Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32337451
PubMed Central
PMC7178787
DOI
10.1021/acsomega.0c00503
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Electrospun materials made from biodegradable polycaprolactone are used widely in various tissue engineering and regenerative medicine applications because of their morphological similarity to the extracellular matrix. However, the main prerequisite for the use of such materials in clinical practice consists of the selection of the appropriate sterilization technique. This study is devoted to the study of the impact of traditional sterilization and disinfection methods on a nanofibrous polycaprolactone layer constructed by means of the needleless electrospinning technique. It was determined that hydrogen peroxide plasma treatment led to the loss of fibrous morphology and the creation of a foil. However, certain sterilization (ethylene oxide, gamma irradiation, and peracetic acid) and disinfection techniques (ethanol and UV irradiation) were found not to lead to a change in morphology; thus, the study investigates their impact on thermal properties, molecular weight, and interactions with a fibroblast cell line. It was determined that the surface properties that guide cell adhesion and proliferation were affected more than the bulk properties. The highest proliferation rate of fibroblasts seeded on nanofibrous scaffolds was observed with respect to gamma-irradiated polycaprolactone, while the lowest proliferation rate was observed following ethylene oxide sterilization.
Zobrazit více v PubMed
Rutala W. A.Guideline for Disinfection and Sterilization in Healthcare Facilities; CDC, 2008; Vol. 2008, p 163.
Rediguieri C. F.; Sassonia R. C.; Dua K.; Kikuchi I. S.; de Jesus Andreoli Pinto T. Impact of Sterilization Methods on Electrospun Scaffolds for Tissue Engineering. Eur. Polym. J. 2016, 82, 181–195. 10.1016/j.eurpolymj.2016.07.016. DOI
Hofmann S.; Stok K. S.; Kohler T.; Meinel A. J.; Müller R. Effect of Sterilization on Structural and Material Properties of 3-D Silk Fibroin Scaffolds. Acta Biomater. 2014, 10, 308–317. 10.1016/j.actbio.2013.08.035. PubMed DOI
Rnjak-Kovacina J.; DesRochers T. M.; Burke K. A.; Kaplan D. L. The Effect of Sterilization on Silk Fibroin Biomaterial Properties. Macromol. Biosci. 2015, 15, 861–874. 10.1002/mabi.201500013. PubMed DOI PMC
Laroche G.; Marois Y.; Guidoin R.; King M. W.; Martin L.; How T.; Douville Y. Polyvinylidene Fluoride (PVDF) as a Biomaterial: From Polymeric Raw Material to Monofilament Vascular Suture. J. Biomed. Mater. Res. 1995, 29, 1525–1536. 10.1002/jbm.820291209. PubMed DOI
Augustine R.; Saha A.; Jayachandran V. P.; Thomas S.; Kalarikkal N. Dose-Dependent Effects of Gamma Irradiation on the Materials Properties and Cell Proliferation of Electrospun Polycaprolactone Tissue Engineering Scaffolds. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 526–533. 10.1080/00914037.2014.977900. DOI
Gonzalez M. E.; Salmoral E. M.; Traverso K.; Floccari M. E. Effects of Gamma Radiation on a Plastic Material Based on Bean Protein. Int. J. Polym. Mater. 2002, 51, 721–731. 10.1080/714975831. DOI
Yoganarasimha S.; Trahan W. R.; Best A. M.; Bowlin G. L.; Kitten T. O.; Moon P. C.; Madurantakam P. A. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds. Tissue Eng., Part C 2014, 20, 714–723. 10.1089/ten.tec.2013.0624. PubMed DOI PMC
Xu S.-C.; Qin C.-C.; Yu M.; Dong R.-H.; Yan X.; Zhao H.; Han W.-P.; Zhang H.-D.; Long Y.-Z. A Battery-Operated Portable Handheld Electrospinning Apparatus. Nanoscale 2015, 7, 12351–12355. 10.1039/c5nr02922h. PubMed DOI
