Nanofiber Fractionalization Stimulates Healing of Large Intestine Anastomoses in Rabbits

. 2022 ; 17 () : 6335-6345. [epub] 20221214

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36540375

BACKGROUND: A current topic of ma jor interest in regenerative medicine is the development of novel materials for accelerated healing of sutures, and nanofibers seem to be suitable materials for this purpose. As various studies have shown, nanofibers are able to partially substitute missing extracellular matrix and to stimulate cell proliferation and differentiation in sutures. Therefore, we tested nanofibrous membranes and cryogenically fractionalized nanofibers as potential materials for support of the healing of intestinal anastomoses in a rabbit model. MATERIALS AND METHODS: We compared cryogenically fractionalized chitosan and PVA nanofibers with chitosan and PVA nanofiber membranes designed for intestine anastomosis healing in a rabbit animal model. The anastomoses were biomechanically and histologically tested. RESULTS: In strong contrast to nanofibrous membranes, the fractionalized nanofibers did show positive effects on the healing of intestinal anastomoses in rabbits. The fractionalized nanofibers were able to reach deep layers that are key to increased mechanical strength of the intestine. Moreover, fractionalized nanofibers led to the formation of collagen-rich 3D tissue significantly exceeding the healing effects of the 2D flat nanofiber membranes. In addition, the fractionalized chitosan nanofibers eliminated peritonitis, significantly stimulated anastomosis healing and led to a higher density of microvessels, in addition to a larger fraction of myofibroblasts and collagen type I and III. Biomechanical tests supported these histological findings. CONCLUSION: We concluded that the fractionalized chitosan nanofibers led to accelerated healing for rabbit colorectal anastomoses by the targeted stimulation of collagen-producing cells in the intestine, the smooth muscle cells and the fibroblasts. We believe that the collagen-producing cells were stimulated both directly due to the presence of a biocompatible scaffold providing cell adhesion, and indirectly, by a proper stimulation of immunocytes in the suture.

Zobrazit více v PubMed

Hesp WL, Hendriks T, Schillings PH, et al. Histological features of wound repair: a comparison between experimental ileal and colonic anastomoses. Br J Exp Pathol. 1985;66(5):511–518. PubMed PMC

Pommergaard HC, Gessler B, Burcharth J, et al. Preoperative risk factors for anastomotic leakage after resection for colorectal cancer: a systematic review and meta-analysis. Colorectal Dis. 2014;16(9):662–671. doi:10.1111/codi.12618 PubMed DOI

Nordentoft T. Sealing of gastrointestinal anastomoses with fibrin glue coated collagen patch. Dan Med J. 2015;62:1–13. PubMed

Krarup PM, Eld M, Jorgensen LN, et al. Selective matrix metalloproteinase inhibition increases breaking strength and reduces anastomotic leakage in experimentally obstructed colon. Int J Colorectal Dis. 2017;32(9):1277–1284. doi:10.1007/s00384-017-2857-x PubMed DOI

Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015–3024. doi:10.1242/jcs.079509 PubMed DOI PMC

Knotek P, Pouzar M, Buzgo M, et al. Cryogenic grinding of electrospun poly-ε-caprolactone mesh submerged in liquid media. Mater Sci Eng C. 2012;32(6):1366–1374. doi:10.1016/j.msec.2012.04.012 PubMed DOI

Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials. 2001;22(22):2959–2966. doi:10.1016/S0142-9612(01)00042-4 PubMed DOI

Pelipenko J, Kocbek P, Kristl J. Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Sci. 2015;66:29–35. doi:10.1016/j.ejps.2014.09.022 PubMed DOI

Ohkawa K, Minato KI, Kumagai G, et al. Chitosan nanofiber. Biomacromolecules. 2006;7(11):3291–3294. doi:10.1021/bm0604395 PubMed DOI

Kocová J. Overall staining of connective tissue and the muscular layer of vessels. Folia Morphol. 1970;18(3):293–295. PubMed

Rich L, Whittaker P. Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J Morphol Sci. 2005;22:97–104.

Kolinko Y, Malečková A, Kochová P, et al. Using virtual microscopy for the development of sampling strategies in quantitative histology and design-based stereology. Anat Histol Embryol. 2022;51(1):3–22. doi:10.1111/ahe.12765 PubMed DOI

Mouton PR. Principles and Practices of Unbiased Stereology. An Introduction for Bioscientists. Baltimore, MD, USA: Johns Hopkins University Press; 2002.

Tonar Z, Egger GF, Witter K, et al. Quantification of microvessels in canine lymph nodes. Microsc Res Tech. 2008;71(10):760–772. doi:10.1002/jemt.20619 PubMed DOI

Rosendorf J, Horakova J, Klicova M, et al. Experimental fortification of intestinal anastomoses with nanofibrous materials in a large animal model. Sci Rep. 2020;10:1–12. PubMed PMC

Plencner M, East B, Tonar Z, et al. Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int J Nanomedicine. 2014;9:3263–3277. doi:10.2147/IJN.S63095 PubMed DOI PMC

Tchemtchoua VT, Atanasova G, Aqil A, et al. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration. Biomacromolecules. 2011;12(9):3194–3204. doi:10.1021/bm200680q PubMed DOI

Buzgo M, Plencner M, Rampichova M, et al. Poly-ε-caprolactone and polyvinyl alcohol electrospun wound dressings: adhesion properties and wound management of skin defects in rabbits. Regen Med. 2019;14(5):423–445. doi:10.2217/rme-2018-0072 PubMed DOI

Cukierman E, Pankov R, Stevens DR, et al. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–1712. doi:10.1126/science.1064829 PubMed DOI

Minami S, Oh-Oka M, Okamoto Y, et al. Chitosan-inducing hemorrhagic pneumonia in dogs. Carbohydr Polym. 1996;29(3):241–246. doi:10.1016/0144-8617(95)00157-3 DOI

Nishimura K, Nishimura S, Nishi N, et al. Immunological activity of chitin and its derivatives. Vaccine. 1984;2(1):93–99. doi:10.1016/S0264-410X(98)90039-1 PubMed DOI

Shibata Y, Metzger WJ, Myrvik QN. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J Immunol Res. 1997;159:2462–2467. PubMed

Chikaura H, Nakashima Y, Fujiwara Y, et al. Effect of particle size on biological response by human monocyte-derived macrophages. Biosurf Biotribol. 2016;2(1):18–25. doi:10.1016/j.bsbt.2016.02.003 DOI

Battegay EJ, Raines EW, Colbert T, et al. TNF-alpha stimulation of fibroblast proliferation. Dependence on platelet-derived growth factor (PDGF) secretion and alteration of PDGF receptor expression. J Immunol. 1995;154(11):6040–6047. PubMed

Fràter-Schröder M, Risau W, Hallmann R, et al. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA. 1987;84(15):5277–5281. doi:10.1073/pnas.84.15.5277 PubMed DOI PMC

Wofford KL, Singh BS, Cullen DK, et al. Biomaterial-mediated reprogramming of monocytes via microparticle phagocytosis for sustained modulation of macrophage phenotype. Acta Biomater. 2020;101:237–248. doi:10.1016/j.actbio.2019.11.021 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...