Experimental fortification of intestinal anastomoses with nanofibrous materials in a large animal model

. 2020 Jan 24 ; 10 (1) : 1134. [epub] 20200124

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31980716
Odkazy

PubMed 31980716
PubMed Central PMC6981151
DOI 10.1038/s41598-020-58113-4
PII: 10.1038/s41598-020-58113-4
Knihovny.cz E-zdroje

Anastomotic leakage is a severe complication in gastrointestinal surgery. It is often a reason for reoperation together with intestinal passage blockage due to formation of peritoneal adhesions. Different materials as local prevention of these complications have been studied, none of which are nowadays routinely used in clinical practice. Nanofabrics created proved to promote healing with their structure similar to extracellular matrix. We decided to study their impact on anastomotic healing and formation of peritoneal adhesions. We performed an experiment on 24 piglets. We constructed 3 hand sutured end-to-end anastomoses on the small intestine of each pig. We covered the anastomoses with a sheet of polycaprolactone nanomaterial in the first experimental group, with a sheet of copolymer of polylactic acid with polycaprolactone in the second one and no fortifying material was used in the Control group. The animals were sacrificed after 3 weeks of observation. Clinical, biochemical and macroscopic signs of anastomotic leakage or intestinal obstruction were monitored, the quality of the scar tissue was assessed histologically, and a newly developed scoring system was employed to evaluate the presence of adhesions. The material is easy to manipulate with. There was no mortality or major morbidity in our groups. No statistical difference was found inbetween the groups in the matter of level of peritoneal adhesions or the quality of the anastomoses. We created a new adhesion scoring system. The material appears to be safe however needs to be studied further to prove its' positive effects.

Zobrazit více v PubMed

JEX R. KENT, VAN HEERDEN JON A., WOLFF BRUCE G., READY ROGER L., ILSTRUP DUANE M. Gastrointestinal Anastomoses Factors Affecting Early Complications. Annals of Surgery. 1987;206(2):138–141. doi: 10.1097/00000658-198708000-00004. PubMed DOI PMC

Hyman N, Manchester TL, Osler T, Burns B, Cataldo PA. Anastomotic Leaks After Intestinal Anastomosis It’s Later Than You Think. Ann. Surg. Feb. 2007;245(2):254–8. doi: 10.1097/01.sla.0000225083.27182.85. PubMed DOI PMC

Yo LS, Consten EC, Quarles van Ufford HM, Gooszen HG, Gagner M. Buttressing of the staple line in gastrointestinal anastomoses: overview of new technology designed to reduce perioperative complications. Dig. Surg. 2006;23(5-6):283–91. doi: 10.1159/000096648. PubMed DOI

van Rooijen SJ, et al. Definition of colorectal anastomotic leakage: A consensus survey among Dutch and Chinese colorectal surgeons. World J. Gastroenterol. 2017;23(33):6172–6180. doi: 10.3748/wjg.v23.i33.6172. PubMed DOI PMC

Slieker JC, Daams F, Mulder IM, Jeekel J, Lange JF. Systematic review of the technique of colorectal anastomosis. JAMA Surg. 2013;148(2):190–201. doi: 10.1001/2013.jamasurg.33. PubMed DOI

Golub R, Golub RW, Cantu R, Jr., Stein HD. A multivariate analysis of factors contributing to leakage of intestinal anastomoses. J. Am. Coll. Surg. 1997;184(4):364–72. PubMed

Pommergaard HC, et al. Preoperative risk factors for anastomotic leakage after resection for colorectal cancer: a systematic review and meta-analysis. Colorectal Dis. 2014;16(9):662–71. doi: 10.1111/codi.12618. PubMed DOI

Boersema GSA, et al. Hyperbaric oxygen therapy improves colorectal anastomotic healing. Int. J. Colorectal Dis. 2016;31:1031–1038. doi: 10.1007/s00384-016-2573-y. PubMed DOI PMC

Khorshidi HR, et al. Evaluation of the effectiveness of sodium hyaluronate, sesame oil, honey, and silver nanoparticles in preventing postoperative surgical adhesion formation. An experimental study. Acta Cir. Bras. 2017;32(8):626–632. doi: 10.1590/s0102-865020170080000004. PubMed DOI

Nordentoft T, Rømer J, Sørensen M. Sealing of gastrointestinal anastomoses with a fibrin glue-coated collagen patch: a safety study. J. Invest. Surg. 2007;20(6):363–9. doi: 10.1080/08941930701772173. PubMed DOI

Nordentoft, T. & Holte, K. Preventing Clinical Leakage of Colonic Anastomoses with A Fibrin - Coated Collagen Patch Sealing - An Experimental Study. Arch Clin Exp Surg. 3(4), 201–206.