Aydogdu M. O.; Altun E.; Crabbe-Mann M.; Brako F.; Koc F.; Ozen G.; Kuruca S. E.; Edirisinghe U.; Luo C.; Gunduz O.; Edirisinghe M. Cellular Interactions with Bacterial Cellulose: Polycaprolactone Nanofibrous Scaffolds Produced by a Portable Electrohydrodynamic Gun for Point-of-Need Wound Dressing. Int. Wound J. 2018, 15, 789–797. 10.1111/iwj.12929. PubMed DOI PMC
Yan X.; Yu M.; Ramakrishna S.; Russell S. J.; Long Y.-Z. Advances in Portable Electrospinning Devices for in Situ Delivery of Personalized Wound Care. Nanoscale 2019, 11, 19166–19178. 10.1039/c9nr02802a. PubMed DOI
Augustine R.; Kalarikkal N.; Thomas S. Electrospun PCL Membranes Incorporated with Biosynthesized Silver Nanoparticles as Antibacterial Wound Dressings. Appl. Nanosci. 2016, 6, 337–344. 10.1007/s13204-015-0439-1. DOI
Ahmed J.; Altun E.; Aydogdu M. O.; Gunduz O.; Kerai L.; Ren G.; Edirisinghe M. Anti-fungal bandages containing cinnamon extract. Int. Wound J. 2019, 16, 730–736. 10.1111/iwj.13090. PubMed DOI PMC
Joseph B.; Augustine R.; Kalarikkal N.; Thomas S.; Seantier B.; Grohens Y. Recent Advances in Electrospun Polycaprolactone Based Scaffolds for Wound Healing and Skin Bioengineering Applications. Mater. Today Commun. 2019, 19, 319–335. 10.1016/j.mtcomm.2019.02.009. DOI
Yalcin I.; Horakova J.; Mikes P.; Sadikoglu T. G.; Domin R.; Lukas D. Design of Polycaprolactone Vascular Grafts. J. Ind. Text. 2016, 45, 813–833. 10.1177/1528083714540701. DOI
Alves da Silva M. L.; Martins A.; Costa-Pinto A. R.; Costa P.; Faria S.; Gomes M.; Reis R. L.; Neves N. M. Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs. Biomacromolecules 2010, 11, 3228–3236. 10.1021/bm100476r. PubMed DOI
Rosendorf J.; Horakova J.; Klicova M.; Palek R.; Cervenkova L.; Kural T.; Hosek P.; Kriz T.; Tegl V.; Moulisova V.; Tonar Z.; Treska V.; Lukas D.; Liska V. Experimental Fortification of Intestinal Anastomoses with Nanofibrous Materials in a Large Animal Model. Sci. Rep. 2020, 10, 1134.10.1038/s41598-020-58113-4. PubMed DOI PMC
Woodruff M. A.; Hutmacher D. W. The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. 10.1016/j.progpolymsci.2010.04.002. DOI
Horakova J.; Mikes P.; Saman A.; Jencova V.; Klapstova A.; Svarcova T.; Ackermann M.; Novotny V.; Suchy T.; Lukas D. The Effect of Ethylene Oxide Sterilization on Electrospun Vascular Grafts Made from Biodegradable Polyesters. Mater. Sci. Eng. C 2018, 92, 132–142. 10.1016/j.msec.2018.06.041. PubMed DOI
Bhaskar P.; Bosworth L. A.; Wong R.; O’brien M. A.; Kriel H.; Smit E.; McGrouther D. A.; Wong J. K.; Cartmell S. H. Cell response to sterilized electrospun poly(ε-caprolactone) scaffolds to aid tendon regenerationin vivo. J. Biomed. Mater. Res., Part A 2017, 105, 389–397. 10.1002/jbm.a.35911. PubMed DOI PMC
Bosworth L. A.; Gibb A.; Downes S. Gamma Irradiation of Electrospun Poly(ε-Caprolactone) Fibers Affects Material Properties but Not Cell Response. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 870–876. 10.1002/polb.23072. DOI
Dai Y.; Xia Y.; Chen H.-B.; Li N.; Chen G.; Zhang F.-M.; Gu N. Optimization of sterilization methods for electrospun poly(ε-caprolactone) to enhance pre-osteoblast cell behaviors for guided bone regeneration. J. Bioact. Compat. Polym. 2016, 31, 152–166. 10.1177/0883911515598795. DOI
Crescenzi V.; Manzini G.; Calzolari G.; Borri C. Thermodynamics of Fusion of Poly-β-Propiolactone and Poly-ϵ-Caprolactone. Comparative Analysis of the Melting of Aliphatic Polylactone and Polyester Chains. Eur. Polym. J. 1972, 8, 449–463. 10.1016/0014-3057(72)90109-7. DOI
Krchova S.; Dzan L.; Lukas D.; Mikes P.; Jencova V.; Horakova J.; Pilarova K. Nanovlákna v Hojení Kožních Ran. Čes. Dermatovenerol. Časopis Čes. Akad. Dermatovenerol. 2014, 4, 234–240.
