Large-Scale Development of Antibacterial Scaffolds: Gentamicin Sulfate-Loaded Biodegradable Nanofibers for Gastrointestinal Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37929155
PubMed Central
PMC10620781
DOI
10.1021/acsomega.3c05924
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The ever-increasing demands of modern medicine drive the development of novel drug delivery materials. In particular, nanofibers are promising for such materials due to their favorable properties. However, most development is still carried out through laboratory techniques that do not allow extensive and reproducible characterization of materials, which slows medical research. In this work, we focus on the large-scale fabrication and testing of specific antibacterial nanofibrous materials to prevent the postoperative complications associated with the occurrence of bacterial infection. Poly-ε-caprolactone with gentamicin sulfate (antibiotic) in different concentrations was electrospun via a needleless device. The amount of antibiotics was proven by elemental analysis, UV spectrophotometry, and HPLC. The cytocompatibility of the materials was verified in vitro according to ISO 10993-5. The cell adhesion and proliferation were assessed after 2, 7, 14, and 21 days using the CCK-8 metabolic assay, fluorescence, and scanning electron microscopy. The tested nanofiber materials supported cell growth. Antibacterial tests were performed to confirm the release of gentamicin sulfate, and its antibacterial properties were proven toward Staphylococcus gallinarum and Escherichia coli bacteria. The effect of ethylene oxide sterilization was also studied. The sterilized nanofibrous layers are cytocompatible while antibacterial and therefore suitable for medical applications.
Zobrazit více v PubMed
Luraghi A.; Peri F.; Moroni L. Electrospinning for Drug Delivery Applications: A Review. J. Controlled Release 2021, 334, 463–484. 10.1016/j.jconrel.2021.03.033. PubMed DOI
Gunay M. S.; Ozer A. Y.; Chalon S. Drug Delivery Systems for Imaging and Therapy of Parkinson’s Disease. Curr. Neuropharmacol. 2016, 14 (4), 376–391. 10.2174/1570159X14666151230124904. PubMed DOI PMC
Dahlin R. L.; Kasper F. K.; Mikos A. G. Polymeric Nanofibers in Tissue Engineering. Tissue Eng. Part B 2011, 17 (5), 349–364. 10.1089/ten.teb.2011.0238. PubMed DOI PMC
Pisani S.; Dorati R.; Chiesa E.; Genta I.; Modena T.; Bruni G.; Grisoli P.; Conti B. Release Profile of Gentamicin Sulfate from Polylactide-Co-Polycaprolactone Electrospun Nanofiber Matrices. Pharmaceutics 2019, 11 (4), E161.10.3390/pharmaceutics11040161. PubMed DOI PMC
Ceylan M.; Yang S.-Y.; Asmatulu R. Effects of Gentamicin-Loaded PCL Nanofibers on Growth of Gram Positive and Gram Negative Bacteria. Eur. J. Appl. Microbiol. Biotechnol. 2017, 5, 40–51. 10.33500/ijambr.2017.05.005. DOI
Sirc J.; Kubinova S.; Hobzova R.; Stranska D.; Kozlik P.; Bosakova Z.; Marekova D.; Holan V.; Sykova E.; Michalek J. Controlled Gentamicin Release from Multi-Layered Electrospun Nanofibrous Structures of Various Thicknesses. Int. J. Nanomed. 2012, 7, 5315–5325. 10.2147/IJN.S35781. PubMed DOI PMC