Trotter J, et al. (2018) The use of a novel adhesive tissue patch as an aid to anastomotic healing. Ann. R. Coll. Surg. Engl. 2014;100(3):230–234. doi: 10.1308/rcsann.2018.0003. PubMed DOI PMC

Aznan MI, et al. Effect of Tualang honey on the anastomotic wound healing in large bowel anastomosis in rats-A randomized controlled trial. BMC Complement. Altern. Med. 2016;23:16–28. PubMed PMC

Bonanomi G, Prince JM, McSteen F, Schauer PR, Hamad GG. Sealing effect of fibrin glue on the healing of gastrointestinal anastomoses: implications for the endoscopic treatment of leaks. Surg. Endosc. 2004;18(11):1620–4. PubMed

Fajardo DA, Amador-Ortiz C, Chun J, Stewart D, Fleshman JW. Evaluation of Bioabsorbable Seamguard for Staple Line Reinforcement in Stapled Rectal Anastomoses. Surg. Innov. 2012;19(3):288–94. doi: 10.1177/1553350611429025. PubMed DOI

Boersema GSA, et al. Reinforcement of the colon anastomosis with cyanoacrylate glue: a porcine model. J. Surg. Res. 2017;217:84–91. doi: 10.1016/j.jss.2017.05.001. PubMed DOI

Adas G, et al. Treatment of ischemic colonic anastomoses with systemic transplanted bone marrow derived mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 2013;17(17):2275–85. PubMed

Hirst NA, et al. Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery. Colorectal Dis. 2014;16(2):95–109. doi: 10.1111/codi.12411. PubMed DOI

Mileski WJ, Joehl RJ, Rege RV, Nahrwold DL. Treatment of anastomotic leakage following low anterior colon resection. Arch. Surg. 1988;123(8):968–71. doi: 10.1001/archsurg.1988.01400320054011. PubMed DOI

Sevim Y, Celik SU, Yavarifar H, Akyol C. Minimally invasive management of anastomotic leaks in colorectal surgery. World J. Gastrointest. Surg. 27. 2016;8(9):621–626. doi: 10.4240/wjgs.v8.i9.621. PubMed DOI PMC

Chadi SA, et al. Emerging Trends in the Etiology, Prevention, and Treatment of Gastrointestinal Anastomotic Leakage. J. Gastrointest. Surg. 2016;20(12):2035–2051. doi: 10.1007/s11605-016-3255-3. PubMed DOI

Thomas MS, Margolin DA. Management of Colorectal Anastomotic Leak. Clin. Colon. Rectal Surg. 2016;29(2):138–44. doi: 10.1055/s-0036-1580630. PubMed DOI PMC

Blumetti J, Abcarian H. Management of low colorectal anastomotic leak: Preserving the anastomosis. World J. Gastrointest. Surg. 27. 2015;7(12):378–83. doi: 10.4240/wjgs.v7.i12.378. PubMed DOI PMC

Gessler B, Eriksson O, Angenete E. Diagnosis, treatment, and consequences of anastomotic leakage in colorectal surgery. Int. J. Colorectal Dis. 2017;32(4):549–556. doi: 10.1007/s00384-016-2744-x. PubMed DOI PMC

Paliogiannis P, et al. Conservative management of minor anastomotic leakage after open elective colorectal surgery. Ann. Ital. Chir. 2012;83(1):25–8. PubMed

Zhao R, Li K, Shen C, Zheng S. The outcome of conservative treatment for anastomotic leakage after surgical repair of esophageal atresia. J. Pediatr. Surg. 2011;46(12):2274–8. doi: 10.1016/j.jpedsurg.2011.09.011. PubMed DOI

Beyene RT, Kavalukas SL, Barbul A. Intra-abdominal adhesions. Anatomy, physiology, pathophysiology, and treatment. Curr. Probl. Surg. 2015;52(7):271–319. doi: 10.1067/j.cpsurg.2015.05.001. PubMed DOI

Diamond MP, Freeman ML. Clinical implications of postsurgical adhesions. Hum. Reprod. Update. 2001;7(6):567–76. doi: 10.1093/humupd/7.6.567. PubMed DOI

van Goor H. Consequences and complications of peritoneal adhesions. Colorectal Dis. 2007;9(Suppl 2):25–34. doi: 10.1111/j.1463-1318.2007.01358.x. PubMed DOI

Ellis H. The clinical significance of adhesions: focus on intestinal obstruction. Eur. J. Surg. Suppl. 1997;577:5–9. PubMed

Ditzel M, et al. Postoperative adhesion prevention with a new barrier: an experimental study. Eur. Surg. Res. 2012;48(4):187–93. doi: 10.1159/000337741. PubMed DOI

Coccolini Federico, Ansaloni Luca, Manfredi Roberto, Campanati Luca, Poiasina Elia, Bertoli Paolo, Capponi Michela Giulii, Sartelli Massimo, Saverio Salomone Di, Cucchi Michele, Lazzareschi Daniel, Pisano Michele, Catena Fausto. Peritoneal adhesion index (PAI): proposal of a score for the “ignored iceberg” of medicine and surgery. World Journal of Emergency Surgery. 2013;8(1):6. doi: 10.1186/1749-7922-8-6. PubMed DOI PMC

Zühlke HV, Lorenz EM, Straub EM, Savvas V. Pathophysiology and classification of adhesions. Langenbecks Arch. Chir. Suppl. II Verh. Dtsch. Ges. Chir. 1990;1990:1009–16. PubMed

Nair SK, Bhat IK, Aurora AL. Role of proteolytic enzyme in the prevention of postoperative intraperitoneal adhesions. Arch Surg. 1974;108(6):849–53. doi: 10.1001/archsurg.1974.01350300081019. PubMed DOI

Srouji S, Kizhner T, Suss-Tobi E, Livne E, Zussman E. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J. Mater. Sci. Mater Med. 2008;19(3):1249–55. doi: 10.1007/s10856-007-3218-z. PubMed DOI

Yu M, et al. Recent advances in needleless electrospinning of ultrathin fibers: From academia to industrial production. Marcomol. Mater. Eng. 2017;1:1–19.

