Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles

. 2015 ; 10 () : 7307-17. [epub] 20151207

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26677321

Odkazy
PubMed 26677321
PubMed Central PMC4677649
DOI 10.2147/ijn.s93670
PII: ijn-10-7307
Knihovny.cz E-zdroje

In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.

Zobrazit více v PubMed

PubMed

PubMed

PubMed PMC

PubMed

Vadala ML, Zalich MA, Fulks DB, St Pierre TG, Dailey JP, Riffle JS. Cobalt–silica magnetic nanoparticles with functional surfaces. J Magn Magn Mater. 2005;293(1):162–170.

Müller R, Steinmetz H, Hiergeist R, Gawalek W. Magnetic particles for medical applications by glass crystallisation. J Magn Magn Mater. 2004;272–276(Pt 2):1539–1541.

Häfeli UO, Pauer GJ. In vitro and in vivo toxicity of magnetic microspheres. J Magn Magn Mater. 1999;194(1–3):76–82.

PubMed

PubMed

PubMed

PubMed

PubMed

PubMed

PubMed

Lukáš D, Sarkar A, Martinová L, et al. Physical principles of electro-spinning. Text Prog. 2009;41(2):59–140.

Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35(4):403–440.

PubMed PMC

Woodruff MA, Hutmacher DW. The return of a forgotten polymer – Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256.

Roca AG, Niznansky D, Poltierova-Vejpravova J, et al. Magnetite nanoparticles with no surface spin canting. J Appl Phys. 2009;105(11):7.

PubMed PMC

PubMed

PubMed

PubMed PMC

PubMed PMC

Agarwal K, Prasad M, Sharma RB, Setua DK. Studies on microstructural and thermophysical properties of polymer nanocomposite based on polyphenylene oxide and ferrimagnetic iron oxide. Polym Test. 2011;30(1):155–160.

PubMed

Kannarkat JT, Battogtokh J, Philip J, Wilson OC, Mehl PM. Embedding of magnetic nanoparticles in polycaprolactone nanofiber scaffolds to facilitate bone healing and regeneration. J Appl Phys. 2010;107(9):09. B307.

PubMed

PubMed

Hu H, Jiang W, Lan F, et al. Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Adv. 2013;3(3):879–886.

PubMed

Lai K, Jiang W, Tang JZ, et al. Superparamagnetic nanocomposite scaffolds for promoting bone cell proliferation and defect reparation without a magnetic field. RSC Adv. 2012;2(33):13007–13017.

PubMed PMC

PubMed

PubMed

PubMed

PubMed

PubMed

PubMed

Cartmell SH, Hughes S, Dobson J, El Haj A. Preliminary analysis of magnetic particle techniques for activating mechanotransduction in bone cells; Proceedings of the IEEE-EMBS Special Topic Conference on Molecular, Cellular and Tissue Engineering, 2002; New York, NY: IEEE; 2002.

Lang SB. Pyroelectric effect in bone and tendon. Nature. 1966;212(5063):704–705.

PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanomaterials in Skin Regeneration and Rejuvenation

. 2021 Jun 30 ; 22 (13) : . [epub] 20210630

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...