Coimbra P.; Freitas J. P.; Gonçalves T.; Gil M. H.; Figueiredo M. Preparation of Gentamicin Sulfate Eluting Fiber Mats by Emulsion and by Suspension Electrospinning. Mater. Sci. Eng.: C 2019, 94, 86–93. 10.1016/j.msec.2018.09.019. PubMed DOI
Abdul Khodir W. K. W.; Abdul Razak A. H.; Ng M. H.; Guarino V.; Susanti D. Encapsulation and Characterization of Gentamicin Sulfate in the Collagen Added Electrospun Nanofibers for Skin Regeneration. J. Funct. Biomater. 2018, 9 (2), E36.10.3390/jfb9020036. PubMed DOI PMC
Rosendorf J.; Horakova J.; Klicova M.; Palek R.; Cervenkova L.; Kural T.; Hosek P.; Kriz T.; Tegl V.; Moulisova V.; Tonar Z.; Treska V.; Lukas D.; Liska V. Experimental Fortification of Intestinal Anastomoses with Nanofibrous Materials in a Large Animal Model. Sci. Rep. 2020, 10 (1), 1–12. 10.1038/s41598-020-58113-4. PubMed DOI PMC
Rosendorf J.; Klicova M.; Cervenkova L.; Horakova J.; Klapstova A.; Hosek P.; Palek R.; Sevcik J.; Polak R.; Treska V.; Chvojka J.; Liska V. Reinforcement of Colonic Anastomosis with Improved Ultrafine Nanofibrous Patch: Experiment on Pig. Biomedicines 2021, 9 (2), 102.10.3390/biomedicines9020102. PubMed DOI PMC
Rosendorf J.; Klicova M.; Cervenkova L.; Palek R.; Horakova J.; Klapstova A.; Hosek P.; Moulisova V.; Bednar L.; Tegl V.; Brzon O.; Tonar Z.; Treska V.; Lukas D.; Liska V. Double-Layered Nanofibrous Patch for Prevention of Anastomotic Leakage and Peritoneal Adhesions, Experimental Study. In Vivo 2021, 35 (2), 731–741. 10.21873/invivo.12314. PubMed DOI PMC
Choi E. J.; Son B.; Hwang T. S.; Hwang E.-H. Increase of Degradation and Water Uptake Rate Using Electrospun Star-Shaped Poly(d,l-Lactide) Nanofiber. J. Ind. Eng. Chem. 2011, 17 (4), 691–695. 10.1016/j.jiec.2010.10.024. DOI
Kamath S. M.; Sridhar K.; Jaison D.; Gopinath V.; Ibrahim B. K. M.; Gupta N.; Sundaram A.; Sivaperumal P.; Padmapriya S.; Patil S. S. Fabrication of Tri-Layered Electrospun Polycaprolactone Mats with Improved Sustained Drug Release Profile. Sci. Rep 2020, 10 (1), 18179.10.1038/s41598-020-74885-1. PubMed DOI PMC
Klicova M.; Klapstova A.; Chvojka J.; Koprivova B.; Jencova V.; Horakova J. Novel Double-Layered Planar Scaffold Combining Electrospun PCL Fibers and PVA Hydrogels with High Shape Integrity and Water Stability. Mater. Lett. 2020, 263, 12728110.1016/j.matlet.2019.127281. DOI
Liu Q.; Ouyang W.-C.; Zhou X.-H.; Jin T.; Wu Z.-W. Antibacterial Activity and Drug Loading of Moxifloxacin-Loaded Poly(Vinyl Alcohol)/Chitosan Electrospun Nanofibers. Front. Mater. 2021, 82, 64342810.3389/fmats.2021.643428. DOI
Wei Z.; Wang L.; Zhang S.; Chen T.; Yang J.; Long S.; Wang X. Electrospun Antibacterial Nanofibers for Wound Dressings and Tissue Medicinal Fields: A Review. J. Innov. Opt. Health Sci. 2020, 13 (05), 2030012.10.1142/S1793545820300128. DOI
Gao Y.; Truong Y. B.; Zhu Y.; Kyratzis I. L. Electrospun Antibacterial Nanofibers: Production, Activity, and in Vivo Applications. J. Appl. Polym. Sci. 2014, 131 (18), 9041.10.1002/app.40797. DOI
Ali I. H.; Ouf A.; Elshishiny F.; Taskin M. B.; Song J.; Dong M.; Chen M.; Siam R.; Mamdouh W. Antimicrobial and Wound-Healing Activities of Graphene-Reinforced Electrospun Chitosan/Gelatin Nanofibrous Nanocomposite Scaffolds. ACS Omega 2022, 7 (2), 1838–1850. 10.1021/acsomega.1c05095. PubMed DOI PMC