Pokorny P, et al. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem Phys. 2014;16(48):26816–22. doi: 10.1039/C4CP04346D. PubMed DOI

Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng. Part. B Rev. 2011;17(5):349–64. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC

Krchova S, et al. Nanofibers for the wound healing. Czech Dermatology. 2014;4:234–240.

Yalcin I, et al. Design of polycaprolactone vascular grafts. J. Ind. Text. 2014;45:1–21.

Horakova J, et al. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. Mater Biol. Appl. 2018;1(92):132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI

Williams, D. L. & Browder, I. W. Murine models of intestinal anastomoses. In: DiPietro, L. A. & Burns, A. L., (ed) Wound healing: Methods and protocols., vol. 10, 1st ed. New Jersey: Humana Press Inc., pp 133–140 (2010).

Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003;5:1–16. doi: 10.22203/eCM.v005a01. PubMed DOI

Zilling TL, Jansson O, Walther BS, Ottosson A. Sutureless small bowel anastomoses: experimental study in pigs. Eur. J. Surg. 1999;165(1):61–8. doi: 10.1080/110241599750007522. PubMed DOI

Li YW, et al. Very Early Colorectal Anastomotic Leakage within 5 Post-operative Days: a More Severe Subtype Needs Relaparatomy. Sci. Rep. 2017;7:39936. doi: 10.1038/srep39936. PubMed DOI PMC

Kosmidis C, et al. Myofibroblasts and colonic anastomosis healing in Wistar rats. BMC Surg. 2011;11:6. doi: 10.1186/1471-2482-11-6. PubMed DOI PMC

Nordentoft T, Sørensen M. Leakage of Colon Anastomoses: Development of an Experimental Model in Pigs. Eur. Surg. Res. 2007;39:14–16. doi: 10.1159/000096975. PubMed DOI

Nordentoft T, Pommergaard HC, Rosenberg J, Achiam MP. Fibrin glue does not improve healing of gastrointestinal anastomoses: a systematic review. Eur. Surg. Res. 2015;54(1-2):1–13. doi: 10.1159/000366418. PubMed DOI

Gao, X. et al. Novel thermosensitive hydrogel for preventing formation of abdominal adhesions. 8, 2453–63 (2013). PubMed PMC

Caglayan EK, Caglayan K, Erdogan N, Cinar H, Güngör B. Preventing intraperitoneal adhesions with ethyl pyruvate and hyaluronic acid/carboxymethylcellulose: a comparative study in an experimental model. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014;181:1–5. doi: 10.1016/j.ejogrb.2014.07.004. PubMed DOI

Kataria H, Singh VP. Liquid Paraffin vs Hyaluronic Acid in Preventing Intraperitoneal Adhesions. Indian. J. Surg. 2017;79(6):539–543. doi: 10.1007/s12262-016-1522-x. PubMed DOI PMC

Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. 2011;17(41):4545–4553. doi: 10.3748/wjg.v17.i41.4545. PubMed DOI PMC

Tebala GD, Ceriati F, Ceriati E, Vecchioli A, Nori S. The use of cyanoacrylate tissue adhesive in high-risk intestinal anastomoses. Surg. Today. 1995;25(12):1069–72. doi: 10.1007/BF00311697. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Large-Scale Development of Antibacterial Scaffolds: Gentamicin Sulfate-Loaded Biodegradable Nanofibers for Gastrointestinal Applications

. 2023 Oct 31 ; 8 (43) : 40823-40835. [epub] 20231017

Surgical Sealant with Integrated Shape-Morphing Dual Modality Ultrasound and Computed Tomography Sensors for Gastric Leak Detection

. 2023 Aug ; 10 (23) : e2301207. [epub] 20230605

Antiadhesive Nanofibrous Materials for Medicine: Preventing Undesirable Tissue Adhesions

. 2023 Jun 13 ; 8 (23) : 20152-20162. [epub] 20230527

Nanofiber Fractionalization Stimulates Healing of Large Intestine Anastomoses in Rabbits

. 2022 ; 17 () : 6335-6345. [epub] 20221214

Double-layered Nanofibrous Patch for Prevention of Anastomotic Leakage and Peritoneal Adhesions, Experimental Study

. 2021 Mar-Apr ; 35 (2) : 731-741.

Reinforcement of Colonic Anastomosis with Improved Ultrafine Nanofibrous Patch: Experiment on Pig

. 2021 Jan 21 ; 9 (2) : . [epub] 20210121

Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone

. 2020 Apr 21 ; 5 (15) : 8885-8892. [epub] 20200407

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace