for Full-Thickness Wound Regeneration. Polymers. 2021;13:854. doi: 10.3390/polym13060854. PubMed DOI PMC
Zhu C., Cao R., Zhang Y., Chen R. Metallic Ions Encapsulated in Electrospun Nanofiber for Antibacterial and Angiogenesis Function to Promote Wound Repair. Front. Cell Dev. Biol. 2021;9:660571. doi: 10.3389/fcell.2021.660571. PubMed DOI PMC
Ahmed M., Zayed M., El-Dek S., Hady M.A., El Sherbiny D.H., Uskoković V. Nanofibrous ε-polycaprolactone scaffolds containing Ag-doped magnetite nanoparticles: Physicochemical characterization and biological testing for wound dressing applications in vitro and in vivo. Bioact. Mater. 2021;6:2070–2088. doi: 10.1016/j.bioactmat.2020.12.026. PubMed DOI PMC
Mirmajidi T., Chogan F., Rezayan A.H., Sharifi A.M. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm. 2021;596:120213. doi: 10.1016/j.ijpharm.2021.120213. PubMed DOI
Dankova J., Buzgo M., Vejpravova J., Kubickova S., Sovkova V., Vyslouzilova L., Mantlikova A., Necas A., Amler E. Highly efficient mesenchymal stem cell proliferation on poly-epsilon-caprolactone nanofibers with embedded magnetic nanoparticles. Int. J. Nanomed. 2015;10:7307–7317. doi: 10.2147/IJN.S93670. PubMed DOI PMC
Graça M.F.P., de Melo-Diogo D., Correia I.J., Moreira A.F. Electrospun Asymmetric Membranes as Promising Wound Dressings: A Review. Pharmaceutics. 2021;13:183. doi: 10.3390/pharmaceutics13020183. PubMed DOI PMC
Joshi A., Xu Z., Ikegami Y., Yoshida K., Sakai Y., Joshi A., Kaur T., Nakao Y., Yamashita Y.-I., Baba H. Exploiting synergistic effect of externally loaded bFGF and endogenous growth factors for accelerated wound healing using heparin functionalized PCL/gelatin co-spun nanofibrous patches. Chem. Eng. J. 2021;404:126518. doi: 10.1016/j.cej.2020.126518. DOI
Sharma P., Kumar A., Dey A.D., Behl T., Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci. 2021;268:118932. doi: 10.1016/j.lfs.2020.118932. PubMed DOI
Başaran D.D.A., Gündüz U., Tezcaner A., Keskin D. Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Int. J. Pharm. 2021;597:120207. doi: 10.1016/j.ijpharm.2021.120207. PubMed DOI
Marshall C.D., Hu M.S., Leavitt T., Barnes L.A., Lorenz H.P., Longaker M.T. Cutaneous scarring: Basic science, current treatments, and future directions. Adv. Wound Care. 2018;7:29–45. doi: 10.1089/wound.2016.0696. PubMed DOI PMC
Mulholland E.J. Electrospun biomaterials in the treatment and prevention of scars in skin wound healing. Front. Bioeng. Biotechnol. 2020;8:481. doi: 10.3389/fbioe.2020.00481. PubMed DOI PMC
Basar A., Castro S., Torres-Giner S., Lagaron J., Sasmazel H.T. Novel poly (ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug. Mater. Sci. Eng. C. 2017;81:459–468. doi: 10.1016/j.msec.2017.08.025. PubMed DOI
Atiyeh B.S., Amm C.A., El Musa K.A. Improved scar quality following primary and secondary healing of cutaneous wounds. Aesthetic Plast. Surg. 2003;27:411–417. doi: 10.1007/s00266-003-3049-3. PubMed DOI
Woo H., Joo O., Min J., Mi B., Jung H., Ri Y., Chae M., Hyeon S., Ren J., Seok C. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int. J. Biol. Macromol. 2016;85:29–39. PubMed
Hadjizadeh A., Ghasemkhah F., Ghasemzaie N. Polymeric scaffold based gene delivery strategies to improve angiogenesis in tissue engineering: A review. Polym. Rev. 2017;57:505–556. doi: 10.1080/15583724.2017.1292402. DOI
Venkataraman M., Nagarsenker M. Silver sulfadiazine nanosystems for burn therapy. AAPS PharmSciTech. 2013;14:254–264. doi: 10.1208/s12249-012-9914-0. PubMed DOI PMC
Kurowska A., Ghate V., Kodoth A., Shah A., Shah A., Vishalakshi B., Prakash B., Lewis S.A. Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds. Pharm. Res. 2019;36:1–18. doi: 10.1007/s11095-019-2658-8. PubMed DOI
Alipour R., Khorshidi A., Shojaei A.F., Mashayekhi F., Moghaddam M.J.M. Silver Sulfadiazine-loaded PVA/CMC Nanofibers for the Treatment of Wounds Caused by Excision. Fibers Polym. 2019;20:2461–2469. doi: 10.1007/s12221-019-9314-0. DOI
Ahmed M.E., Khalaf Z.Z., Ghafil J.A., Al-Awadi A.Q. Effects of Silver Nanoparticles on Biofilms of Streptococcus Spps. Exec. Ed. 2018;9:1216. doi: 10.5958/0976-5506.2018.02016.8. DOI