Schardey H. M.; Rogers S.; Schopf S. K.; von Ahnen T.; Wirth U. Are Gut Bacteria Associated with the Development of Anastomotic Leaks?. Coloproctology 2017, 39 (2), 94–100. 10.1007/s00053-016-0136-x. DOI
Kadurugamuwa J. L.; Clarke A. J.; Beveridge T. J. Surface Action of Gentamicin on Pseudomonas Aeruginosa. J. Bacteriol. 1993, 175 (18), 5798–5805. 10.1128/jb.175.18.5798-5805.1993. PubMed DOI PMC
Alharbi N.; Daraei A.; Lee H.; Guthold M. The Effect of Molecular Weight and Fiber Diameter on the Mechanical Properties of Single, Electrospun PCL Nanofibers. Mater. Today Commun. 2023, 35, 10577310.1016/j.mtcomm.2023.105773. DOI
Bacakova L.; Filova E.; Parizek M.; Ruml T.; Svorcik V. Modulation of Cell Adhesion, Proliferation and Differentiation on Materials Designed for Body Implants. Biotechnol. Adv. 2011, 29 (6), 739–767. 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Ismail A. F. H.; Mohamed F.; Rosli L. M. M.; Shafri M. A. M.; Haris M. S.; Adina A. B. Spectrophotometric Determination of Gentamicin Loaded PLGA Microparticles and Method Validation via Ninhydrin-Gentamicin Complex As A Rapid Quantification Approach. J. Appl. Pharm. Sci. 2016, 6, 007–014. 10.7324/JAPS.2016.600102. DOI
Kuang G.; Zhang Z.; Liu S.; Zhou D.; Lu X.; Jing X.; Huang Y. Biphasic Drug Release from Electrospun Polyblend Nanofibers for Optimized Local Cancer Treatment. Biomater. Sci. 2018, 6 (2), 324–331. 10.1039/C7BM01018D. PubMed DOI
Kajdič S.; Planinšek O.; Gašperlin M.; Kocbek P. Electrospun Nanofibers for Customized Drug-Delivery Systems. J. Drug Delivery Sci. Technol. 2019, 51, 672–681. 10.1016/j.jddst.2019.03.038. DOI
Mendes G. C. C.; Brandão T. R. S.; Silva C. L. M. Ethylene Oxide Sterilization of Medical Devices: A Review. Am. J. Infect. Control 2007, 35 (9), 574–581. 10.1016/j.ajic.2006.10.014. PubMed DOI
Horakova J.; Mikes P.; Saman A.; Jencova V.; Klapstova A.; Svarcova T.; Ackermann M.; Novotny V.; Suchy T.; Lukas D. The Effect of Ethylene Oxide Sterilization on Electrospun Vascular Grafts Made from Biodegradable Polyesters. Mater. Sci. Eng. C 2018, 92, 132–142. 10.1016/j.msec.2018.06.041. PubMed DOI
Horakova J.; Klicova M.; Erben J.; Klapstova A.; Novotny V.; Behalek L.; Chvojka J. Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-Caprolactone. ACS Omega 2020, 5 (15), 8885–8892. 10.1021/acsomega.0c00503. PubMed DOI PMC
Friess W.; Schlapp M. Sterilization of Gentamicin Containing Collagen/PLGA Microparticle Composites. Eur. J. Pharm. Biopharm. 2006, 63 (2), 176–187. 10.1016/j.ejpb.2005.11.007. PubMed DOI
Dhal C.; Mishra R. In Vitro and in Vivo Evaluation of Gentamicin Sulphate-Loaded PLGA Nanoparticle-Based Film for the Treatment of Surgical Site Infection. Drug Delivery Transl. Res. 2020, 10 (4), 1032–1043. 10.1007/s13346-020-00730-7. PubMed DOI
Mullins N. D.; Deadman B. J.; Moynihan H. A.; McCarthy F. O.; Lawrence S. E.; Thompson J.; Maguire A. R. The Impact of Storage Conditions upon Gentamicin Coated Antimicrobial Implants. J. Pharm. Anal. 2016, 6 (6), 374–381. 10.1016/j.jpha.2016.05.002. PubMed DOI PMC