Horakova J.; Oulehlova Z.; Novotny V.; Jencova V.; Mikes P.; Havlickova K.; Prochazkova R.; Heczkova B.; Hadinec P.; Sehr S.; Wendel H.-P.; Bell C.-M.; Krajewski S. The Assessment of Electrospun Scaffolds Fabricated from Polycaprolactone with the Addition of L-Arginine. Biomed. Phys. Eng. Express 2020, 6, 025012.10.1088/2057-1976/ab756f. PubMed DOI
Amirian J.; Lee S.-Y.; Lee B.-T. Designing of Combined Nano and Microfiber Network by Immobilization of Oxidized Cellulose Nanofiber on Polycaprolactone Fibrous Scaffold. J. Biomed. Nanotechnol. 2016, 12, 1864–1875. 10.1166/jbn.2016.2308. PubMed DOI
Kasoju N.; Bhonde R. R.; Bora U. Fabrication of a Novel Micro–nano Fibrous Nonwoven Scaffold with Antheraea Assama Silk Fibroin for Use in Tissue Engineering. Mater. Lett. 2009, 63, 2466–2469. 10.1016/j.matlet.2009.08.037. DOI
Alenezi H.; Cam M. E.; Edirisinghe M. Experimental and Theoretical Investigation of the Fluid Behavior during Polymeric Fiber Formation with and without Pressure. Appl. Phys. Rev. 2019, 6, 041401.10.1063/1.5110965. DOI
Kuzelova Kostakova E.; Meszaros L.; Maskova G.; Blazkova L.; Turcsan T.; Lukas D. Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study. J. Nanomater. 2017, 2017, 1–9. 10.1155/2017/8952390. DOI
Lawson C.; Stanishevsky A.; Sivan M.; Pokorny P.; Lukáš D. Rapid Fabrication of Poly(ε-Caprolactone) Nanofibers Using Needleless Alternating Current Electrospinning. J. Appl. Polym. Sci. 2016, 133, 43232.10.1002/app.43232. DOI
Franklin S. P.; Stoker A. M.; Cockrell M. K.; Pfeiffer F. M.; Sonny Bal B.; Cook J. L. Effects of Low-Temperature Hydrogen Peroxide Gas Plasma Sterilization on In Vitro Cytotoxicity of Poly(ϵ-Caprolactone) (PCL). J. Biomater. Sci., Polym. Ed. 2012, 23, 1–10. 10.1163/092050611x612296. PubMed DOI
Bacakova L.; Filova E.; Parizek M.; Ruml T.; Svorcik V. Modulation of Cell Adhesion, Proliferation and Differentiation on Materials Designed for Body Implants. Biotechnol. Adv. 2011, 29, 739–767. 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Cottam E.; Hukins D. W. L.; Lee K.; Hewitt C.; Jenkins M. J. Effect of sterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material. Med. Eng. Phys. 2009, 31, 221–226. 10.1016/j.medengphy.2008.07.005. PubMed DOI