Pérez-Díaz M.A., Silva-Bermudez P., Jiménez-López B., Martínez-López V., Melgarejo-Ramírez Y., Brena-Molina A., Ibarra C., Baeza I., Martínez-Pardo M.E., Reyes-Frías M.L. Silver-pig skin nanocomposites and mesenchymal stem cells: Suitable antibiofilm cellular dressings for wound healing. J. Nanobiotechnol. 2018;16:1–16. doi: 10.1186/s12951-017-0331-0. PubMed DOI PMC
El-Deeb N.M., Abo-Eleneen M.A., Al-Madboly L.A., Sharaf M.M., Othman S.S., Ibrahim O.M., Mubarak M.S. Biogenically Synthesized Polysaccharides-Capped Silver Nanoparticles: Immunomodulatory and Antibacterial Potentialities Against Resistant Pseudomonas aeruginosa. Front. Bioeng. Biotechnol. 2020;8:643. doi: 10.3389/fbioe.2020.00643. PubMed DOI PMC
Ahumada M., Lazurko C., Khatoon Z., Goel K., Sedlakova V., Cimenci C.E., Zhang L., Mah T.-F., Franco W., Suuronen E.J. Multifunctional Nano and Collagen-Based Therapeutic Materials for Skin Repair. ACS Biomater. Sci. Eng. 2020;6:1124–1134. PubMed
Krutmann J., Schalka S., Watson R.E.B., Wei L., Morita A. Daily photoprotection to prevent photoaging. Photodermatol. Photoimmunol. Photomed. 2021 doi: 10.1111/phpp.12688. PubMed DOI
Neale R., Khan S., Lucas R., Waterhouse M., Whiteman D., Olsen C. The effect of sunscreen on vitamin D: A review. Br. J. Dermatol. 2019;181:907–915. doi: 10.1111/bjd.17980. PubMed DOI
Bikle D. Do sunscreens block vitamin D production? A critical review by an international panel of experts. Br. J. Dermatol. 2019;181:884. doi: 10.1111/bjd.18126. PubMed DOI PMC
Souto E.B., Fernandes A.R., Martins-Gomes C., Coutinho T.E., Durazzo A., Lucarini M., Souto S.B., Silva A.M., Santini A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. 2020;10:1594. doi: 10.3390/app10051594. DOI
Dhapte-Pawar V., Kadam S., Saptarsi S., Kenjale P.P. Nanocosmeceuticals: Facets and aspects. Future Sci. OA. 2020;6:FSO613. doi: 10.2144/fsoa-2019-0109. PubMed DOI PMC
Cao M., Li B., Guo M., Liu Y., Zhang L., Wang Y., Hu B., Li J., Sutherland D.S., Wang L. In vivo percutaneous permeation of gold nanomaterials in consumer cosmetics: Implication in dermal safety assessment of consumer nanoproducts. Nanotoxicology. 2020;15:131–144. doi: 10.1080/17435390.2020.1860264. PubMed DOI
Beamer C.A. Mucosal Delivery of Drugs and Biologics in Nanoparticles. Springer; Berlin/Heidelberg, Germany: 2020. Toxicity of Nanomaterials to the Host and the Environment; pp. 233–245.
Sengupta J., Ghosh S., Datta P., Gomes A., Gomes A. Physiologically important metal nanoparticles and their toxicity. J. Nanosci. Nanotechnol. 2014;14:990–1006. doi: 10.1166/jnn.2014.9078. PubMed DOI
He Y., Zhang W., Guo T., Zhang G., Qin W., Zhang L., Wang C., Zhu W., Yang M., Hu X. Drug nanoclusters formed in confined nano-cages of CD-MOF: Dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm. Sin. B. 2019;9:97–106. doi: 10.1016/j.apsb.2018.09.003. PubMed DOI PMC
Carnovale C., Bryant G., Shukla R., Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega. 2019;4:242–256. doi: 10.1021/acsomega.8b03227. DOI
Ilić K., Hartl S., Galić E., Tetyczka C., Pem B., Barbir R., Milić M., Vrček I.V., Roblegg E., Pavičić I. Interaction of Differently Coated Silver Nanoparticles with Skin and Oral Mucosal Cells. J. Pharm. Sci. 2021;110:2250–2261. doi: 10.1016/j.xphs.2021.01.030. PubMed DOI
Guilger-Casagrande M., Germano-Costa T., Bilesky-José N., Pasquoto-Stigliani T., Carvalho L., Fraceto L.F., de Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J. Nanobiotechnol. 2021;19:1–18. doi: 10.1186/s12951-021-00797-5. PubMed DOI PMC
Bengalli R., Colantuoni A., Perelshtein I., Gedanken A., Collini M., Mantecca P., Fiandra L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact. 2021;21:100282. doi: 10.1016/j.impact.2020.100282. PubMed DOI
Hashempour S., Ghanbarzadeh S., Maibach H.I., Ghorbani M., Hamishehkar H. Skin toxicity of topically applied nanoparticles. Ther. Deliv. 2019;10:383–396. doi: 10.4155/tde-2018-0060. PubMed DOI
Electrospun Nanofibers Encapsulated with Natural Products: A Novel Strategy to Counteract Skin Aging